Dihedral Cryptographic Technique

Zainab Fahad Mhawes

Al-Qadisiya university-College of education-Department of Mathematics

zainab.alnaseri@qu.edu.iq
Recived : 16\10\2017
Revised : 30\10\2017
Accepted : 612122017
Available online : 21/1/2018
DOI: 10.29304/jqcm.2018.10.1.337

Abstract

: This paper focuses on a new technique of cryptography in abstract algebra. We first give the necessary review on Dihedral group and cryptography .We definition a new alphabetic of characters by additive character "blank", thus we have (27) characters \{26 letters and "blank" \},therefore we use modular 27 instead 26 such that we use the reflection and rotation which exists in Dihedral group to change the arrange of vectors of characters in plain text.

Keywords : Dihedral group, Cryptography ,Caesar Cipher ,Encryption Processes, Decryption processes.

Mathematics Subject Classification: 68P25

Introduction: Cryptography is one of the most important applications of algebra and number theory where the process is to change important information to another unclear one . The main goal of cryptography is to keep the integrity and security of this information there are many types of Cryptography techniques and we will try to consider some of them in this paper .
This paper consists of three
paragraphs ,where one includes some
necessary definitions on dihedral groups . In
second, we defined some necessary definitions
on Cryptography. Third includes a suggested
technique and some example and analysis of
this technique . The programs of this paper
write by using V.B. language.

1. Preliminary definitions in algebra:

1.1 Definition [4]:

We say that $*: S \times S \rightarrow S$, which defined by $(\mathrm{x}, \mathrm{y}) \rightarrow \mathrm{x}$ is a binary opration on a nonempty set S if it is map .

1.2 Definition[5]:

A group ($\mathrm{G},{ }^{*}$) is a nonempty set G with a binary operation * such that the following conditions are hold:
(i) $\left(x^{*} y\right)^{*} z=x^{*}\left(y^{*} z\right)$, for all $x, y, z \in G$
(ii) There exists an element e such that:

$$
x * e=x=e * x, \text { for all } x \in G
$$

(iii) For all $x \in G$ there is an element x^{-1} in G such that:

$$
\mathrm{x}^{-1} * \mathrm{x}=\mathrm{e}=\mathrm{x} * \mathrm{x}^{-1}
$$

1.3 Definition[4]:

The set $\mathrm{D}_{\mathrm{n}}=\left\{\mathrm{r}^{0}, \mathrm{r}, \mathrm{r}^{2}, \ldots, \mathrm{r}^{\mathrm{n}-1}, \mathrm{~s}, \mathrm{sr}, \mathrm{sr}^{2}, \ldots\right.$, $\left.\mathrm{sr}^{\mathrm{n}-1}\right\}$ is called the dihedral group and has order 2 n with property $\quad \mathrm{sr}=\mathrm{r}^{-1} \mathrm{~s}$.

1.4 Remarks[4]:

$r^{n}=r^{0}, s^{2}=r^{0}$

2. Preliminary definitions in Cryptography:

2.1 Definition[3]:

Encryption is the process of changing the text of the content (data) to the symbols and Numbers are difficult to understand using the many and varied mathematical algorithms .

2.2 Goals of Cryptography [1]:

- Data privacy (confidentiality).
- Data Authenticity (it came from where it claim).
- Data integrity(it has not been modified on the way) in the digital world.

2.3 The fundamental objects of

Cryptography [2]:

- Plaint text is the original data.
- Cipher text is the message changed by using some algorithms .
- Encryption is the processes which are changing the plaintext to cipher text.
- Decryption is the processes which are changing the cipher text to plaintext.

2.4 Definition [4]:

Let $\mathrm{A}=\left[\begin{array}{c}a_{1} \\ a_{2} \\ \vdots \\ a_{n-1} \\ a_{n}\end{array}\right]$ be a vector then the
cryptography transpose (CT) of A is $A^{C T}=\left[\begin{array}{c}a_{n} \\ a_{n-1} \\ \vdots \\ a_{2} \\ a_{1}\end{array}\right]$

We will introduce a new term in the following definition, that is the transpose of element.

2.5 Definition:

Let $\quad \mathrm{A}=\left[\begin{array}{c}a_{0} \\ a_{1} \\ \vdots \\ \cdot \\ a_{n-1}\end{array}\right]$ be a vector and a_{k} be an element of A, then the transport of a_{k} is $\left(a_{k}\right)^{T}=a_{(n-1)}-k$

We will define a new operation in the following definition, which it very import in our paper.

