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BEHAVIOR OF MULTI-LAYER COMPOSITE BEAMS WITH PARTIAL 

INTERACTION "PART I " 

 

 

 
 

 

 

 

 

  :الخلاصة

استخدمت المنشات المركبة بصورة واسعة في الهندسة الإنشائية خلال الخمسة والثلاثين سنة الماضية 

  . على هذا النوع من الإنشاءات وطروت لأغلب الأجزاء الإنشائية الشائعة الاستخدام بسبب الفوائد المترتبة

في هذه الدراسة جرت محاولة لتقديم طريقة تعتمد على نظرية المرونة لتحليل العتبات المركبة متعددة 

  .الطبقات تأخذ بنظر الاعتبار العلاقات الخطية  وغير الخطية للمواد الإنشائية المستخدمة ورباطان القص 

التحليل يقود إلى مجموعة من . ليل المقترح من قبل روبرت التحليل اعتمد بصورة رئيسية على التح

تم فحص ثلاثة نماذج من فحص القص .من الدرجة الرابعة والثالثة ) ثمان معادلات ( المعادلات التفاضلية 

تم صب وفحص سلسة من العتبات المركبة المتكونة من ثلاثة طبقات " لرباطان القص المستخدمة وأيضا

نتائج الفحوصات تمت مقارنتها بنتائج بعض الباحثين حيث تبين وجود تقارب جيد . بعاد مختلفة المواد والأ

 .بين التحليل الإنشائي والفحص العملي ونتائج باحثين آخرين

 

 

ABSTRACT: 

 In this study an attempt is made to develop a method of analysis dealing with a 

multi-layer composite beam, for linear material and shear connector behavior in which 

the slip (horizontal displacement) and uplift force (vertical displacement) are taken into 

consideration. The analysis is based on a approach presented by Roberts[1], which takes 

into consideration horizontal and vertical displacement in interfaces. The analysis led to 

a set of eight differential equations contains derivatives of the fourth and third order. A 

program based on the present analysis is built. Series of three push-out tests were carried 

out to investigate the capacity of shear stiffness for connectors. From these tests, load-

slip curves were obtained. Also, series of multi-layer composite simply supported beams 

were tested. Each one consists of three layers in different material properties and 

dimensions. A comparison between the experimental values and numerical analysis is 

carried out. Close agreement is obtained with experimental values for different 

materials, layers thickness and shear stiffness. 

 
 

 

 

Dr. Zeyad M. Ali  

lecturer 

Dep. of Building& 

Construction 

University of Technology 

Dr. Riyadh I. M. Al-Amery 

 Assistant Prof. 

Dep. of Building& 

Construction 

University of Technology 

Dr. Khalel I. Aziz 

lecturer 

Dep. of Civil 

Engineering 

University of Anbar 

Created by Neevia Personal Converter trial version http://www.neevia.com

http://www.neevia.com


IJCE-8
th
 ISSUE                                                                             JUNE-2007 

  

  

  
2

  

NOTATION 

 a, b, and c= Subscript denotes different layers. 

aA , bA and cA = Cross-sectional area of different layers. 

A= Effective width of concrete slab. 

1d and 2d =Distance between the centroids of successive layers. 

1E  = Modulus of elasticity of concrete. 

2E  = Modulus of elasticity of steel.  

aE , bE and cE =Modulus of elasticity of  different layers .  

aF , bF  and cF =The axial forces in different layers. 

ah , bh  and ch = Thickness of  different layers. 

aI , bI and cI  =Second moment of area for the layer a. 

1I  and  2I = Moment of inertia of concrete slab and steel about its own centroid. 

1sk and 2sk =Shear stiffness of the joint per unit length between successive layers. 

1nk and 2nk =Normal stiffness of the joint per unit length between successive layers. 

L  = span length. 

M= External applied moment. 

aM , bM  and cM  =Moment for layer a. 

1P and 2P  =Normal force per unit length at the upper and lower interface.  

iρ =Live load. 

