Fuzzy translations and fuzzy multiplications of QS-algebras

التحويلات الضبابية والضرب الضبابي الى حبر-QS

Areej Tawfeeq Hameed ¹ and Akhlas Kadom Alkurdi ²

Department of Mathematics, Faculty of Education for Girls, University of Kufa, Najaf, Iraq.

areej238@gmail.com (or) areej.tawfeeq@uokufa.edu.iq

Abstract.

Fuzzy translations, (normalized, maximal) fuzzy extensions and fuzzy multiplications of fuzzy QS-subalgebras of QS-algebras are discussed relations among fuzzy translations, fuzzy extensions and fuzzy multiplications of fuzzy QS-ideals are investigated.

2010 Mathematics Subject Classification: 06F35, 03G25, 08A72.

الملخص:

و الضرب الضبابية و التحويلات الضبابية و التوسعات الضبابية (الاعتيادية ، الاعظمية) والضرب الضبابي الى الحبر الجرر الجزئي من النوع QS وناقشنا العلاقات بينها وعرفنا التحويلات الضبابية والتوسعات الضبابية والضرب الضبابي على المثاليات الضبابية في الجبر من النوع OSوحققنا علاقات بينها

1. Introduction

Several authors ([7],[3],[8]) have introduced of BCK-algebras as a generalization of the concept of set-theoretic difference and propositional calculus and studied some important properties. The concept of a fuzzy set, was introduced by L.A. Zadeh [10]. In ([5], [6],[9]), they applied the concept of fuzzy set to BCK/BCI-algebras and gave some of its properties. A.T. Hameed and et.al. [2] introduced the notions fuzzy QS-subalgebras, fuzzy QS-ideals of QS-algebras and investigated relations among them. In this paper, we discuss fuzzy translation, (normalized, maximal) fuzzy S-extension and fuzzy multiplication of fuzzy QS-subalgebras in QS-algebra. We discuss fuzzy translation, fuzzy extension and fuzzy multiplication of fuzzy QS-ideals in QS-algebra.

2. Preliminaries

Now, we introduced the concept of algebraic structure of QS-algebra and we give some results and theorems of it .

Definition 2.1([1]). Let (X; *,0) be an algebra of type (2,0) with a single binary operation (*). X is called a **QS-algebra** if it satisfies the following identities: for any $x, y, z \in X$,

```
(QS_1) : (z*y) * (z*x) = x*y,

(QS_2) : x*0=x,

(QS_3) : x*x=0,
```

 $(QS_4):(x * y) * z = (x * z) * y$.

In X we can define z\sorder relation (\leq) by : $x \leq y$ if and only if, x * y = 0.

Lemma 2.2 ([1]). In any QS-algebra X, the following properties hold: for all x, y, $z \in X$;

- a) x * y = 0 and y * x = 0 imply x = y,
- b) y * [(y*z) *z] = 0,
- c) $x \le y$ implies that $y * z \le x * z$,
- d) $x \le y$ implies that $z * x \le z * y$,
- e) $x \le y$ and $y \le z$ imply $x \le z$,
- f) $x * y \le z$ implies that $z * y \le x$.

Definition 2.3([1]). Let X be a QS-algebra and let S be a nonempty subset of X. S is called a **QS-subalgebra** of X if $x * y \in S$ whenever $x, y \in S$.

Definition 2.4([1]). A nonempty subset I of a QS-algebra X is called a **QS-ideal** of X if it satisfies: for $x, y, z \in X$,

 $(IQS_1) (0 \in I)$,

 (IQS_2) $(z*y) \in I$ and $(x*y) \in I$ imply $(z*x) \in I$.

Definition 2.5([10]). Let X be a nonempty set, a fuzzy subset μ in X is a function $\mu: X \to [0,1]$.

Proposition 2.6([1]). Every QS-ideal of QS-algebra X is a QS-subalgebra of X.

Definition 2.7([2]). Let X be a QS-algebra, a fuzzy subset μ in X is called a **fuzzy QS-subalgebra** of X if for all x , y \in X , μ (x * y) \geq min { μ (x), μ (y)} .

Definition 2.8([2]). Let X be a QS-algebra, a fuzzy subset μ in X is called a fuzzy

QS-ideal of X if it satisfies the following conditions: , for all x, y, $z \in X$,

 (FQS_1) $\mu(0) \ge \mu(x)$,

 (FQS_2) $\mu(z*x) \ge \min \{\mu(z*y), \mu(x*y)\}$.

Proposition 2.9([2]). Every fuzzy QS-ideal of QS-algebra X is a fuzzy QS-subalgebra of X.

3. Fuzzy translations and fuzzy multiplications of fuzzy QS-subalgebras .

We study the relations among fuzzy translation, (normalized, maximal) fuzzy S-extension and fuzzy multiplication of QS-subalgebras of QS-algebra X as([3],[4],[7]).

In what follows let (X; *,0) denote a QS-algebra, and for any fuzzy set μ of X, we denote $T = 1 - \sup\{\mu(x) \mid x \in X\}$ unless otherwise specified.

Definition 3.1([3]). Let X be a nonempty set and μ be a fuzzy subset of X and let $\alpha \in [0,T]$. A mapping $\mu_{\alpha}^T: X \to [0,1]$ is called a **fuzzy translation subset** of μ if it satisfies:

$$\mu_{\alpha}^{T}(x) = \mu(x) + \alpha$$
, for all $x \in X$.

Theorem 3.2. Let X be a QS-algebra and μ be a fuzzy QS-subalgebra of X and $\alpha \in [0,T]$. Then the fuzzy translation subset μ_{α}^{T} of μ is a fuzzy QS-subalgebra of X.

