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Abstract

This experimental investigation was performed to improve heat transfer in the heat
exchanger (tube of shell and helically coiled) using nanopatrticles for turbulent parallel flow and
counter flow of distilled water (Dw) and ethylene glycol (EG) fluids. Six types of nanofluids have
been used namely: copper — distilled water, copper — distilled water and ethylene glycol, copper
— ethylene glycoal, titanium oxide — distilled water, titanium oxide — distilled water and ethylene
glycol, titanium oxide — ethylene glycol with 0.5%,1%,2%,3% and 5% volume concentration as
well as the range of Reynolds number are 4000 — 15000. The experimental results revel that an
increase in coefficient of heat transfer of 50.2 % to Cu — Dw, 41.5% to Cu — ( EG + Dw), 32.12
% for Cu— EG, 36.5% for TiO2 — Dw, 30.2 % to TiO2 — ( EG + Dw) and 25.5%, to TiO2 — EG .
The strong nanoconvection currents and good mixing caused by the presence of Cu and TiO2
nanoparticles. The metal nanofluids give more improvement than oxide nanofluids. The shear
stress of nanofluids increases with concentration of nanoparticles in case parallel and counter
flow. The effect of flow direction insignificant on coefficient of overall heat transfer and the
nanofluids behaves as the Newtonian fluid for 0.5%,1%,2%,3% and 5%. Good assent between
the practical data and analytical prediction to nanofluids friction factor which means the nanofluid
endure pump power no penalty. This study reveal that the thermal performance from nanofluid
Cu — Dw is higher than Cu — (EG + Dw) and Cu — EG due to higher thermal conductivity for the
copper and distilled water compared with ethylene glycol.

Keywords: Nanofluid, ethylene glycol, enhancement, metallic, nano metallic.
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50.2 % Cu — Dw, 41.5% Cu — (EG + Dw), 32.12 % Cu - EG,
36.5% TiO2 — Dw, 30.2 % TiO2 — (EG + Dw), 25.5%, TiO, — EG.
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Nomenclature

b Coil pitch
D Shell diameter, (m)
d Diameter of the spiral coiled, (m)

De  Dean number

DW Distilled Water

E Roughness of the test tube

EG Ethylene glycol

f Friction factor

fe Friction factor of coil

k,  Thermal conductivity of nanofluid,
(W/m K)

Pr  Prandl number

R?  Coefficient of determination

RC  Curvature radius of the coll

Re  Reynolds number

U, Overall heat transfer coefficient,
(W/m2 K)

Greek symbols

AP Pressure drop, (Pa)

Un Dynamic viscosity nanofluid, (N
s/m?)

p,  Density of nanofluid, (kg/m?)

y Shear rate, (1/s)

¢ Nanoparticle volume fraction

Subscripts

b Base fluid

c Counter flow

i Inlet

n Nanofluid

D Parallel flow

Introduction

Heat exchanger are used in various of
applications e.g. heating of thermal oil,
generation of steam, plants of thermal
processing, processing of food and dairy air
conditioning, refrigeration and processes of
heat recovery. The advantageous cause of
helical coil tubes was high coefficient of heat
transfer and small size compared with
straight tubes. the cost and efficiency of heat
exchangers consider very important factors in
industry process, there must be exact
equation to determine the heat transfer. All
engineering  applications include heat
transfer through a fluid medium such as
refrigeration, automobiles, power plants and
heat exchangers. Heat transfer in fluids is