ρ =Live load and dead load. 

aρ  , bρ and cρ = Distributed self-weight of layer a. 

rR , lR =Reaction at the right and the left supports. 

abU  and  bcU = Slip between upper and lower layers. 

au , bu and cu =Displacements of the different layers in the x -direction.  

W= Point load. 

aw , bw  and cw =Displacements of the layer a, b and c  in the z -direction. 

baw , cbw =Separation at the interface between the upper and lower  layers. 

x.= Subscript denote differentiation. 

aiz , aiz and aiz =Z-coordinate of interface relative to local x-z axes in layers a, b and c. 

fε  =Free strain due to shrinkage, temperature etc. 

rε  = Strain induced during the construction sequence.    

        ε =Integration of strain function over cross section area of the material. 
aε , bε and cε =Strain in layers a , b and c. 

aσ , bσ and cσ =Stress in layers a, b and c. 

x∆ =Spacing between nodes. 
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1.INTRODUCTION 

Composite construction has been widely used for building construction over 

the past 50 years, developed initially for most structural elements due to the 

advantages provided by such types of elements. A perfect connection between the 

components of composite elements (mostly steel, concrete and timber) exists only 

theoretically. Experimental investigation has shown that significant slip occurs at the 

interface between these components, even when a large number of connectors are 

proved. Some types of connectors give a very rigid connection, others are more 

deformable in which a certain slip is inevitable. This problem is more complicated 

when fewer connectors than the number required for full interaction are used. The 

modification in the behavior of a composite beam by the presence of slip was 

illustrated by analysis conducted by many researchers. These analyses led to 

differential equations (number of these equations depending on the degree of 

freedom) that are to be solved fresh for each type of loading and the variation in 

dimensions or properties of beams. Multi-layer composite beam (also called 

laminated beam structures) are very important structures and relatively new which 

are used not in civil engineering only but in many industries such as aircraft and 

marine engineering. The first interaction theory that takes account of slip effects was 

initially formulated by Newmark [2], based on elastic analysis of composite beams 

assuming linear material and shear connector behavior. When the basic equilibrium 

and compatibility equations are reduced to a single, second order differential 

equation in terms of the axial force, equation (1) is obtained. 
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The solutions of this basic differential equations is then substituted back into 

the equilibrium and compatibility equations, which can then be solved to give the 

displacements and strains throughout the beam and the slip at the interface.  

 Adekola [3] formulated equation (2) and (3) based on interaction theory, 

which takes account of slip, uplift and friction effect. Each component of a 

composite beam was assumed to behave separately in accordance with simple 

bending theory. In addition it was assumed that the rate of change of the axial force 

is directly proportional to slip,  and uplift force is directly proportional to differential 

deflection. The equilibrium and compatibility relations lead to two differential 

equations of fourth order connecting the uplift tension arising from differential 

deflections of the two components of the composite beam with the axial force within 

each of the components. The equations contain derivatives of fourth order in uplift 

forces and second order in axial forces, and they were solved by a finite difference 
method, in which they were rearranged such that unknowns exist at each node point 
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of a simply supported composite beam. Obtaining the complete solution for the axial 

forces and  uplift forces, deflections can then be determined ,as follows;  

0.
...

.
.

.

1

.

1 . =







+−+








++ xx

cc

ci

ss

si
n

cc

n

ccss

nxxxx F
IE

Z

IE

Z
K

iE

K
T

IEIE
KT

ρ
                       ..(2) 

( )

M
IEIE

dK
T

IEIE

ZIEZIE

K

K

F
IEIE

d

AEAE
KF

sscc

cs
xx

ccss

cisssicc

n

s

ssccccss

sxx

.
..

.
.

..

.
.

1

.

1

.