Proof. Assume μ be a fuzzy QS-subalgebra of X and $\alpha \in [0,T]$, let $x, y \in X$. Then $\mu_{\alpha}^{T}(x*y) = \mu(x*y) + \alpha \geq \min\{\mu(x), \mu(y)\} + \alpha = \min\{\mu(x) + \alpha, \mu(y) + \alpha\} = \min\{\mu_{\alpha}^{T}(x), \mu_{\alpha}^{T}(y)\}$.

Hence μ_{α}^{T} is a fuzzy translation QS-subalgebra of X. \triangle

Theorem 3.3. Let X be a QS-algebra and μ be a fuzzy subset of X such that the fuzzy translation subset μ_{α}^T of μ is a fuzzy QS-subalgebra of X for some $\alpha \in [0,T]$. Then μ is a fuzzy QS-subalgebra of X.

Proof. Assume μ_{α}^{T} be a fuzzy translation QS-subalgebra of X for some $\alpha \in [0,T]$. Let x, y

 $\in X, \text{ then } \mu(x*y) + \alpha = \mu_{\alpha}^{T} \ (x*y) \geq \ \min\{ \, \mu_{\alpha}^{T} \ (x), \ \mu_{\alpha}^{T} \ (y) \} = \min\{ \mu(x) + \alpha, \, \mu(y) + \alpha \}$

 $= \min\{\mu(x), \, \mu(y)\} + \alpha \ \, \text{and so} \, \, \mu(x * y) \geq \min\{\mu(x), \, \mu(y)\}.$

Hence μ is a fuzzy QS-subalgebra of X. \triangle

Definition 3.4([3]). Let μ_1 and μ_2 be fuzzy subsets of a set X. If $\mu_1(x) \le \mu_2(x)$ for all $x \in X$, then we say that μ_2 is a fuzzy extension of μ_1 .

Definition 3.5. Let X be a QS-algebra, μ_1 and μ_2 be fuzzy subsets of X. Then μ_2 is called **a fuzzy S-extension** of μ_1 if the following assertions are valid:

 (S_i) μ_2 is a fuzzy extension of μ_1 .

 (S_{ii}) If μ_1 is a fuzzy QS-subalgebra of X, then μ_2 is a fuzzy QS-subalgebra of X.

By means of the definition of fuzzy translation, we know that $\mu_{\alpha}^{T}(x) \ge \mu(x)$ for all $x \in X$. Hence we have the following proposition.

Proposition 3.6. Let μ be a fuzzy QS-subalgebra of a QS-algebra X and $\alpha \in [0,T]$. Then the fuzzy translation subset μ_{α}^T of μ is a fuzzy S-extension of μ .

Proof. Straightforward. △

In general, the converse of Proposition (3.6) is not true as seen in the following example.

Example 3.7. Consider a QS-algebra $X = \{0, a, b, c\}$ with the following Cayley table:

*	0	a	b	c
0	0	a	b	С
a	a	0	С	b
b	b	c	0	a
c	С	b	a	0

Define a fuzzy QS-subalgebra μ of X by:

X	0	a	b	С
μ	0.9	0.6	0.7	0.6
μ_{α}^{T}	0.91	0.61	0.71	0.61

is not a fuzzy S-extension of μ_α^T .

Proposition 3.8. The intersection of fuzzy S-extensions of a fuzzy subset μ of X is a fuzzy extension of μ .

Proof: Let $\{ \mu_i \mid i \in \Lambda. \}$ be a family of fuzzy QS-subalgebras of QS-algebra X, then for any x, y $\in X$, $i \in \Lambda$,

$$\begin{split} (\bigcap_{i \in \land} \mu_i \) \ (x * y) &= inf \ (\ \mu_i \ (x * y)) \geq inf \ (min \ \{ \ \mu_i \ (x), \ \mu_i \ (y) \}) \\ &= min \ \{ \inf \ (\ \mu_i \ (x)) \ , \inf \ (\ \mu_i \ (y) \} \ . \ This \ completes \ the \ proof \ . \ \triangle \\ &= Clearly, \ the \ union \ of \ fuzzy \ S-extensions \ of \ a \ fuzzy \ subset \ \mu \ of \ X \ , \ is \ not \ a \ fuzzy \end{split}$$

S-extension of μ as seen in the following example.

Example 3.9. Consider a QS-algebra $X = \{0, a, b, c\}$ with the following Cayley table:

*	0	a	b	c
0	0	a	b	С
a	a	0	b	b
b	b	С	0	a
С	С	b	a	0

Define a fuzzy subset μ of X by:

X	0	a	b	С
μ	0.8	0.5	0.7	0.5

Then μ is a fuzzy QS-subalgebra of X. Let v and δ be fuzzy subsets of X given by

X	0	a	b	c
ν	0.8	0.6	0.7	0.7
δ	0.9	0.5	0.8	0.5

Then ν and δ are fuzzy S-extensions of μ . But the union $\nu \cup \delta$ is not a fuzzy S-extension of μ since $(v \cup \delta)(c * b) = 0.6 < 0.7 = \min\{(v \cup \delta)(c), (v \cup \delta)(b)\}.$

Definition 3.10. For a fuzzy subset μ of a QS-algebra X, $\alpha \in [0,T]$ and $t \in [0,1]$ with $t \ge \alpha$, let $U_{\alpha}(\mu;t) := \{x \in X \mid \mu(x) \ge t - \alpha\}.$

If μ is a fuzzy QS-subalgebra of X, then it is clear that $U_{\alpha}(\mu;t)$ is a QS-subalgebra of X, for all $t \in Im(\mu)$ with $t \geq \alpha$. But if we do not give a condition that μ is a fuzzy QS-subalgebra of X, then $U_{\alpha}(\mu;t)$ is not a QS-subalgebra of X as seen in the following example.