essentially through convection. However,
heat transfer coefficients depend on thermal
conductivity of the fluid. To improve the
thermal conductivity of a fluid, suspension of
solid particles and in general solids thermal
conductivity is greater than that of fluids. But
the sized nanopatrticle include on the mill and
micro are liable to plug and deposition in
micro channels. on the other hand, nanofluid
is stable suspension at a low concentration of
nanoparticles. The improvement of fluid
thermal conductivity due to dispersed in fluid
of the conventional heat transfer without the
problems such as plug and deposition.
sedimentation and clogging problems. Pak
and Cho [1], investigated experimentally the
turbulent friction and heat transfer behaviors
of dispersed fluids (Al203 and TiO2 particles
suspended in water) in a circular pipe. Lee et
al. [2], observed enhancement of thermal
conductivity of nanofluids using CuO and
Al203 nanoparticles with water and ethylene
glycol compared to base fluids. The thermal
conductivities of nanofluids with CuO and
Al203 nanoparticles have been determined
experimentally using steady — state parallel —
plate technique by Wang et al. [3], for
different base fluids such as water, ethylene
glycol and engine oil. The thermal
conductivity of these nanofluids increased
with increasing volume fraction of the
nanoparticles.

Xuan and Li [4], studied the
augmentation of thermal conductivity of Cu—
water nanofluid for different volume fractions
of Cu nanoparticles. Xuan and Roetzel [5],
concluded from their findings that the heat
transfer enhancement is due to increase in
thermal conductivity or due to thermal
dispersion caused by random motion of the
particles coupled with enhanced thermal
conductivity.

Das et al. [6], investigated the variation of
thermal conductivity of nanofluids (Al2Os —
water and CuO-water) with temperature
using temperature oscillation technique. They
observed an increase in thermal conductivity
with temperature. Yang et al. [7], measured
experimentally the convective heat transfer
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coefficients of several nanoparticles — in —
liquid dispersions under laminar flow in a
horizontal tube heat exchanger. Koo and
Kleinstreuer [8], showed that the Brownian
motion has more impact on the thermal
properties of nanofluid than thermo -
phoresis. Herish et al. [9], have conducted
experiment to determine the thermal
conductivity of Al203 — water nanofluid during
forced convection in laminar flow through a
circular tube with constant wall temperature.
Recently Zhang et al. [10], measured the
thermal conductivity and thermal diffusivity of
Au — toluene, Al20s — water, TiO2 — water,
CuO water and carbon nanotubes — water
nanofluids using the transient short — hot —
wire technique. Heat transfers for laminar
and turbulent flows in coiled tubes were
calculated by Seban and McLaughlin [11].
Regers and Mayhew [12] has been
calculated pressure drop and Heat transfer
heated helically coiled tubes by using steam
heated.

This study indicate that did not get
wall temperature of uniform due region was
the large core which work the flow of
remaining. The objectives of this analysis is
to stud characteristics of heat transfer and
fluid flow in spiral tube heat exchanger for
both parallel flow and counter flow
configurations using base fluid and
nanoparticles. The effects of nanoparticles
concentration and different based fluids such
as ethylene glycol, distiled water and
ethylene  glycol distiled water are
investigated.

Nanofluid Preparation

The two — step method was used to
prepare nanofluids from base fluid and
copper (Cu) or ftitanium oxide (TiO2)
nanoparticles. Nanoparticles dispersion in
three types of base fluid namely: distilled
water, ethylene glycol and the mixture of
ethylene glycol and distilled water with
volume ratio of 60:40. After preparation the
nanofluids were put in blending of ultrasonic
to half hour due to disperse any nanoparticle
aggregation.. The acidic pH is much less than
the isoelectric point of these particles, thus
ensuring positive surface charges on the
particles. The surface enhanced repulsion
between the particles, which resulted in
uniform dispersions through the experiments.
An image nanofluids containing Cu (50nm)
and TiO2z (50nm) are display in Fig. (1).

A: Copper—Ethylene glycol

B: Titanium oxide — Ethylene glycol

C: Ethylene glycol

Fig.1. Nanofluids for two types and ethylene

glycol.

Analysis of Geometric Shape for Heat
Exchanger

Figure (2) reveals geometric shape for
heat exchanger (type spiral coiled and shell
heat exchange).
The curvature ratio of coil as follows

_ d
" 2nRc

The non — dimensional pitch as follows

_ b
" 2nRc

|4

Dimensionless factors for heat exchanger in
this study as follows.

pVid, hyd
Re; = # , Nu; = Lk :
De = R (di>°'5 e — e
€= " \2Re SN C RV

Fig. 2. Geometric shape of heat exchanger.