2

1

+

−
=









+

−

+








+
++−

                                                ..(3)                                                                                

Using the same element presented by Newmark, Johnson [4]
 
in 1975 

proposed a partial interaction theory for simply supported beams, in which the 

analysis was based on elastic theory. The composite beam was assumed to be in 

linear elastic materials. The discrete connection was assumed to be smeared along 

the beam, so that the connector strength and stiffness can be quoted per unit length 

of beam. In addition, the connector behavior was assumed linearly elastic. The 

effects of uplift were neglected, i.e. no gap between the two components of the 

composite beam occurs and the same curvatures are used for them. Equations 

deduced from equilibrium, elasticity and compatibility were so arranged that a 

second order differential equation relating the slip at the interface to the distance 

along the beam were obtained, equation (4). The solution of the equation gives the 

slip distribution along the beam, back substitution into the equilibrium and 

compatibility equations get the curvature distribution deflections and stresses along 

the beam. Both of the two approaches analyze two layers of composite beam with 

partial interaction and gives single, second order explicit differential equation. This 

equation must be solved for each type of  loading to have the complete solution. 
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Roberts [1] presented an approach for the analysis of composite beam with 

partial interaction, in which the basic equilibrium and compatibility equations were 

formulated in terms of four independent variables, i.e. the axial displacements of the 

concrete and steel and the deflections of the two layers. Linear elastic materials and 

shear connector behavior were assumed with the concrete remaining uncracked, and 

both the slip and separation at the interface were incorporated. The analysis resulted 

in four differential equations, which contain derivatives of third order in axial 

displacements and fourth order in deflections. Numerical solutions of the basic 

equations were obtained by expressing them in finite difference form and the 

complete system of the equations, i.e. four per node, was solved for the unknown 

displacements and deflections. An application of the theory was made in which the 

behavior of a simply supported composite beam under service loading was studied. 

The normal stiffness of the shear connection per unit length was assumed infinite, 

i.e. no separation occurs and equal curvatures of the interaction components exist. 

The shear stiffness of the shear connections per unit length were varied such that 

uniform, triangular and discontinuous distribution of shear connectors were 
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obtained.The basic equilibrium and compatibility equations were formulated in 

terms of four independent variables, i.e. the axial displacements and deflections of 

the layers, equations from (5) to (8). Linear elastic materials and shear connector 

behavior was assumed with the concrete remaining uncracked, and both the slip and 

separation at the interface were incorporated. The analysis resulted in four 

differential equations, which contain derivatives of third order in axial displacements 

and fourth order in deflections. 

ρ=−+ 1,,, .dFMM xxsxsxxc                                                                            ..(5) 

0,, =+ xsxc FF                                                                                             ..(6) 

( ) ( )[ ] 0.. ,,, =−−−− xssisxcicsxc WZUWZUkF                                                      ..(7) 

cicsncixxcxxc WWKZFM ρρ +=−−+ )(.,,                                                         ..(8) 

2.Theory
1
 

 

2.1 Assumptions 

 The basic assumptions of conventional beam theory were used where plane 

sections are assumed to remain plane. Also, the connection was assumed to have 

negligible thickness and possesses finite normal and tangential stiffness. 

 

2.2 Equilibrium .   

 An element of a composite of three layers, length ( xδ ), shown in Figure (1), 

is subjected to moments, (M), shear forces, (V), and axial forces, (F), subscripts a, b, 

and c denote, three layers from upper to lower layer, and the local x-z axes pass 

through the centroids of the materials. The beam subjected to uniform distributed 

load The equilibrium requirements led to the following equations: 

ρ=+−−++ ).(. 21,1,,,, ddFdFMMM xxcxxbxxcxxbxxa                                        ..(9 ) 

2,1,,,, .. dFdFVVVMMM xcxacbaxcxbxa +−++=++                                       ..(10) 

0,,, =++ xcxbxa FFF                                                                                  ..(11) 

 

2.3 Compatibility 

 Assuming plane sections within each material remain plane, The 

compatibility requirements lead to the following equations: 

0)].().[( ,,1, =−−−− xbbibxaaiasxa wzuwzukF                                                 ..(12) 