Example 3.11. Let $X = \{0, a, b, c\}$ be a QS-algebra which is given in Example (3.9). Define a fuzzy subset λ of X by

X	0	a	b	c
λ	0.7	0.6	0.4	0.3

Then λ is not a fuzzy QS-subalgebra of X since

 $\lambda(a*b) = \lambda(c) = 0.3 < 0.4 = \min{\{\lambda(a), \lambda(b)\}}$. For $\alpha = 0.1$ and t = 0.5, we obtain $U_{\alpha}(\lambda; t) = \{0, a, b\}$ which is not a QS-subalgebra of X since $a*b = c \notin U_{\alpha}(\lambda; t)$.

Proposition 3.12. Let μ be a fuzzy subset of a QS-algebra X and $\alpha \in [0,T]$. Then the fuzzy subset translation μ_{α}^{T} of μ is a fuzzy QS-subalgebra of X if and only if,

 $U_{\alpha}(\mu; t)$ is a QS-subalgebra of X, for all $t \in Im(\mu)$ with $t \ge \alpha$.

Proof. Necessity is clear. To prove the sufficiency, assume that there exist $x,y\in X$, $\gamma\in[0,1]$ with $\gamma\geq\alpha$ such that $\mu_\alpha^T(x*y)<\gamma\leq\min\{\mu_\alpha^T(x),\mu_\alpha^T(y)\}$. Then $\mu(x)\geq\gamma-\alpha$ and $\mu(y)\geq\gamma-\alpha$, but $\mu(x*y)<\gamma-\alpha$. This shows that $x,y\in U_\alpha$ ($\mu;\gamma$) and $x*y\notin U_\alpha$ ($\mu;\gamma$). This is a contradiction, and so $\mu_\alpha^T(x*y)\geq\min\{\mu_\alpha^T(x),\mu_\alpha^T(y)\}$, for all $x,y\in X$. Hence μ_α^T is a fuzzy translation QS-subalgebra of X. \triangle

Proposition 3.13. Let μ be a fuzzy QS-subalgebra of QS-algebra X and $\alpha, \lambda \in [0,T]$. If $\alpha \geq \lambda$, then the fuzzy translation QS-subalgebra μ_{α}^{T} of μ is a fuzzy S-extension of the fuzzy translation QS-subalgebra μ_{λ}^{T} of μ .

Proof. For every $x \in X$ and $\alpha, \lambda \in [0,T]$ and $\alpha \geq \lambda$, we have $\mu_{\alpha}^{T}(x) = \mu(x) + \alpha \geq \mu(x) + \lambda = \mu_{\lambda}^{T}(x)$, then $\mu_{\alpha}^{T}(x) \geq \mu_{\lambda}^{T}(x)$ therefor $\mu_{\alpha}^{T}(x)$ is a fuzzy extension of $\mu_{\lambda}^{T}(x)$, since μ is a fuzzy QS-subalgebra of X then μ_{α}^{T} of μ is a fuzzy QS-subalgebra (by Theorem (3.2)),hence μ_{α}^{T} of μ is a fuzzy S-extension of the fuzzy translation QS-subalgebra μ_{λ}^{T} of μ . \triangle

Proposition 3.14. Let μ be a fuzzy QS-subalgebra of a QS-algebra X and $\lambda \in [0,T]$. For every fuzzy S-extension ν of the fuzzy translation QS-subalgebra μ_{λ}^T of μ , there exists $\alpha \in [0,T]$ such that $\alpha \geq \lambda$ and ν is a fuzzy S-extension of the fuzzy translation QS-subalgebra μ_{α}^T of μ . **Proof.** Since μ is a fuzzy QS-subalgebra of a QS-algebra X and $\lambda \in [0,T]$, the fuzzy translation subset μ_{λ}^T of μ is a fuzzy QS-subalgebra of X. If ν is a fuzzy S-extension of μ_{λ}^T , then there exists $\alpha \in [0,T]$ such that $\alpha \geq \lambda$ and $\nu(x) \geq \mu_{\alpha}^T(x)$, for all $x \in X$, hence

 ν is a fuzzy S-extension of the fuzzy translation QS-subalgebra μ_{α}^{T} of μ . \triangle The following example illustrates Proposition (3.14).

Example 3.15. Consider a QS-algebra $X = \{0, a, b, c\}$ with the following Cayley table:

*	0	a	b	c
0	0	a	b	c
a	a	0	b	b
b	b	С	0	a
c	С	b	a	0

Define a fuzzy subset μ of X by:

X	0	a	b	С
μ	0.7	0.5	0.4	0.4

Then μ is a fuzzy QS-subalgebra of $\,X\,$ and $\,T{=}0.3$. If we take $\,\lambda=0.2,$ then the fuzzy QS-subalgebra translation $\mu^{\scriptscriptstyle T}_\lambda$ of $\,\mu\,$ is given by :

X	0	a	b	c
$\mu_{\lambda}^{\mathrm{T}}$	0.9	0.7	0.6	0.6

Let v be a fuzzy subset of X defined by:

X	0	a	b	c
ν	0.94	0.76	0.64	0.64

Then ν is clearly a fuzzy QS-subalgebra of X which is fuzzy extension of μ_{λ}^{T} and hence ν is a fuzzy S-extension of fuzzy translation subset μ_{λ}^{T} of μ . Take $\alpha=0.23$, then $\alpha=0.23>0.2=\lambda$, and the fuzzy translation QS-subalgebra μ_{α}^{T} of μ is given as follows:

X	0	a	b	c
μ_α^T	0.93	0.73	0.63	0.63

Note that $v(x) \ge \mu_{\alpha}^T(x)$ for all $x \in X$, and hence ν is a fuzzy S-extension of the fuzzy translation QS-subalgebra μ_{α}^T of μ .

