
A gene-base DBMS

Dr.Hadeel Noori, Kufa University, college of education for girls, Computer

Department

Hanan A.and Wegdan A.

Technical Institute in Najaf, Computer Department

Abstract
The task of the query optimizer is to accept as input a tree of relational

algebra operators and to produce a query execution plan. This plan

specifies exactly which operations should be performed, in which order.

Algebra space can express the solution space, whereas a good search

algorithm can finding an optimal solution. In this work a genetic algorithm

with two crossover strategies will be tested on a B+ tree sorted database

example and nested loop join strategy. The results show that using M2S

crossover with left-deep strategy will give better solutions.

Introduction

The success of a DBMS lies in the quality, functionality, and sophistication

of its query optimizer[1], since that determines much of the system's

performance. The optimizer considers the possible query plans for a given

input query, and attempts to determine which of those plans will be the

most efficient. Cost-based query optimizers assign an estimated "cost" to

each possible query plan, and choose the plan with the smallest cost. Costs

are used to estimate the runtime cost of evaluating the query, in terms of

the number of I/O operations required, the CPU requirements, and other

factors determined from the data dictionary.In This work, we have design

of query optimization based on genetic algorithm, crossover, mutation ,

and reproduction of internal query representation are discussed. A

theoretical computations show the effective gene-base optimization The set

of query plans examined is formed by examining the possible access paths (e.g.

index scan, sequential scan) and join algorithms (e.g. sort-merge join, hash join,

nested loops). The search space can become quite large depending on the

complexity of the SQL query..

Database example
University (uname ,u-no, address)

College(c-no, u-no, cname)

Dept(d-no, c-no,dname)

Student(stname, d-no, st-no,ac-no)

Account(ac-no, balance)

Parameter description Parameter value

Number of university tuples 100

Number of college pages

Number of college tuples per page

10

100,000

Number of department pages 50

Number of department tuples per

page

10,000

Number student pages 10000

Number of student tuples per page 1,000,000

Number account pages 10000

Number of account tuples per page 1,000,000

Cost of one page access 1.3ms

Indexing

University

College

Department

Student

account

B+ tree on x-no

Where x represent any

relation(eg. University u.

,department d.)

• Sorting Using A B+-Tree Index:

A B+ tree is a type of tree which represents sorted data in a way that allows

for efficient insertion, retrieval and removal of records, each of which is

identified by a key. It is a dynamic, multilevel index, with maximum and

minimum bounds on the number of keys in each index segment (usually

called a 'block' or 'node').

– If a B+-tree index is available on the attribute we want to sort by, we can

use a completely different algorithm to produce a sorted output relation:

just read the tuples in order off the leaf-level of the B+-tree index.

– If the index is clustered, this can be very fast: the heap is already basically

sorted, so all we really need to do is read it in.

– If the index is unclustered, this actually turns out to be a pretty bad

strategy: we may end up doing up to 1 random I/O for each tuple in the

result set (not including the time it takes to read the leaf pages themselves).

The order of a B+ tree measures the capacity of nodes in the tree. It is

defined as a number d such that d <= m <= 2 d, where m is the number of

entries in each node. For example, if the order of a B+ tree is 7, each internal

node (except for the root) may have between 7 and 14 keys; the root may

have between 1 and 14. For a b-order B+ tree with h levels of index, The

maximum number of records stored is n = b
h
 and Finding a record requires O(logb

n) operations in the worst case

Optimizer plan steps

The query optimizer is the core of the DBMS, which comprises plan

generator and plan cost estimator. The query optimizer performs the

following steps:

1. The optimizer generates a set of potential plans for the SQL statement

based on available access paths and hints.

2. The optimizer estimates the cost of each plan based on statistics in the

data dictionary for the data distribution and storage characteristics of the

tables, indexes, and partitions accessed by the statement.

The cost is an estimated value proportional to the expected resource use

needed to execute the statement with a particular plan. The optimizer

calculates the cost of access paths and join orders based on the estimated

computer resources, which includes I/O, CPU, and memory.

Serial plans with higher costs take more time to execute than those with

smaller costs. When using a parallel plan, however, resource use is not

directly related to elapsed time.

3. The optimizer compares the costs of the plans and chooses the one with

the lowest cost.

Components of the Query Optimizer

The query optimizer operations include:

■ Transforming Queries

■ Estimating

■ Generating Plans

Query optimizer components are illustrated in Figure 1.

Figure 1 component of query optimizer

Plan spaces
The first step of optimization is parsing the query as mentioned in previous

section, consider the following example:
Select (st-name, un-name, address, account)

From(account, student, department, college, university)

Where (acc.no=stu.ano and stu.dno=dep.dno and dep.cno=col.cno and

col.uno=uni.no)

This resulting in rewriting the query in algebraic notation and by

representing relations in our example by letters ordered alphabetically as

follows:

(A B) AND (B C) AND (C D) AND (D E)

This algebraic notation expressed both join operation and its constraints, to

select those tuples who satisfy the results. Thus the results can obtained

from combining all tuples in relations that follow the query constraints and

associated with join operations, but the optimizer should avoid combining

tuples of relations didn’t related by join operation because such

combination produce large non-required results.

 By the query graph, the optimizer define all the plans which guide the

estimated solutions, where, the query can be represented in join processing

tree, which its leafs represent the real DB’s relations and its internal nods

represents the join operation.