Mori and Nakayama [13], Experimental
investigated on a curved pipe with UHF within
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large De. These article indicate the two
region of the flow firstly BL near the wall while
the second to steam condensate on the
surface of coll.

Shell — side Reynolds number (Re,) and
Nusselt number (Nu,) are defined as follow:

PVo Dy hoDn
Re, = —— , Nu, = ——
e, P u, .

where: V,, h, and D, are average velocity,
convective heat transfer coefficient and
hydraulic diameter of shell side respectively.

Experimental Facility and Procedure
The experimental apparatus and
schematic diagram used in this work are
shown in Figs. (3) and (4) and test section as
shown in Fig. (5). The heat exchanger is
made of Pyrex (soft glass) and test section is
made helically coiled tube of di =10 mm and
do=12 mm. Helical tube in this study has
34turns and length of coil is 750 mm. The
Pyrex (soft glass) shell has 70 mm inner,
80mm outer diameters and 1000 mm length.
The set — up has helically coiled tube side
loop and anther side of shell loop. Six types
of nanofluids flow in helically coiled tube and
this types used copper — distilled water,
copper — distilled water and ethylene glycol,
copper — ethylene glycol, titanium oxide —
distilled water, titanium oxide — distilled water
and ethylene glycol, titanium oxide — ethylene
glycol. Shell side loop handles hot water.

Fig .3. The Experimental system of the
convective heat transfers and flow
characteristics for nanofluid.

The studied volume fractions of
nanofluids are (® = 0.5%,1%,2%,3% and
5%). Shell side loop consist of storage vessel
of 20 | capacity with heater of 3.25kW, control
valve, water pump and thermostat for

temperature. The test section consists of heat
exchanger (type shell and spiral tube), pump,
needle valve, flow meter within of (0.01-3.5)
Ipm, cooling unit and storage vessel of 10 liter
capacity. Hot water temperature in storage
vessel (shell side) is maintained via
thermostat. The inlet and outlet temperatures
of shell and tube measured by Four T — type
thermocouples of 0.15 °C accuracy.

Pressure

Cold water ~ Hotwater in

Insulation  Valv

Feasar
woir

Valv
Thermocoup

Flowr
rate

ey X

Fig . 4. Schematic diagram of apparatus.

Fig .5. Test section Pyrex spiral annulus.

The wall temperatures of coiled tube
were measured by Eight T- type
thermocouple. The pressure drop was
measured by the pressure gauges are put via
the helical tube. The shell is insulated with
Acrylic resin coated fiberglass sleeving to
minimize the heat loss from shell to the
ambient. Distilled water was tested prior to
nanofluid after completion of construction and
calibration of the flow loop, testing of the
loop's functionality for measuring Nusselt
number and viscous pressure loss. The
numbers of the total tests were 200. At the
beginning of experiments was used hot and
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cold water to check the apparatus from any
leakages as well as the thermocouples and
thermostat were checked. The six types of
nanofluids used in the experiments (Cu —
DW,Cu — EG,CU — ( EG +DW), TiO2 — DW,
TiO2 — EG and TiO2 — (EG+DW)) at 0.5, 1, 2,
3, 5 vol %. The nanofluids with different
concentrations will spins during coil tube
while pump in shell side will be switched on
where Dw will reaching to required

temperature. Furthermore, thermostat
attached in Dw storage system for this
process.

The parallel flow condition was used as
the flow configuration at first case. at the
steady state were temperatures recorded.
This procedure was applied on all
concentrations. On the other hand, the
counter flow was used in second case, when
the flow configuration was changed the same
steps used in the counter flow. The volume
flow rate in shell was 2.25lpm while the
volume flow rate in coil tube was varied. the
volume flow rate in coil tube within of (0.75-2)
Ipm. The range of Reynolds number is
(4000-15000).