Definition 3.16. A fuzzy S-extension ν of a fuzzy QS-subalgebra μ in a QS-algebra X is said to be **normalized** if there exists $x_0 \in X$ such that $\nu(x_0) = 1$. Let μ be a fuzzy QS-subalgebra of X. A fuzzy subset ν of X is called a **maximal fuzzy S-extension** of μ if it satisfies:

 (M_i) v is a fuzzy S-extension of μ ,

 (M_{ii}) there does not exist another fuzzy QS-subalgebras of a QS-algebra X which is a fuzzy extension of ν .

Example 3.17. let $X = \{0, a, b, c\}$ with the following Cayley table:

*	0	a	b	c
0	0	a	b	c
a	a	0	c	b
b	b	С	0	a
c	c	b	a	0

(X; *,0) is a QS-algebra. Let μ and ν be fuzzy subsets of X which are defined by

 $\mu(x) = \frac{1}{5}$ and $\nu(x) = 1$ for all $x \in X$. Clearly μ and ν are fuzzy QS-subalgebras of X. It is easy to verify that ν is a maximal fuzzy S-extension of μ .

Proposition 3.18. If a fuzzy subset ν of a QS-algebra X is a normalized fuzzy S-extension of a fuzzy QS-subalgebra μ of X, then $\nu(0) = 1$.

Proof. It is clear because $v(0) \ge v(x)$ for all $x \in X$. \triangle

Proposition 3.19. Let μ be a fuzzy QS-subalgebra of a QS-algebra X. Then every maximal fuzzy S-extension of μ is normalized.

Proof. This follows from the definitions of the maximal fuzzy S-extensions and normalized. △

Definition 3.20. Let μ be a fuzzy subset of a QS-algebra X and $\beta \in (0, 1]$. A fuzzy multiplication of μ , denoted by μ_{β}^{M} is defined to be a mapping $\mu_{\beta}^{M}: X \rightarrow [0, 1]$ define by $\mu_{\beta}^{M}(x) = \beta.\mu(x)$, for all $x \in X$.

Proposition 3.21. If μ is a fuzzy QS-subalgebra of a QS-algebra X, then the fuzzy multiplication subset of μ is a fuzzy QS-subalgebra of X for all $\beta \in [0, 1]$.

Proof. Assume μ is a fuzzy QS-algebra of a QS-algebra X, Then for all $x, y \in X$ and $\beta \in [0, 1], \ \mu_{\beta}^{M}(x^*y) = \beta.\mu(x^*y) \geq \beta.\min\{\ \mu(x),\mu(y)\} = \{\beta\ \mu(x),\beta\ \mu(y)\} = \{\mu_{\beta}^{M}(x),\mu_{\beta}^{M}(y)\}.$ Hence μ_{β}^{M} is a fuzzy QS-subalgebra of X for all $\beta \in (0, 1]$. \triangle

Proposition 3.22. For any fuzzy subset $\,\mu\,$ of QS-algebra X, the following are equivalent:

(A) μ is a fuzzy QS-subalgebra of X.

(B) For all $\beta \in (0, 1]$, μ_{β}^{M} is a fuzzy multiplication QS-subalgebra of X.

Proof. Necessity follows from Proposition (3.21). Let $\beta \in (0, 1]$ be such that μ_{β}^{M} is a fuzzy multiplication QS-subalgebra of X. Then for all $x, y \in X$, $\beta.\mu(x*y) = \mu_{\beta}^{M}(x*y) \ge \min\{\mu_{\beta}^{M}(x), \mu_{\beta}^{M}(y)\} = \min\{\beta.\mu(x), \beta.\mu(y)\} = \beta. \min\{\mu(x), \mu(y)\}$ and so $\mu(x*y) \ge \min\{\mu(x), \mu(y)\}$ for all $x, y \in X$. Hence μ is a fuzzy QS-subalgebra of X. \triangle

Proposition 3.23. Let μ be a fuzzy subset of QS-algebra X, $\alpha \in [0,T]$ and $\beta \in (0,1]$. Then every fuzzy translation QS-subalgebra μ_{α}^{T} of μ is a fuzzy S-extension of the fuzzy multiplication QS-subalgebra μ_{β}^{M} of μ .

Proof. For every $x \in X$, we have $\mu_{\alpha}^{T}(x) = \mu(x) + \alpha \ge \mu(x) \ge \beta . \mu(x) = \mu_{\beta}^{M}(x)$,

and so μ_{α}^T is a fuzzy extension of μ_{β}^M . Assume that μ_{β}^M is a fuzzy multiplication QS - subalgebra of X. Then μ is a fuzzy QS-subalgebra of X by Proposition (3.22). It follows from Theorem (3.2) that μ_{α}^T is a fuzzy QS-subalgebra of X for all $\alpha \in [0,T]$. Hence every fuzzy translation QS-subalgebra μ_{α}^T is a fuzzy S-extension of the fuzzy multiplication QS-subalgebra μ_{β}^M . \triangle

4. Fuzzy translations and fuzzy multiplications of fuzzy QS-ideals .

We study the relations among fuzzy translation, fuzzy extension and fuzzy multiplication of QS-ideals of QS-algebra X.