 

0)].().[( ,,2,, =−−−−+ xccicxbbibsxbxa wzuwzukFF                                      ..(13) 

babnbcnbixxbxxb wwkwwkzFM ρ=−+−−+ )()(.. 12,,                                   ..(14) 
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2.4 Basic differential equations 

From the analytical model, the six independent differential equations 

(equilibrium and compatibility), may be expressed in terms of displacement 

variables, ( cbbaa uwuwu ,,,, ) and ( cw ) as follows: 

Assuming plane sections within each material remain plane, the axial strain 

(ε ) can be expressed in terms of displacements ( wu , ) relative to the local x and z 

–axes, which are assumed to pass through the centroid of the three materials. Hence: 

xxaaxaxata wzUU ,,, .−==ε                                                                      ..(15) 

xxbbxbxbtb wzUU ,,, .−==ε                                                                       ..(16) 

xxccxcxctc wzUU ,,, .−==ε                                                                       ..(17) 

These subscripts a, b and c denote the different layers. Subscript (x), denotes 

differentiation and (z) the distance form the origin of coordinates to the limits of the 

layers. 

Stresses now can be related to strain via the material properties ( ba EE , ) and 

( cE ). For linear elastic materials ( ba EE , ) and ( cE ) are constants, but for non-linear 

elastic and elasto-plastic materials, ( ba EE , ) and ( cE ) are functions of strain. 

The free strain due to shrinkage, temperature etc, is denoted by ( fε ), while the strain 

induced during the construction sequence, is denoted by ( rε ). Hence, if (u ) and 

(w ) are assumed to exclude the displacements corresponding, to ( fε ) and ( rε ), the 

stresses in the layers are given by: 

).( ,, faraxxaaxaaa wzuE εεσ −+−=                                                           ..(18) 

).( ,, fbbxxbbxbbb wzuE εεσ −+−=                                                            ..(19) 

).( ,, fcrcxxccxccc wzuE εεσ −+−=                                                            ..(20) 

The axial forces, ( ba FF , ) and ( cF ), and moments ( ba MM , ), and ( cM ) are obtained 

by integrating the stresses, multiplying by the appropriate lever arms, ( ba zz , ) and 

( cz ), in the case of moments over the cross section area of each layer denoted by 

( ba AA , ) and ( cA ). Hence: 

∫= aaa dAF .σ                                                                                        ..(21) 

∫= bbb dAF .σ                                                                                        ..(22) 

∫= ccc dAF .σ                                                                                        ..(23) 

∫−= aaaa dAzM ..σ                                                                                ..(24) 

∫−= bbbb dAzM ..σ                                                                                 ..(25) 

∫−= cccc dAzM ..σ                                                                                 ..(26) 

 

 

Substituting Eqs. (18), (18), (20) into equations (21) to (26) which gives: 

∫ −+−= afaraxxaaxaaa dAwzuEF )..( ,, εε                                                    ..(27) 

∫ −+−= bfbrbxxbbxbbb dAwzuEF )..( ,, εε                                                    ..(28) 
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∫ −+−= cfcrcxxccxccc dAwzuEF )..( ,, εε                                                     ..(29) 

∫ −+−−= aafaraxxaaxaaa dAzwzuEM .)...( ,, εε                                            ..(30) 

∫ −+−−= bbfbrbxxbbxbbb dAzwzuEM .)...( ,, εε                                            ..(31) 

∫ −+−−= ccfcrcxxccxccc dAzwzuEM .)...( ,, εε                                             ..(32) 

IF  ( ba EE , ), and ( cE ) are constants, integration of eqs. (27) to (32) gives: 

).(.. , faraaxaaaa EuAEF εε −+=                                                               ..(33) 

).(.. , fbrbbxbbbb EuAEF εε −+=                                                                ..(34) 