2.6 Definition:

Let $D_{n}=\left\{\mathbf{r}^{0}, \mathbf{r}, \ldots \ldots, \mathbf{r}^{\mathbf{n}-1}, \mathbf{s}, \mathbf{s r}, \ldots \ldots, \mathbf{s r}^{\mathbf{n}-1}\right\}$ be a dihedral group then we can define the new operation :

$$
\begin{aligned}
& r^{k} a=\mathrm{a}+\mathrm{k} \bmod 27 \\
& r^{-k} a=\mathrm{a}-\mathrm{k} \bmod 27 \\
& s a=\mathrm{a}^{\mathrm{T}} \bmod 27 \\
& s r^{k} a=(\mathrm{a}+\mathrm{k})^{\mathrm{T}} \bmod 27
\end{aligned}
$$

3. The suggested algorithm :

Here we consider the blank is character, i.e the alphabet is 27 chars.
i- Encryption process :
1- Take positive integer number n .

2- Construction Dihedral group D_{n}.

3- Cut block of plain text with length 2 n character as :

4- Apply the Dihedral operations (r, s):
$\mathrm{D}_{\mathrm{n}} \mathrm{p}=\left[\begin{array}{ll}\left(r^{k} a_{k+1}\right) & \bmod 27 \\ \left(s r^{k} b_{k+1}\right) & \bmod 27\end{array}\right], \mathrm{k}=0,1, \ldots, \mathrm{n}-1$
$\operatorname{DnP}=\left[\begin{array}{c}\left(\left[\begin{array}{c}0 \\ 1 \\ \vdots \\ n-2 \\ n-1\end{array}\right]+\left[\begin{array}{c}p_{1} \\ \vdots \\ \vdots \\ p_{n}\end{array}\right]\right) \bmod 27 \\ \left(\left[\begin{array}{c}0 \\ 1 \\ \vdots \\ n-2 \\ n-1\end{array}\right]+\left[\begin{array}{c}p_{n+1} \\ \vdots \\ \cdot \\ p_{2 n}\end{array}\right]\right)^{T} \bmod 27\end{array}\right.$

For enhanced this technical we must encryption the first letter of plaintext because the first letter by using this technical stay the same letter always.

Encryption the first letter
$\mathrm{C}_{1}=\mathrm{p}_{1}+(2 * \mathrm{n}) \bmod 27$

ii) Decryption process:

$$
\begin{aligned}
& \mathrm{P}_{\mathrm{i}}=\mathrm{C}_{\mathrm{i}}-(2 * \mathrm{n}) \bmod 27 \\
& \mathrm{D}_{\mathrm{n}} \mathrm{C}=\left[\begin{array}{cc}
\left(r^{-k} a_{k+1}\right) & \bmod 27 \\
\left(r^{-k} s B_{k+1}^{T}\right) & \bmod 27
\end{array}\right]
\end{aligned}
$$