Theorem 4.1. Let μ be a fuzzy QS-ideal of a QS-algebra X, then the fuzzy translation subset μ_{α}^{T} of μ is a fuzzy QS-ideal of X, for all $\alpha \in [0,T]$.

Proof. Assume μ be a fuzzy QS-ideal of X and let $\alpha \in [0,T]$. For all $x,y,z \in X$ and $\mu(0) \geq \mu(x)$. Then $\mu_{\alpha}^T(0) = \mu(0) + \alpha \geq \mu(x) + \alpha = \mu_{\alpha}^T(x)$. and $\mu_{\alpha}^T(z*x) = \mu(z*x) + \alpha \geq \min\{\mu(z*y), \mu(x*y)\} + \alpha = \min\{\mu(z*y) + \alpha, \mu(x*y) + \alpha\} = \min\{\mu_{\alpha}^T(z*y), \mu_{\alpha}^T(x*y)\}$. Hence μ_{α}^T is a fuzzy translation OS-ideal of X. \triangle

Theorem 4.2. Let μ be a fuzzy subset of QS-algebra X such that the fuzzy translation subset μ_{α}^{T} of μ is a fuzzy QS-ideal of X for some $\alpha \in [0,T]$. Then μ is a fuzzy QS-ideal of X.

Proof. Assume μ_{α}^T is a fuzzy translation QS-ideal of X for some $\alpha \in [0,T]$. Let $x, y, z \in X$, we have $\mu(0)+\alpha=\mu_{\alpha}^T$ $(0)\geq \mu_{\alpha}^T(x)=\mu(x)+\alpha$. So $\mu(0)\geq \mu(x)$ and

 $\mu(z*x) + \alpha = \ \mu_{\alpha}^{T}\left(z*x\right) \geq min\{\ \mu_{\alpha}^{T}\left(z*y\right),\ \mu_{\alpha}^{T}\left(x*y\right)\} = min\{\mu(z*y) + \alpha,\ \mu(x*y) + \alpha\}$

 $= \min\{\mu(z*y), \ \mu(x*y)\} + \alpha \ \text{and so} \ \mu(z*x) \geq \min\{\mu(z*y), \ \mu(x*y)\}. \ \text{Hence} \quad \mu \ \text{ is a fuzzy QS-ideal of } X \ . \triangle$

Definition 4.3. Let μ_1 and μ_2 be fuzzy subsets of a QS-algebra X. Then μ_2 is called a **fuzzy** extension QS-ideal of μ_1 if the following assertions are valid:

(I_i) μ_2 is a fuzzy extension of μ_1 .

 (I_{ii}) If μ_1 is a fuzzy QS-ideal of X, then μ_2 is a fuzzy QS-ideal of X.

Proposition 4.4. Let μ be a fuzzy QS-ideal of X and let α , $\gamma \in [0,T]$. If $\alpha \geq \gamma$, then the fuzzy translation subset μ_{α}^{T} of μ is a fuzzy extension QS-ideal of the fuzzy translation QS-ideal μ_{γ}^{T} of μ .

Proof. Let μ be a fuzzy QS-ideal of X and let α , $\gamma \in [0,T]$ and $\alpha \geq \gamma$, then $\mu(x) + \alpha \geq \mu(y) + \gamma$, $\mu_{\alpha}^{T} \geq \mu_{\gamma}^{T}$, hence μ_{α}^{T} of μ is a fuzzy extension of μ_{γ}^{T} of μ and by Theorem(4.1) then the fuzzy translation subset μ_{α}^{T} of μ is a fuzzy QS-ideal of X, hence μ_{α}^{T} of μ is a fuzzy extension QS-ideal of the fuzzy translation QS-ideal μ_{γ}^{T} of μ . \triangle

Proposition 4.5. Let μ be a fuzzy QS-ideal of a QS-algebra X and $\gamma \in [0,T]$. For every fuzzy extension QS-ideal ν of the fuzzy translation QS-ideal μ_{γ}^{T} of μ , there exists $\alpha \in [0,T]$ such that $\alpha \geq \gamma$ and ν is a fuzzy extension QS-ideal of the fuzzy translation QS-ideal μ_{α}^{T} of μ .

Proof. For every fuzzy QS-ideal μ of X and $\gamma \in [0,T]$, the fuzzy translation subset μ_{γ}^{T} of μ is a fuzzy translation QS-ideal of X. If ν is a fuzzy extension QS-ideal of μ_{γ}^{T} , then there exists $\alpha \in [0,T]$ such that $\alpha \geq \gamma$ and $\nu(x) \geq \mu_{\alpha}^{T}$ (x) for all $x \in X$. and by Theorem(4.1) then the fuzzy translation subset μ_{α}^{T} of μ is a fuzzy QS-ideal of X, hence μ_{α}^{T} of μ is a fuzzy extension QS-ideal of the fuzzy translation QS-ideal μ_{ν}^{T} of μ . Δ

The following example illustrates Proposition (4.5).