Measurement of Thermal Properties
Nanofluid

The dynamic viscosity (u) is measured
using brook field digital viscometer model
DV-E. Figs. (6) and (7) show the comparison
between the practical measurement of
dynamic viscosity with the empirical relation
of Einstain, 1956 model [14], Brinkman, 1952
model [15], Wang et al. model [16] and
Batchel model [17]. Figures (8) and (9)
represent viscosity for the two types of
nanoparticles Cu and TiO2 with three types of
the base fluids DW, EG, EG+DW. The
following equipment’s was used to measured
thermal properties (p,u,K,Cp) respectively.
Density executed by weighing a sample and
volume, viscometer model (DV — E), Hot Disk
thermal constants analyzer (6.1) and specific
heat apparatus (ESD — 201), Moreover the
measurements of experimental for the
density indicated that good agreement with
the calculated values from theory of mixing
[18] as shown in Figs. (10) and (11). The
Figs. (12) and (13) reveal density for the six
types of nanofluids. Figures (14) and (15)
indicated the experimental measurements to
thermal conductivity was compared with
thermal conductivity models for many
researchers such as Wasp model [19],
Hamilton and Crosser [20], Maxwell

model [21] and Timo Feeva et al. model [22].
These measurements showed good
agreement with the Wasp model.
Figures (16) and (17) reveal the thermal
conductivity ratio for the two types of
nanoparticles Cu and TiO2 with three types of
the base fluids DW, EG, EG + DW. As well as
the measurements for Cp compared with two
models of Cp [23,24] and reveal in Figures
(18) and (19). The second model showed
good agreement with measurements. Figures
(20) and (21) depicted specific heat for the six
types of of nanofluids. (u, p, k and Cp) are
increase of about 10.25%, 5.33%, 16% and
7.2% respectively for the first type of
nanoparticle while increased about 8.12%,
3.62%, 11.9% and 2.95% for the second type
of nanoparticle at 5 vol% and 25°C compared
with that of distilled water.

L1 =
Manofluid Cu-{ EGHTPW)

Batchel Model | 5
1,06 =
> x
» +
4 14 >
= x +
= L +
= 4
2 095 -
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¥ »
0.9 — *
&
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LIRS O0E 0012 LERE] 138 00z 0024 0028
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Fig. 6. Viscosity ratio for Cu - (EG+DW).
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Fig. 7. Viscosity ratio for TiO2 - (EG+DW).

Data Analysis and Validation

The heat transfer for distilled water,
ethylene glycol and ethylene glycol distilled
water are estimated from Eq. (1) and for
nanofluid from Eq. (2). Fouling factor was not
taken into account.
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Qw = My Cpy (Tiy — Tou)w €Y)

where: A, surface area; g is the rate of heat
transfer; and LMTD is the log mean
temperature difference.

AT, — AT,
LMTD = (Z—ATl) (5)
In (—2)
AT,
Also
Q = hA(Ty —Tp) (6)
h;d;
Nui = (7)
knf

where: Ty, is the wall temperature, T, is the
bulk temperature, 4; is the inside area and h;
is the inner heat transfer coefficient. The U,
and h; are calculated from Egs. (4) and (6).
The Nu; calculated from Eq. (7). The
coefficient of overall heat transfer is often

1.1
Nanofluids viscosity *
¢ Cu- (EG+DW)
1.05 ® Cu-EG
A Cu-DWwW *
* ®
2
] 1 *
= [
N 2
\5 ®
2095 & R i
F=3 A
0.9 — A
1A
0.85 — — —_— :

0.004 0.008 0.012 0016 002 0.024 0.028
Volume fraction (%)
Fig. 8. Three types of viscosity ratio for
Cu-DW, Cu - EG and Cu - (EG+DW).

1.1
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Fig. 9. Three types of viscosity ratio for
TiO2 — DW, TiO2 — EG and TiO2 — (EG+DW)
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Fig. 10. Comparison density ratio with

mixing theory for Cu.