).(.. , fcrccxcccc EuAEF εε −+=                                                                ..(35) 

xxaaaa wIEM ,..=                                                                                    ..(36) 

xxbbbb wIEM ,..=                                                                                    ..(37) 

xxcccc wIEM ,..=                                                                                    ..(38) 

The following are the six governing equations derived for three layer composite 

simply supported beam: 

ρ=+−−++ ).(. 21,1,,,, ddFdFMMM xxcxxbxxcxxbxxa                                    ..(39) 

ρ=−+++ 2,1,,,, .. dFdFMMM xxcxxaxxcxxbxxa                                             ..(40) 

0,,, =++ xcxbxa FFF                                                                               ..(41) 

0)].().[( ,,1, =−−−− xbbibxaaiasxa wzuwzukF                                              ..(41) 

0)].().[( ,,2,, =−−−−+ xccicxbbibsxbxa wzuwzukFF                                      ..(42) 

babnbcnbixxbxxb wwkwwkzFM ρ=−+−−+ )()(.. 12,,                                   ..(43) 

Differentiating eqs. from (33) to (38) several times with respect to (x) and 

substituting the resulting eqs. into equations (39) to (43) which gives: 

ρεεεε =−+−+−−

−−++

xxfcrccxxxcccxxfbrbb

xxxbbbxxxxcccxxxxbbbxxxxaaa

ddEuAEdddE

udAEwIEwIEwIE

,21,211,

,1,,,

))(.(..).(.)(

.........
              ..(44) 

ρεεεε =−−−−

++++

xxfcrccxxxcccxxaaa

xxxaaaxxxxcccxxxxbbbxxxxaaa

dEuAEddE

udAEwIEwIEwIE

,.2,21,

,1,,,

)(.....)(

.........
                               ..(45) 

0).(..

)(..).(..

,,

,,,,

=−++

−++−+

xfcrccxxccc

xfbrbbxxbbbxfaraaxxaaa

EuAE

EuAEEuAE

εε

εεεε
                             ..(46)                                      

0)].().[(

).(..

,,

1,,

=−−−

−−+

xbbibxaaia

sxfaraaxxaaa

wzuwzu

kEuAE εε
                                                              ..(47) 

0)].().[(

)(..).(..

,,2

,,,,

=−−−−

−++−+

xccicxbbibs

xfbrbbxxbbbxfaraaxxaaa

wzuwzuk

EuAEEuAE εεεε
                             ..(48)                          

babnbcn

xxfbrbbibbixxxbbbxxxxbbb

wwkwwk

zEzuAEwIE

ρ

εε

=−+−

−−++

)().(

).(......

12

,,,
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2.5 Numerical solutions 

 Equations (44) o (49) contain derivatives of third order in (u) and fourth order 

in (w), which can be expressed in finite (central) difference form using five node 

points, for example, the derivatives of (w) at node (n) can be expressed as: 

x

ww
w nn

xn ∆

−
= −+

.2

11
,                                                                                     ..(50) 

2

11
,

.2

x

www
w nnn

xxn ∆

+−
= −+                                                                          ..(51) 

3

2112
,

.2

.2.2

x

wwww
w nnnn

xxxn ∆

−+−
= −−++                                                           ..(52) 

4

2112
,

.4.6.4

x

wwwww
w nnnnn

xxxxn ∆

+−+−
= −−++                                                 .(53) 

 After expressing equations (44) to (49) in finite difference form, the complete 

solution system of algebraic equations, six degrees of freedom per node, can be 

solved for the unknown displacements at the nodes, and it required two external 

nodes at each end of the beam. In general, since the model is done for uniform-

distribution load and to specify the boundary conditions, the point load P can be 

idealized as a uniform distribution load 
x

P
∆=ρ , applied over single node spacing. 

2.6 Boundary conditions. 

 Solution of the resulting set of algebraic equations requires the specification 

of boundary conditions. In general, the equations contain a derivative of fourth order 

required two external nodes to specify the boundary conditions at each end. 

However, if each external node is assigned six degree of freedom per node,  twelve 

boundary conditions are required for each end of the beam and must be specified. 