Example 4.6. Consider a QS-algebra $X = \{0, a, b, c\}$ with the following Cayley table:

*	0	a	b	С
0	0	a	b	С
a	a	0	c	b
b	b	С	0	a
c	С	b	a	0

Define a fuzzy subset μ of X by:

X	0	a	b	c
μ	8.0	0.5	0.6	0.5

Then μ is a fuzzy QS-ideal of $\,X$ and T=0.2 . If we take $\,\gamma=0.12,$ then the fuzzy translation QS-ideal $\,\mu_{\gamma}^T$ of $\,\mu\,$ is given by :

X	0	a	b	c
μ_{γ}^{T}	0.92	0.62	0.72	0.62

Let v be a fuzzy subset of X defined by:

X	0	a	b	c
ν	0.98	0.67	0.76	0.67

Then ν is clearly a fuzzy extension QS-ideal of the fuzzy translation QS-ideal μ_{γ}^T of μ . for all $\alpha \in [0,T].$ Take $\alpha=0.17,$ then $\alpha=0.17>0.12=\gamma$, and the fuzzy translation QS-ideal μ_{α}^T of μ is given as follows:

X	0	a	b	c
μ_{α}^{T}	0.97	0.67	0.77	0.67

Note that $\nu(x) \ge \mu_{\alpha}^T(x)$, for all $x \in X$, and hence ν is a fuzzy extension QS-ideal of the fuzzy translation QS-ideal μ_{α}^T of μ .

Proposition 4.7. Let μ be a fuzzy QS-ideal of a QS-algebra X and $\alpha \in [0,T]$. Then the fuzzy translation subset μ_{α}^{T} of μ is a fuzzy extension QS-ideal of μ .

Proof. Since $\mu(x)+\alpha = \mu_{\alpha}^{T}(x) \ge \mu(x)$, for all $x \in X$, and $\alpha \in [0,T]$ and by Theorem(4.1)then the fuzzy translation subset μ_{α}^{T} of μ is a fuzzy extension QS-ideal of μ . \triangle

A fuzzy extension QS-ideal of a fuzzy QS-ideal μ may not be represented as a fuzzy translation QS-ideal μ_{α}^T of μ , that is, the converse of Proposition (4.7) is not true in general, as shown by the following example.

Example 4.8. Consider a QS-algebra $X = \{0, a, b, c\}$ with the following Cayley table:

*	0	a	b	С
0	0	a	b	С
a	a	0	c	b
b	b	c	0	a
С	С	b	a	0

Define a fuzzy subset μ of X by:

X	0	a	b	c
μ	0.8	0.5	0.3	0.3

Then μ is a fuzzy QS-ideal of X . Let ν be a fuzzy subset of X defined by:

X	0	a	b	c
ν	0.82	0.56	0.35	0.35

Then ν is a fuzzy extension QS-ideal of μ . But ν is not the fuzzy QS-ideal which is fuzzy translation QS-ideal μ_{α}^T of μ for all $\alpha \in [0,T]$.

Proposition 4.9. The intersection of any set of fuzzy extension QS-ideals of QS-algebra X is also fuzzy extension QS-ideal of X.

Proof: Let $\{\mu_i|i\in\Lambda\}$ be a family of fuzzy extension QS-ideals of QS-algebra X, then for any x, $y,z\in X$, $i\in\Lambda$,

$$(\bigcap_{i \in \land} (\mu_i)_i) (0) = \inf ((\mu_i)_i (0)) \ge \inf ((\mu_i)_i (x)) = (\bigcap_{i \in \land} (\mu_\alpha^T)_i (x) \text{ and } (\bigcap_{i \in \land} (\mu_i)_i)(z*x) = \inf ((\mu_i)_i)(z*x) \ge \inf (\min \{\mu_i (z*y), \mu_i(x*y)\}) =$$

$$\min \ \left\{ (\bigcap_{i \in \Lambda} \mu_i)(z * y) \ , \ (\bigcap_{i \in \Lambda} \mu_i)(x * y) \ \right\} = \min \ \left\{ (\bigcap_{i \in \Lambda} (\mu)_i \)(z * y) \ \ , \ (\bigcap_{i \in \Lambda} (\mu)_i \)(x * y) \ \right\}. \ \triangle \ Clearly, \ the$$

union of fuzzy extensions QS-ideals of a fuzzy subset of QS-algebraX is not a fuzzy extension of μ as seen in the following example.

Example 4.10. Consider a QS-algebra $X = \{0, 1, 2, 3\}$ with the following Cayley table:

*	0	1	2	3
0	0	1	2	3
1	1	0	3	2
2	2	3	0	1
3	3	2	1	0

Define a fuzzy subset μ of X by:

X	0	1	2	3
μ	0.8	0.5	0.3	0.3

then μ is a fuzzy QS-ideal of X. Let ν and δ be fuzzy subsets of X given by

X	0	1	2	3
ν	0.8	0.6	0.8	0.6
δ	0.9	0.6	0.6	0.7

Then v and δ are fuzzy extensions QS-ideals of μ . But the union $v \cup \delta$ is not a fuzzy extension QS-ideals of μ since $(v \cup \delta)(3*2) = 0.6 < 0.7 = \min\{(v \cup \delta)(3), (v \cup \delta)(2)\}.$

Theorem 4.11. The intersection of any set of fuzzy translations QS-ideals of QS-algebra X is also fuzzy translations QS-ideals of X.

Proof: Let $\{(\mu_{\alpha}^T)_i \mid i \in \Lambda\}$ be a family of fuzzy translations QS-ideals of QS-algebra X, then for any $x, y, z \in X$, $i \in \Lambda$,

- 1) The intersection of any set of fuzzy QS-ideals of QS-algebra X is also fuzzy QS-ideals of X, (by Proposition(3.10) from [1]).
- 2) since $(\bigcap_{i \in \Lambda} (\mu_{\alpha}^{T})_{i})(x) = \inf \{(\mu_{\alpha}^{T})_{i}(x): i \in \Lambda\} = \inf \{\mu_{i}(x) + \alpha: i \in \Lambda\} = \inf \{\mu_{i}(x): i \in \Lambda\} + \alpha: i \in \Lambda\}$
- = $\bigcap_{i \in \land} (\mu)_i$ (x)+ α hence intersection of any set of fuzzy translations of QS-algebra X is also fuzzy translations of X. \triangle

Theorem 4.12. Let $\alpha \in [0,T]$, μ_{α}^{T} be the fuzzy translation subset of μ . Then the following are equivalent:

- (1) μ_{α}^{T} is a fuzzy translation QS-ideal of X.
- (2) $\forall t \in \text{Im}(\mu)$, $t \ge \alpha \Rightarrow U_{\alpha}$ $(\mu; t)$ is QS-ideal of X.