1.1
Nanofluid density
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Fig. 11. Comparison density ratio with

mixing theory for TiOx.
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Fig. 12. Three types of density ratio for Cu.

an = mnfCPnfhnf (Tin - Tout)nf (2)
+
_ M 3)

The temperature data and the heat
transfer rate were used to calculate
the overall heat transfer coefficient, U,, as
following [25]:



Sultan / Tikrit Journal of Engineering Sciences
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Fig. 13. Three types of density ratio for TiOo.
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2mkL + h;

D.
14, 4n(3F) 1 o
Uo B Ao hi ( )

The Nusslet number in shell side of heat
exchanger is calculate as following.

h,D
Nu, = 22 9
ky g

where: D, is the shell hydraulic diameter is
calculate from the following:

4'(Vshell - Vtube)

H(D + d) (Lshell + Ltube)
1.1
| Nanofluids
¢ Cu-DW *
1.08 — A Cu-(EG+DW)
* CuEG -
Q
*
_§ 1.06 s
5 4 @ A
g 1.04 A
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b G
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Fig. 16. Three types of thermal conductivity
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Fig. 14. Thermal conductivity ratio for

Cu —(EG+DW).
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Fig. 15. Thermal conductivity ratio for

associated with the inner and outer heat
coefficients by the subsequent

transfer

TiO2 —(EG+DW).

equation [25]:

ratio for Cu.
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Fig. 17. Three types of thermal conductivity
ratio for TiOz.

Similarly, to the coefficient of heat
transfer, the nanofluids flowing friction factor
via the heat exchanger was calculate as

following.

2DAP,;

= (1)
I Lpnfurzlf
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Fig. 20. Three types of specific heat ratio
for Cu.

where: f,,, is the nanofluid friction factor,
AP,sis the nanofluid measured pressure
drop, Listhe tube length, p, ; is the nanofluid

density, and un is the nanofluid velocity
mean. The empirical relations for the

Sultan / Tikrit Journal of Engineering Sciences

properties of nanofluids were compared with
experimental measurements  viscosity,
density, thermal conductivity and specific
heat.

A. The models for nanofluid viscosity

Equation Ref.
tng = (1 + 2.5¢) s [14]
iy = (1= )25y [15]
g = (1 +7.3¢ + 123>y [16]
oy = (1 +2.5¢ + 6.2¢7)py, [17]

A. The model for nanofluid density.

Equation Ref.
Puy = (1 = d)pyps + bpyr (18]

A. The models for nanofluid thermal

conductivity [19-22 ].

By _kb+(n—1)kb—(n—1)(kb—kp)¢k
Y k= (= Dk, + (ky — k)

[k + 2k + 2(ky, — K, )
M ky + 2k — (ky — k)

Ky

knp = (1 +3¢)k,

B. The models for nanofluid specific heat.

Equation Ref.
Cnp = (1= @)y + Py [23]
1-¢)(pc)pr+d(pc)p
Cap =t [24]
0.988
Nanofluids
1 A TiO2-DW
A ® TiO- (EG+DW)
0.984 — - O TiO.-EG
g e A
~ 0.98 — ® =
g o ©
S | = %
0.976 — o
o
o
0.972 —— T

0.004 0.008 0.012 0016 0.02 0024 0.028
Volume fraction (%)
Fig. 21. Three types of specific heat ratio
for TiOa.
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Results and Discussion

In this article the experimental data for
the friction factors and coefficient of heat
transfer are compared with data from the
Shokouhm and Salimpour [26] and Salimpour
[27] for flow in helical coiled heat exchanger
which are defined as follows:

Nu; = 0.112De%51y =037 py072 (12)

Nuo — 5.48R€0'511y0'546p1"0'226 (13)

The friction factor for turbulent flow in helical
coiled tube, f, is determined as [28].