0=cw                       at    0=x       when Lx =                                       ..(54) 

0, =xxaw                    at    0=x       when  Lx =                                       ..(55) 

0, =xxbw                    at    0=x       when  Lx =                                       ..(56) 

0, =xxcw                    at    0=x       when  Lx =                                       ..(57) 

0=cu                       at    0=x                                                                ..(58) 

0, =xcu                     at     Lx =                                                               ..(59) 

0, =xau                     at     0=x       when    Lx =                                    ..(60) 

0, =xbu                     at     0=x       when    Lx =                                    ..(61) 

rcba RVVV =++        at     0=x                                                               ..(62) 

lcba RVVV =++         at     Lx =                                                              ..(63) 

0, =xxxxau                   at     0=x      when    Lx =                                    ..(64) 

0, =xxxxbu                   at     0=x      when    Lx =                                    ..(65) 

0, =xxxxcu                   at     0=x      when    Lx =                                    ..(66) 

0, =xabU                    at     0=x      when    Lx =                                    ..(67) 

Equation (62) and (63) express the conditions that the sum of the shear forces in the 

layers are equal to the support reaction rR and lR .  
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It is noted that the free strain due to shrinkage and temperature etc and strain induced 

during construction sequence are neglected  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.Experimental Tests 

3.1 Materials 

 Experimental specimens include seven beams, each one consisting of three 

layers, details about each beam are shown in Figure (2) and Table(1) , each beam has 

two steel plates (upper and lower steel plates) confined a reinforced concrete layer. 

All these beams use a total width  (200mm), and overall beam length (1500 mm), 

with clear span (1200mm). The concrete thickness, steel plate thickness, types of 

shear connectors and the distribution of shear connectors are variables. The stud 
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              Wba                               P1 

    

                          B 

              Vb                                                         Vb+δVb 

              Wcb                         P2 

 

 

                Vc                                                      Vc+δVc 
Figure (1-c) Composite layers in separation 
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Figure (1-a) Composite layered beam 
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            Fb 

 

           

             Fc 

 

 

Figure (1-b) Composite layers element in Slip 
 

Figure (1) Composite three layer element 
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connectors were welded to the tension and compression plates using electric 

welding, locatoin of studs shown in figure (2). The studs were arranged pairs per 

row. Prior to concreting, the internal surfaces of the steel plates cleaned carefully 

and the used polywood base oiled to prevent adheson. The steel plates and the oiled 

plywood base end forms were then clamped firmly together. Reinforcement are used 

in the concrete layer, longitudinal steel bar 10 mm diameter two at the top and at the 

bottom, also a series of rectangular stirrups were used to resist shear stresses. After 

concreteing the beams were covered with polythene sheet and cured in laboratory 

and site for  28 days prior to testing. Properties about the used concrete shown in 

Table(2) including laboratory tests for concrete cylinder specimens, compressive 

strength, tensile strength and modulus of elasticity . 
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Figure (2) Dimensions of tested beams  
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Table (1) Specimens detail  

 
  

  No. 

Stud dia. 

height 

(mm) 

thickness 

of 

concrete 

(mm) 

thickness 

of 

steel 

(mm) 

Spacing 

For 

Studs 

(mm) 

 Ks 

   (MPa) 

     

As/Ac 

% 

Beam 1 19mm φ  
h=100mm 

250 8 150 Ks1=670 32 

Beam 2 16mm φ  
h=85mm 

250 8 120 Ks1 32 

Beam 3 13mm φ  
h=65mm 

250 8 85.75 Ks1 32 

Beam 4 13mm φ  
h=65mm 

250 8 120 Ks2=443 32 

Beam 5 13mm φ  
h=65mm 

250 8 150 Ks3=354 32 

Beam 6 13mm φ  
h=65mm 

200 8 85.75 Ks1 40 

Beam 7 13mm φ  
h=65mm 

300 8 85.75   Ks1 26 

 
 

 

Table (2) Concrete properties  

 
    

 Beam    No. 