Proof. Assume that μ_{α}^{T} is a fuzzy translation QS-ideal of X and let $t \in Im(\mu)$ be such that $t > \alpha$. Since $\mu_{\alpha}^{T}(0) \ge \mu_{\alpha}^{T}(x)$ for all $x \in X$, we have $\mu(0) + \alpha = \mu_{\alpha}^{T}(0) \ge \mu_{\alpha}^{T}(x) = \mu(x) + \alpha$ that mean $\mu(0) \ge \mu(x)$, for all $x \in X$. Let $x \in U_{\alpha}(\mu; t)$, then $\mu(x) > t$ - α and

 $\mu(0) \geq \mu(x) \quad \text{imply} \quad \mu(0) \geq \mu(x) \geq \text{t-a. Hence } \ 0 \in \ U_{\alpha} \ (\mu; \, t).$

Let $x,y,z\in X$ be such that $(z*y)\in U_{\alpha}$ $(\mu;t)$ and $(x*y)\in U_{\alpha}$ $(\mu;t)$. Then $\mu(z*y)\geq t-\alpha$ and $\mu(x*y)\geq t-\alpha$, i.e., $\mu_{\alpha}^T(z*y)=\mu(z*y)+\alpha\geq t$ and $\mu_{\alpha}^T(x*y)=\mu(x*y)+\alpha\geq t$. Since μ_{α}^T is a fuzzy translation QS-ideal of X, it follows that $\mu(z*x)+\alpha=\mu_{\alpha}^T(z*x)\geq \min\{\mu_{\alpha}^T(z*y), \mu_{\alpha}^T(x*y)\}\geq t$, that is, $\mu(z*x)\geq t-\alpha$ so that $(z*x)\in U_{\alpha}$ $(\mu;t)$. Therefore U_{α} $(\mu;t)$ is QS-ideal of X.

Conversely, suppose that U_{α} (μ ; t) is QS-ideal of X for every $t \in Im(\mu)$ with $t > \alpha$. If there exists $x \in X$ such that μ_{α}^{T} (0) $< \lambda \le \mu_{\alpha}^{T}(x)$, then $\mu(x) \ge \lambda - \alpha$ but $\mu(0) < \lambda - \alpha$. This shows that $x \in U_{\alpha}$ (μ ; t) and $0 \notin U_{\alpha}$ (μ ; t). This is a contradiction, and so μ_{α}^{T} (0) $\ge \mu_{\alpha}^{T}(x)$ for all $x \in X$.

Now assume that there exist $x, y, z \in X$ such that

 $\begin{array}{l} \mu_{\alpha}^{T}\ (z*x)<\gamma\leq\min\ \{\ \mu_{\alpha}^{T}\ (z*y),\ \mu_{\alpha}^{T}\ (x*y)\}.\ Then\ \mu(z*y)\geq\gamma-\alpha\ and\ \mu(x*y)\geq\gamma-\alpha,\ but\ \mu(z*x)<\gamma-\alpha.\ Hence\ (z*y)\in\ U_{\alpha}\ (\mu;\ \gamma)\ and\ (x*y)\in\ U_{\alpha}\ (\mu;\ \gamma),\ but\ (z*x)\not\in\ U_{\alpha}\ (\mu;\ \gamma).\ This\ is\ a\ contradiction,\ and\ therefore\ \mu_{\alpha}^{T}\ (z*x)\geq\min\{\mu_{\alpha}^{T}\ (z*y),\ \mu_{\alpha}^{T}\ (x*y)\},\ for\ all\ x,y,\ z\in X.\ Hence\ \mu_{\alpha}^{T}\ is\ a\ fuzzy\ translation\ QS\ ideal\ of\ X.\ \triangle\end{array}$

In Theorem (4.11(2)), if $t \le \alpha$, then $U_{\alpha}(\mu; t) = X$.

Proposition 4.13. Let μ be a fuzzy QS-ideal of a QS-algebra X and let $\alpha \in [0,T]$, then the fuzzy translation subset μ_{α}^{T} of μ is a fuzzy QS-subalgebra of X.

Proof: Since μ be a fuzzy QS-ideal of a QS-algebra X, then by Proposition (2.9) μ be a fuzzy QS-subalgebra of a QS-algebraX and let $\alpha \in [0,T]$, then by Proposition (3.2), the fuzzy translation subset μ_{α}^{T} of μ is a fuzzy translation QS-subalgebra of X. \triangle

In general, the converse of the Proposition (4.13) is not true.

Proposition 4.14. For any fuzzy subset μ of X, the following are equivalent:

- (i) μ is a fuzzy QS-ideal of X.
- (ii) For all $\beta \in (0, 1]$, μ_{β}^{M} is a fuzzy multiplication QS-ideal of X.