7.0144
=7 VDe (14)
Figures (22) and (23) show the good
agreement between the practical data and
calculated data when using Dw. Figures (24)
to (26) reveal the Uo of counter flow versus
the Uo of parallel flow and using three types
nanofluids (Cu —-DW,Cu — EG and CU — ( EG
+DW)). These figures indicated that their
good agreement between data. The Uo for
counter flow is (6—12)% greater than the
Uo for parallel flow at 0.5 vol % and using
three types of nanofluids (Cu -DW,Cu - EG
and CU — ( EG +DW)). The Uo for counter
flow is (25-52)% greater than the Uo for
parallel flow at 5 vol% and using the same
three types of nanofluids. This means that
insignificant impact for heat transfer flow
condition changing and the reason is lead to
the primary and secondary flow in tube side
will be perpendicular on the flow in shell side.
The flow direction changing does not impact
on Uo. The results from the counter flow
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Fig. 22. Comparison between measured
heat transfer coefficient and that and that
calculated from [26,27].

configuration were similar to the parallel flow.
Heat transfer rates, however, are much
higher in the counter flow configuration, due
the increased log mean temperature
difference.
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Fig. 23. Comparison between measured
friction factor calculated from [28,29].

Nanofluid(Cu - Dw)
1400

A Uec=1.2269Upr0.965 R"2=0.998

v Uc=1.2827 Up~0.867 R~"2=0.999
Uc=1.2679 Up”r0.969 R~"2=0.989
Uc=08395Up~r1.016 R"2=0.999

[

r oA
g N A distilled water v
= ok @ =0.5 % &,
1200 | M b -
1 - o,
= [ > @ =1% o v
E I D=2 v
= B @® =3% g A
0 1000 |- ® o=5% s
x r A
o~ F %
P L
so0 |
g wof 2
E 7\
= r %" Uc=10027Upr0.995 R"2=0.996
> e00f

j’{ *

400

4[I]D‘ IB[I]D‘ = |8[I]D‘ = ‘10IUD‘ = l\2I[]DI = l\4I[]E‘] ‘
Uo (W/m*2.K) Parallel flow

Fig. 24. Overall heat transfer coefficient for

two types flow configuration (counter and

parallel) to Cu — DW nanofluid.
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Fig. 25. Overall heat transfer coefficient for

two types flow configuration (counter and

parallel) to Cu — EG nanofluid.
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Fig. 26. Overall heat transfer coefficient for

two types flow configuration (counter and
parallel) to Cu — (EG+DW) nanofluid.
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Fig. 27. Variation of Nui to nanofluid (Cu-
DW) and counter flow.
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Fig. 28. Variation of Nui to nanofluid (Cu-
DW) and parallel flow.

Figures (27) to (38) reveal the changing of
Nu; with De for both parallel and counter flow.
These figures indicated that insignificant
impact on the Nui when using nanofluids (Cu
-DW,Cu - EG,CU - ( EG +DW), TiO2 -DW,
TiO2 — EG and TiOz2 — ( EG +DW)). this

reason the flow configuration and the hi is
the same. Also the centrifugal force and
the secondary flow did not obtain negative
effect. The Nu; increases with ¢.
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Fig. 29. Variation of Nu; to nanofluid (Cu—
EG) and parallel flow.
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Fig. 30. Variation of Nu; to nanofluid (Cu—
EG) and counter flow.

In general the thermal conductivity is
proportional with the convective heat transfer.
The experimentally determined coefficients
of friction of nanofluids are shown in
Figs. (39) to (44). The experimental
coefficient of friction results of TiO2 at 0.5%,
1%, 2%, 3% and 5% particle volume
concentration is shown in these figures, solid
line indicates the experimentally results of
distilled water and the symbols indicate the
nanofluids for turbulent flow. The friction
factor of nanofluids ( TiO2—-DW, TiO>—EG and
TiO2—(EG+DW)) proportional with the friction
factor of distilled water at low volume fraction
concentration for spiral coil heat exchanger.
These figures shown the coefficient of friction
of TiOz is slightly increased compared with
that of distilled water at high volume fraction
concentration due to  nanoparticles
suspension in Dw. Most TiO2 data was
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located above the line distilled water. The
friction factor in the spiral coil heat
exchanger was insignificant impact with
changing concentrations of nanopar-ticles.
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Fig. 32. Variation of Nu; to nanofluid
Cu — (EG + Dw) and counter flow.
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Fig. 33. Variation of Nu; to nanofluid
(TiO2 —DW) and parallel flow.
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Fig. 34. Variation of Nu; to nanofluid
(TiO2 —-DW) and counter flow.