 Compressive 

Strength    

.fcu    MPa  

 

fc= fcu85.0  

        MPa  

 

.fct=0.56 cf  

      MPa 

Split 

Tensile  

LD

P
fct

..

2

Π
=   

tests    MPa   

Beam 1 23.1 18.48 2.4 2.03 

Beam 2 23.4 18.75 2.45 2.1 

Beam 3 23.4 18.72 2.42 1.69 

Beam 4 24.5 19.6 2.2 1.78 

Beam 5 21.15 16.92 2.3 2.18 

Beam 6 23.25 18.6 2.41 1.86 

Beam 7 22.6 18.08 2.126 1.63 

 

 

 

 

Created by Neevia Personal Converter trial version http://www.neevia.com

http://www.neevia.com


IJCE-8
th
 ISSUE                                                                             JUNE-2007 

  

  

  
12

  

 Three types of shear connectors were used, 13 mm diameter with height 65 
mm, 16 mm diameter with height 85 mm, and 19 mm diameter with height 100 mm, 

headed stud. The steel plates, reinforcement and shear connectors were used in the 

beams tested by a universal testing machine, the standard specimen for this test was 

cut in a standard shape and details. Since there are three types of shear connectors its 

required to test the shear stiffness for each type, properties for the steel used in the 

tests are shown in Table (3). 

 

Table (3) Properties of used steel 

 

 

 

 

 

3.2 

Push-out test specimens 

 A series of three push-out tests was performed on full-scale specimens having 

the same basic dimensions. Each specimens consist of (254mmx147mmx43mm UB) 

with (560mm long) connected to two (460mmx300mmx150mm) concrete slabs by 

means of two pairs of stud connectors, welded to both sides of the flange of the steel 

beam. Headed stud connectors are used for different diameter and length. The 

connectors have the following dimensions, 19-mm diameter with 100-mm length, 

16-mm diameter with 85-mm length and 13-mm diameter with 65-mm length. The 

concrete slabs were reinforced with (10-mm) diameter reinforcing deformed steel. 

 The properties of standard shear connectors can be taken from references [5] 

and [6]. Since the shear connectors used in these tests were not standard it is 

required to obtain the real shear capacity for the connectors. Push out tests for each 

shear connector were made, for headed stud connectors, 19 mm diameter and 100 

mm long, having ultimate shear capacity 125 kN, the secant shear stiffness for 50% 

of the ultimate load is 2025  kN/cm, corresponding to a slip of 0.0308 mm. For 

headed stud connectors, 16 mm diameter and 85 mm long, having ultimate shear 

capacity of 85 kN, the secant shear stiffness for 50% of the ultimate load is 1544 

kN/cm, corresponding to a slip of 0.0264 mm. For headed stud connectors, 13 mm 

diameter and 65 mm long, having ultimate shear capacity of  60   kN, the secant 

shear stiffness for 50% of the ultimate load is 1063 kN/cm, corresponding to a slip 

of 0.0282 mm. Table (4)Figure (3) shows the relationship between the slip and shear 

capacity for the three types of connectors . 

 
 

 

 

Types of steel 

 

Yield 

stress 
MPa 

Ultimate 

strength 

MPa 

Elongation 

% 

Young’s 

Modulus of 

Elasticity 

*1000 MPa 

Reinforcement 

(10 mm) 

285 510 20 203 

 Connectors 

(13mm,16mm, 

19mm) 

275,285,

290 

520,540,580 22,23,24 202 

Steel plates 290 580 24 205 
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Table (4) Results of push-out tests. 

ush out 

test 

 

Stud 

Dimensions 

50% 

ultimate 

load 

Slip corresponding 

to 50% load 

P1 D=19 mm 

H=100mm 

 

62.5 0.0388 

P2 D=16 mm 

H=85mm 

 

42.5 0.0264 

P3 D=13 mm 

H=65mm 

 