3.1 Example:

Take plain text="hello"
Encryption by using Dihedral Cryptographic Technique

Solution

1- Encrption

Let $\mathrm{n}=2$
$\mathrm{D}_{\mathrm{n}}=\mathrm{D}_{2}=\left\{\mathrm{r}^{0}, \mathrm{r}, \mathrm{s}, \mathrm{sr}\right\},\left|\mathrm{D}_{2}\right|=4$
Hello $=\{$ Hell $\}+\left\{\mathrm{o}_{-}{ }_{-}\right\}$
"Hell" $\rightarrow \mathrm{P}_{1}=\left[\begin{array}{c}7 \\ 4 \\ 11 \\ 11\end{array}\right]=\left[\begin{array}{l}A \\ B\end{array}\right] \quad, \quad \mathrm{A}=\left[\begin{array}{l}7 \\ 4\end{array}\right]$
, $\mathrm{B}=\left[\begin{array}{l}11 \\ 11\end{array}\right]$
$\mathrm{D}_{1} \mathrm{P}_{1}=\left[\begin{array}{llc}{\left[\begin{array}{l}0 \\ 1\end{array}\right]} & + & {\left[\begin{array}{l}7 \\ 4\end{array}\right]} \\ \left(\left[\begin{array}{l}0 \\ 1\end{array}\right]\right. & +\left[\begin{array}{l}11 \\ 11\end{array}\right]_{T}\end{array}\right]=$
$\left.\left[\begin{array}{c}{\left[\begin{array}{l}7 \\ 5\end{array}\right]} \\ \left(\left[\begin{array}{l}11 \\ 12\end{array}\right]\right)_{T}\end{array}\right]=\left[\begin{array}{c}7 \\ 5\end{array}\right]\left[\begin{array}{c}7 \\ 5 \\ 15 \\ 14\end{array}\right]\right]=\left[\begin{array}{c} \\ 15 \\ 14\end{array}\right] \rightarrow \mathrm{HFPO}=\mathrm{C}_{1}$
The first letter:
$\mathrm{H} \rightarrow 7 \rightarrow 7+4=11 \rightarrow \mathrm{~L}$
$" \mathrm{O} " \rightarrow$ "O---" $\rightarrow \mathrm{P}_{2 \rightarrow}\left[\begin{array}{l}14 \\ 26 \\ 26 \\ 26\end{array}\right] \rightarrow\left[\begin{array}{l}14 \\ 26\end{array}\right]$ [26
$\mathrm{D}_{2} \mathrm{P}_{2}=\left[\begin{array}{l}{\left[\begin{array}{l}0 \\ 1\end{array}\right]+\left[\begin{array}{l}14 \\ 26\end{array}\right]} \\ \left(\left[\begin{array}{l}0 \\ 1\end{array}\right]+\left[\begin{array}{l}26 \\ 26\end{array}\right]\right)_{T}\end{array}\right]=$
$\left[\begin{array}{c}144 \\ 0 \\ \left(\left[\begin{array}{c}26 \\ 0\end{array}\right]\right)_{T}\end{array}\right]=\left[\begin{array}{c}14 \\ 0 \\ 0 \\ 26\end{array}\right] \rightarrow \mathrm{C}_{2}=$ OAA-
Then

$$
\begin{aligned}
& \mathrm{O} \rightarrow 14 \rightarrow 14+4=18 \rightarrow \mathrm{~S} \\
& \mathrm{P}=\text { "Hello" } \rightarrow \mathrm{C}=\text { "LFPOSAA-" }
\end{aligned}
$$

2-Decryption :

C=" LFPOSAA-"
$\mathrm{C}_{1}=$ "LFPO" ${ }^{2}=$ ="SAA-"
C_{1} :
$\mathrm{L} \rightarrow 11-4=7 \rightarrow \mathrm{H}$

$$
\begin{aligned}
& \left.\mathrm{D}_{2} \mathrm{C}_{1}=\mathrm{D}_{\mathrm{n}}=\left[\begin{array}{c}
7 \\
7 \\
5
\end{array}\right] .\left[\begin{array}{c}
15 \\
14
\end{array}\right]\right]= \\
& {\left[\begin{array}{ll}
-\left[\begin{array}{l}
0 \\
1
\end{array}\right] & +\left[\begin{array}{l}
7 \\
5
\end{array}\right] \\
-\left[\begin{array}{l}
0 \\
1
\end{array}\right]+\left[\begin{array}{l}
15 \\
14
\end{array}\right]^{T}
\end{array}\right]=} \\
& {\left[\begin{array}{l}
-\left[\begin{array}{l}
0 \\
1
\end{array}\right]+\left[\begin{array}{l}
7 \\
5
\end{array}\right] \\
-\left[\begin{array}{l}
0 \\
1
\end{array}\right]+\left[\begin{array}{l}
11 \\
12
\end{array}\right]
\end{array}\right]=\left[\begin{array}{c}
7 \\
4 \\
11 \\
11
\end{array}\right]} \\
& \rightarrow " \text { HELL" }=\mathrm{P}_{1} \\
& \mathrm{C}_{2} \text { : } \\
& \mathrm{S} \rightarrow 18-4=14 \rightarrow \mathrm{O} \\
& \left.D_{n} C_{2}=D_{n}=\left[\begin{array}{c}
14 \\
0
\end{array}\right]\right\}= \\
& {\left[\begin{array}{l}
-\left[\begin{array}{l}
0 \\
1
\end{array}\right]+\left[\begin{array}{c}
14 \\
0
\end{array}\right] \\
\left.-\left[\begin{array}{l}
0 \\
1
\end{array}\right]+\left[\begin{array}{c}
0 \\
26
\end{array}\right]^{T}\right]=
\end{array}\right.}
\end{aligned}
$$

$$
\begin{aligned}
& \rightarrow " \mathrm{O}--->=\mathrm{P}_{2} \\
& \text { Then } p=\text { "Hello---" }
\end{aligned}
$$

3.2 Example:

Encryption the text:
College of education university of al Qadisiya

Solution:

$\mathrm{P}="$ College of education university
of al Qadisiya"

C=" GPPOIHW
SGAVHVYZXJMMDVNRZFJHMU
C SGAZPAKZHJIRBBA"

3.3 Example:

In example (3.1) and example (3.2) we take $\mathrm{n}=1$, now we will change value of n and compare between them:

P="Hello"
$\mathrm{n}=1 \rightarrow \mathrm{C}=$ " LFPOSAA-"
$\mathrm{n}=100 \rightarrow \mathrm{C}={ }^{\prime}$
SFNOSEFGHIJKLMNOPQRSTUVWXYZ ABCDEFGHIJKLMNOPQRSTUVWXYZ ABCDEFGHIJKLMNOPQRSTUVWXYZ ABCDEFGHIJKLMNOPQRA

ZYXWVUTSRQPONMLKJIHGFEDCBA ZYXWVUTSRQPONMLKJIHGFEDCBA ZYXWVUTSRQPONMLKJIHGFEDCBA ZYXWVUTSRQPONMLKJ"
$\mathrm{n}=10 \rightarrow \mathrm{C}=$ " AFNOSEFGHIA ZYXWVUTS"
$\mathrm{P}=$ " College of education university of al Qadisiya"
$\mathrm{n}=1 \rightarrow \mathrm{C}=$ "GPPOIHW
SGAVHVYZXJMMDVNRZFJHMUC SGAZPAKZHJIRBBA"
$\mathrm{n}=10 \rightarrow \mathrm{C}="$
WPNOILKGWOAVVDUVBLEETVPLZJXZ QBC

KSXVJUCRXJULBFFGHIA
ZYXWVUTS"
$\mathrm{n}=100 \rightarrow \mathrm{C}={ }^{\prime}$
NPNOILKGWOJPPGQPIZFFTOIESCQSJVA
DTLGIUJAMQWGYOSSTUVWXYZ
ABCDEFGHIJKLMNOPQRSTUVWXYZ
ABCDEFGHIJKLMNOPQRA
ZYXWVUTSRQPONMLKJIHGFEDCBA
ZYXWVUTSRQPONMLKJIHGFEDCBA
ZYXWVUTSRQPONMLKJIHGFEDCBA
ZYXWVUTSRQPONMLKJ"
We note that the complexity of cryptography increasing when the value n increasing.

3.4 Frequency analysis:

A	8.89%	P	6.67%	F	2.22%	W	2.22%
H	8.89%	J	6.67%	C	2.22%	X	2.22%
Z	8.89%	R	4.44%	K	2.22%		
V	6.67%	S	4.44%	U	2.22%		
G	6.67%	B	4.44%	D	2.22%		
M	6.67%	I	4.44%	Y	2.22%		
O	2.22%						
N	2.22%						

Frequency Analysis

4. Conclusions:

1. The technique consists of an algebraic concept depends on recycling and displacement in forming the elements which led to the raising

Confidentiality and complexity level.
2. technical included some original ideas, whether in design or implementation making
Her privacy.
3. encryption keys used random and difficult to detect.

References

1- Alfred M. and paul v. ,A, Handbook of Applied Cryptography, CRC press ,2001.

2- Jonathan K. and Lindell Y., Introduction to modern Cryptography,CRC press, New york,2007
3- Neal K. ,A course in number theory and Cryptography , spinger, 1994 .
4-

| 5- | Schneier B., Applied |
| :--- | :--- | :--- |
| Cryptography | ,John wiley and |
| | son press ,New York ,1996. |

6- Thomas W.,Abstract algebra , Austin state university , 2010.

$$
\begin{aligned}
& \text { تقتية التشثفير ثثـائي السطوح } \\
& \text { زينب فهر مهوس } \\
& \text { جامعة القادسية ـ كلية التربية ـ قسم الرياضيات } \\
& \text { zainab.alnaseri@qu.edu.iq }
\end{aligned}
$$

يركز هذا البحث على تقنية جديدة في التشفبر في الجبر المجرد. في البداية اعطينا عرض ضروري عن زمر السطوح الثنائية و التثفبير . عرفنا ابجدية جديدة للرموز بأضافة "الفراغ" ، لذلك اصبح لدينا (YV) رمز (Y7 رمز و الفراغ) ، لذللك استخدمنا معيار YV بدل Y Y حيث استخدمنا الانقلابات و الندوير الموجودة في زمرة السطوح الثنائية لتغيير ترتيب متجهات الرموز في لانص الصريح.