In this case not need pumping power
and a penalty in pressure drop when using
nanofluid due to small nanoparticles
suspension in Dw which not the change of
the behavior of nanofluid flow. The pressure
drop to base fluid of ethylene glycol is smaller
than the base fluid of distilled water.
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Fig. 35. Variation of Nu; to nanofluid
(TiO2 —EG) and parallel flow.
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Fig. 36. Variation of Nu; to nanofluid
(TiO2 —EG) and counter flow.

Figures (45) to (50) show shear
stress versus shear rate for nanofluids (Cu—
DW,Cu-EG and CU-(EG+DW) at 0.5%, 1%,
2%, 3% and 5% particle volume concentra-
tion. These figures indicating that the nanop-
articles and distilled water are Newtonian
fluid. As well as these figures indicated the
shear stress increases with an increasing
shear rate, for nanofluids Cu-DW, Cu-EG
and CU-(EG+DW).

These figures indicated the flow curve of the
nanofluids measured using a spiral coil heat
exchanger. The shear stress increases with
volume fraction for parallel and counter flow
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Fig. 43. The friction factor for nanofluid
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Fig. 45. Shear stress against shear rate for
nanofluid (Cu-DW) and parallel flow.

agreement with data of the Colebrook
formula. This means that not need pumping
power and a penalty in pressure drop when
using nanofluid which make appropriate in
experimental applications. This study reveal
that the thermal performance from nanofluid
Cu-DW is higher than Cu—(EG+DW) and
Cu—EG due to higher thermal conductivity for

the silver and distilled water compared with
ethylene glycol.

B Nanofluid {Cu - DW)
" L Counter flow
[ n distilled water
nE A ©=08%

[ » +=1%
I ©=2%
& ol ®=3% «
=~ I 4 D=5% « "
& [ «
£ e a« 1

B | 2
£ F » :‘ ry
2 sf » > 4o m
w | > " 4 m

3 » A =

+F > oa n =
- A [ ]
[ =
2
B A PETEIN BT PR BV EFRTE EPEE SRR B
1 12 1.4 2.6

1;¢?tmir1.'gte (1215) 22
Fig. 46. Shear stress against shear rate for
nanofluid (Cu — DW) and counter flow.
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Conclusions
The main conclusions of the present
experimental article were as follows:
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The type of nanoparticles and base fluid
was play role important in improvement
of heat transfer by using nanofluids.

The presence of Cu and TiO2
nanoparticles attributes to the generation
is obtained better mixing.

The coefficient of overall heat transfer
was insignificant impact on changing of
flow direction of nanofluid (Cu—DW,Cu —
EG and CU - ( EG +DW), TiO2 -DW,
TiO2 — EG and TiO2 — ( EG +DW))
behaves as a Newtonian fluid for
0.5%,1%, 2%, 3% and 5%.

The improvement of metal nanofluid was
better than the oxide metal of nanofluids.
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Fig. 49. Shear stress against shear rate for
nanofluid Cu — (EG+DW) and counter flow.
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Fig. 50. Shear stress against shear rate for

5.

nanofluid Cu—(EG+DW) and parallel flow.

The improvement of nanofluid not only
increases of the thermal conductivity But
there are other parameters i.e., viscosity
of nanofluid, base fluid.

The shear stress of nanofluids increases
with volume fraction of the nanoparticles
to parallel and counter flow.

The nanofluid with Dw is the same nearly
for the pressure drop and friction

coefficient while nanofluid with ethylene
glycol is smaller than EG. This means
that no need for pumping power and a
penalty in pressure drop.
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