30 0.0282 

 

 

 

 

 

 

 

 

 
 

 

 

  

Figure (3)Push-out test for stud connectors  

3.3 Testing 

Load was applied to the top of composite beam by the cross head of the 

machine acting through a ball seating, care being taken each time in centering the 

load. The total duration of the test up to failure point is about (60 minute). If the 

specimen remained intact, loading was continued until severe cracking in the 

concrete layer occurred. Horizontal slips between layers were measured by means of 

dial gauge reading to (0.01 mm). The dial gauges fixed at the interface layers at half 

span for slip and under the beam for deflections. 

Measurable slip and deflections occurred when the first increment of the load 

was applied. The failure is usually recorded by horizontal cracking of the concrete 
layers about (60-80)% of the ultimate load. Measurements of the slips and deflection 

in all tests are plotted for different shear stiffness. Also, the slips and deflections are 

plotted for different layer thickness. 
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4.Comparison with experimental work  

The results obtained by experimental tests, are compared with the numerical 

solutions obtained from the program based on present model. Two variables mainly 

affect the behavior of multi-layer composite beams , these variables are the slip 

between layers and deflection , which are measured experimentally.  

Figure(4)  shows the variation of the deflection for lower layer along the 

beam for different shear stiffness values . It can seen that the value obtained from the 

experimental tests are in close agreement by about 1.0-2.5% with the theoretical 

values. When shear stiffness increases deflection decrease due to increase of 

interaction between layers, and the deflection in this case approaches the value of 

deflection for full-interaction beam when the shear stiffness increase to very high 

value (full-interaction) 

Figure (5)  and Figure (6) shows the variation of upper interface slip and 

lower interface slip  along the beam. It can seen that the value of slip in upper and 

lower interface slip must be same since the upper and lower shear stiffness are same. 

But the experimental work gives a relatively close value . When the shear stiffness 

increases , slip decreases since the movement between layers is constrained and the 

studs become strong enough the resist the shear stress. The experimental tests are in 

close agreement by about 1.0% with the numerical values. 

Figure(7)  shows the variation of the deflection for lower layer along the 

beam for different cross-sectional areas . It can seen that the value obtained from the 

experimental tests are in close agreement by about 1.5-2.5% with the theoretical 

values. When As/Ac increases deflection decrease since the deflection is a prosperity 

of the whole cross section. 

Figure (8)  and Figure (9) shows the variation of upper interface slip and 

lower interface slip  along the beam for different layer thickness The experimental  

values gives a close  agreements with the  numerical values by about 2.5-12.5 % , 

and the figures shows that when As/Ac increases  slip decreases . All the beams 

were tested under simply supported conditions with linear materials and shear 

connector behavior 

 
 

   

 

 

 

  

 

 

 

 

 

Figure (4) Deflection along the beam for different shear stiffness 
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Figure (5) Variation of slip1 along the beam for different shear stiffness 

 

 

  

  

  

  

  

  

  

  

  

  

  

 

 

 

  

  

Figure (6) Variation of slip2 along the beam for different shear stiffness  
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Figure (7) Deflection along the beam for different layer thickness 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure (8) Variation of slip1 along the beam for different layer thickness  
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Figure (9) Variation of slip1 along the beam for different layer thickness  

 

 

 
CONCLUSION 

Composite multi-layered beam is relatively new construction and can be used 

in many industries besides strengthening a damaged or weaken construction and the 

main problem is the relative movement between layers which is handed in the 

present analysis The theory developed can be used in other branches of engineering 

specially mechanical engineering since the material properties and types of 

connectors are not specified and the shear stiffness is assumed to be continuous over 

the whole beam. A theory of three layer composite simply supported beams based on 

Roberts' approach led to six differential equations with a computer program to solve 

these equations is presented in this paper. Three push out test beside seven three 

layers composite beams are made and the results compared with a computer program 

based ob the theoretical approach  which gives a close agreements. 
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