There are three structures (plans) that shape the join processing tree; left-

deep tree, whose inner relations are base relations, right deep relation,

whose outer relations are the base relation. The nodes of these two types

have one leaf as a child and called linear tree. The other type called bushy

tree. Figure 2 show such types for our example

(A)

(B)

(C)

Figure2: join processing tree (A) left -deep tree (B) right -deep Tree (C)

bushy Tree

The proposed gene-base optimization

In this section we will describe the genetic algorithm that used as search

strategy in plan space of DBMS according to our database example. [2]

give the detailed of the genetic operations crossover, mutation, and

reproduction.

Repeat

For each chromosome i do

A B

4

3

2

1

 C

D

E

 A

4

3

2

1

 B

 C

 D

 E

 D

2

3

1

A B

E

4

 C

 Evaluate f(i)

 select two parent chromosomes based on their fitness f(i)

mate chromosome I and chromosome j

crossover the parents

Mutate the resulting offspring with probability p(m)

Until the variance of f(i) is small

Coding of plan space

It is well known that each problem has its solution space that need for an

efficient coding to be compatible with genetic procedures. Thus we need to

describe the coding of the problem detailed in previous sections.

Left-deep strategy are a small subset of the plan space, each chromosome is

an ordered list of genes, combined with join method, whereas right-deep

strategy result in wide area of solutions (result from join relations that are

not present explicitly in the query). [3] Use two coding methods one for

linear trees and other for bushy tree. The former represent each

chromosome as ordered list of genes combined with join method associated

with each relation, so regenerating the processing tree result in plan with

those join methods, whereas, the later represented with ordered list of

genes associated with join method and orientation of relation (left or

right). Figure 3 show the coding of these two strategies:

LEFT- DEEP TREE RIGHT-DEEP TREE

4

3

2

1

student account

department

college

university

account

4

3

2

1

student

department

college

university

GENE REPRESENTATION
 j super script represent the join method

j STU jACC jDEP jCOL jUNI

jUNI jCOL jDEP jSTU jCOL

BUSHY TREE

GENE REPRESENTATION

where the subscript represent the orientation and the super script represent the

join method

1L J 2R J4L J3L J

Figure 3 coding of join processing trees a: left-deep b) right- deep c) bushy tree

CROSSOVER

As the order of genes in the chromosome must be kept, method of two swap(

M2S) [4], was adopted to incorporated the information from the parents. Given

parents x1,x2, randomly choose two genes from x1 and replace with the

corresponding in x2.

Parents:

X1 : j STU kACC jCOL jDEP jUNI

X2: j ACC jDEP jCOL kSTU jUNI

 Choosing STU , ACC for substitution result Offspring:

 X1 : jACC kSTU jCOL j DEP jUNI

college

2

3

1

student account

university

4

department

 X2: jSTU jDEP jCOL kACC jUNI

The second method was adopted from [5], which refer to as CHUNK it was

designed to be suitable for bushy case. CHUNK can be summarized in the

following steps:

1- compute gene length l .

2- compute the start of the CHUNK as uniformly random number in

[0,l/2]

3- generate the CHUNK length from [l/4, l/4]

These steps can be summarized in the following example

 X1: 1ja 2kr 4kr 3ja

 X2: 1kr 3jr 2ja 4ka

And Generating the CHUNK [1 2] Result in genes 1 2 from x1 will

copied into the same positions in the offspring then delete these genes

from x2 and use the remainder to fill up the offspring. This process

repeated by interchanging of x1 and x2.

Offspring 1: 1ja 2kr 3jr 4ka

Offspring 2: 1kr 4kr 3jr 2jr

Implementation
In this section we will show, implementing genetic algorithm with our

database example. Using four quereies to provide two, three, four, and five

relations consequently give a good comparison on the base of cost

parameter.

Let P(N) and F(N) give the number of pages and the number of tuples per

page, respectively, for some relation N. Using Simple Nested Loops Join

algorithm shown bellow:

• For each tuple in the outer relation R, we scan the entire inner relation S:

 For each tuple r in R do

 For each tuple s in S do

 if r.id == s.id then add <r,s> to the result

•We get a cost about: P(R) + [F(R) _ P(R) _ P(S)]

Figure 4 show genetic algorithm runs for leP-deep m2s coding, right- deep

m2s coding, and bushy with chunk coding

1
0

3
0

5
0

7
0

TWO RELATIONS FOUR RELATIONS

GA WITH LEFT-DEEP

M2S

GA WITH RIGHT DEEP

M2S

GA WITH BUSHY-TREE

CHUNK

Conclusion
 Results shown in the implementation section exploit success of genetic

algorithm in finding an optimal plan (ordered relational join strategy).

Using left-deep representation result in further extra relations that can be

discarded from the plan space. Also bushy tree with chunk coding result

with better solution than right-deep with m2s coding

Also genetic algorithm can found solutions for larger queries in an

acceptable time.

References

[1] M. Jarke and J. Koch. “query optimization in data base systems”, ACM

computing surveys , 16(2): 111-152, June 1984.

[2] Goldberg, David E. "Genetic and Evolutionary Algorithms Come of Age."

Communications of the ACM 37, 3 (March, 1994), pp. 113-119.

[3] K. Bennett, M. C. Ferris, and Y. Ioannidis. A genetic algorithm for
database query optimization. In Proc. 4th Int. Conference on Genetic
Algorithms, pages 400{407, San Diego, CA, July 1991.

[4]S. Lin and B. W. Kernighan. An Artificial heuristic algorithm for the
traveling salesman problem. Operation Research, 21: 498-516, 1973

[5] H. Muhlenbein. Parallel genetic algorithms, population genetics and
combinatorial optimization. In Schaeffer [13], pages 416-421.