Proof. Let μ be a fuzzy QS-ideal of a QS-algebra X, and $x, y, z \in X$, For all $\beta \in (0, 1]$ then $\mu(0) \geq \mu(x)$, $\beta.\mu(0) \geq \beta.\mu(x)$, hence $\mu_{\beta}^{M}(0) \geq \mu_{\beta}^{M}(x)$ and $\mu(z*x) \geq \min\{\mu(z*y), \mu(y*x)\} = \beta.\mu(z*x) \geq \min\{\mu(z*y), \mu(y*x)\} = \min\{\beta.\mu(z*y), \beta.\mu(y*x)\}$ and so $\mu_{\beta}^{M}(x) \geq \min\{\mu_{\beta}^{M}(z*y), \mu_{\beta}^{M}(y*x)\}$ for all $x, y, z \in X$. Hence μ_{β}^{M} is a fuzzy QS-ideal of X. Let $\beta \in (0, 1]$ be such that μ_{β}^{M} is a fuzzy multiplication QS-ideal of X. Then for all $x, y, z \in X$, $\beta.\mu(0) \geq \beta.\mu(x)$, then $\mu(0) \geq \mu(x)$ and $\beta.\mu(z*x) = \mu_{\beta}^{M}(z*x)$

 $\geq \min\{\mu_{\beta}^{M}(z*y), \, \mu_{\beta}^{M}(x*y)\} = \min\{\beta.\mu(z*y), \, \beta.\mu(x*y)\} = \beta. \, \min\{\mu(z*y), \, \mu(x*y)\} \text{ and so } \mu(z*x) \geq \min\{\mu(z*y), \, \mu(x*y)\} \text{ for all } x, y, z \in X. \text{ Hence } \mu \text{ is a fuzzy QS-ideal of } X. \, \triangle$

Proposition 4.15. Let μ be a fuzzy subset of a QS-algebraX, $\alpha \in [0,T]$ and $\lambda \in (0,1]$. Then every fuzzy translation subset μ_{α}^{T} of μ is a fuzzy extension QS-ideal of the fuzzy multiplication QS-ideal μ_{β}^{M} of μ

Proof. For every $x \in X$, we have $\mu_{\alpha}^T(x) = \mu(x) + \alpha \geq \mu(x) \geq \beta.\mu(x) = \mu_{\beta}^M(x)$, and so μ_{α}^T is a fuzzy extension QS-ideal of μ_{β}^M . Assume that μ_{β}^M is a fuzzy QS-ideal of X. Then μ is a fuzzy QS-ideal of X by Proposition (4.14). It follows from Theorem (3.2) that μ_{α}^T is a fuzzy QS-ideal of X for all $\alpha \in [0,T]$. Hence every fuzzy translation subset μ_{α}^T is a fuzzy extension QS-ideal of the fuzzy multiplication QS-ideal μ_{β}^M . \triangle

The following example illustrates Proposition (4.15).

Example 4.16. Consider a QS-algebraX = $\{0, 1, 2, 3\}$ with the Example (4.10). Define a fuzzy subset μ of X by:

X	0	1	2	3
μ	0.8	0.5	0.3	0.3

Then μ is a fuzzy QS-ideal of X. If we take $\lambda = 0.1$, then the fuzzy subset multiplication $\mu_{0.1}^M$ of μ is given by:

X	0	1	2	3
$\mu_{0.1}^{M}$	0.08	0.05	0.03	0.03
$\mu_{0.3}^{\mathrm{M}}$	0.24	0.15	0.09	0.09

Clearly $\mu_{0.3}^M$ is a fuzzy multiplication QS-ideal of X. Also, for any $\alpha \in [0, 0.2]$, the fuzzy translation μ_{α}^T of μ is given by:

X	0	1	2	3
μ_{α}^{T}	0.8+α	0.5+α	0.3+α	0.3+α

Then μ_{α}^T is a fuzzy extension QS-ideal of $\mu_{0.3}^M$ and μ_{α}^T is always a fuzzy translation QS-ideal of X for all $\alpha \in [0, 0.2]$. Hence μ_{α}^T is a fuzzy extension QS-ideal multiplication of $\mu_{0.3}^M$ for all $\alpha \in [0, 0.2]$.

References

- [1] Ahn S.S. and Kim H.S., On QS-algebras, J. Chungcheong Math. Soc., vol.12 (1999), 33-41.
- [2] Hameed A. T. ,Alfatlawi A.A. and Alkurdi A.K., Fuzzy QS-ideals of QS-algebra, International Journal of Algebra, vol.11, No.1, Scientific.2017.
- [3] Hameed A. T. and Mohammed N.Z., Fuzzy Translation and Fuzzy multiplication of CIalgebras, Journal of the University of Karbala, vol.15, No.1 (2017), 43-52
- [4] Hameed A. T. and Mohammed N.Z., Fuzzy Translation and Fuzzy multiplication of Qalgebras, European Academic Research, vol.IV, Issue.1, pp:829-854, (2016).
- [5] Jun Y. B. and Song S. Z., Fuzzy set theory applied to implicative ideals in BCK-algebras, Bull. Korean Math. Soc., vol.43, No.3 (2006), 461–470.
- [6] Jun Y. J. and Xin X. L., Involuntary and invertible fuzzy BCK-algebras, Fuzzy Sets and Systems, vol.117 (2004), 463–469.
- [7] Mostafa S. M., Hameed A. T. and Mohammed N.Z., Fuzzyα-Translation of KUS-algebras, Journal Al-Qadisiah for pure Science, vol.8, No.2(2016), B-16.
- [8] Wronski A., BCK-algebras do not form a variety, Math. Japan, vol.28(1983), 211-213.
- [9] Xi O. G., Fuzzy BCK-algebra, Math. Japon., vol. 36 (1991), 935-942.
- [10] Zadeh L. A., Fuzzy sets, Inform. And Control, vol.8 (1965), 338-353.