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Abstract 
     We introduce and investigate SS-injectivity as a generalization of both soc-injectivity and small injectivity. A right 

module   over a ring   is said to be SS- -injective (where   is a right  -module) if every  -homomorphism from a 

semisimple small submodule of   into   extends to  . A module   is said to be SS-injective (resp. strongly SS-

injective), if   is SS- -injective (resp. SS- -injective for every right  -module  ). Some characterizations and 

properties of (strongly) SS-injective modules and rings are given. Some results on soc-injectivity are extended to SS-

injectivity. 

 Key words and phrases: Small Injective rings (modules); Soc-Injective rings (modules); SS-Injective rings 

(modules); Perfect rings; quasi-Frobenius rings. 
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1. Introduction 

     Throughout this paper,   is an associative ring with 

identity, and all modules are unitary right  -modules. 

For a right  -module  , we write       ,     , 

    ,      ,      and        for the socle, the 

Jacobson radical, the singular submodule, the second 

singular submodule, the injective hull and the 

endomorphism ring of  , respectively. Also, we use 

   ,    ,    ,    ,   
  and   to indicate  

the right socle, the left socle, the right singular ideal, the 

left singular ideal, the right second singular ideal, and 

the Jacobson radical of  , respectively. For a 

submodule   of  , we write       ,    , 

    , and        to indicate that   is an 

essential submodule, a small submodule, a direct 

summand, and a maximal submodule of  , 

respectively. If   is a subset of a right  -module  . 

The right (resp. left) annihilator of   in   is denoted by 

      (resp.      ). If    , we write            

and           . 

     Let   and   be right  -modules,   is called soc- -

injective if every  -homomorphism from the soc( ) 

into   extends to  . A right  -module   is called soc-

injective, if   is soc- -injective. A right  -module   

is called strongly soc-injective, if   is soc- -injective 

for all right  -module   [1]. 

     Recall that a right  -module   is called mininjective 

[2] ( resp. small injective [3], principally small injective 

 

 [4]) if every  -homomorphism from any simple (resp. 

small, principally small) right ideal to   extends to  . 

A ring   is called right mininjective (resp. small 

injective, principally small injective) ring, if it is right 

mininjective (resp. small injective, principally small 

injective) as right  -module. A ring   is called right 

Kasch if every simple right  -module embeds in   (see 

for example [5]). Recall that a ring   is called semilocal 

if     is a semisimple [6]. Also, a ring   is said to be 

right perfect if every right  -module has projective 

cover. Recall that a ring   is said to be quasi-Frobenius 

(or   ) ring if it is right (or left) artinian and right (or 

left) self-injective; or equivalently, every injective right 

 -module is projective. 

     In this paper, we introduce and investigate the 

notions of SS-injective and strongly SS-injective 

modules and rings. Examples are given to show that the 

(strong) SS-injectivity is distinct from that of 

mininjectivity, principally small injectivity, small 

injectivity, simple J-injectivity, and (strong) soc-

injectivity. Some characterizations and properties of 

(strongly) SS-injective modules and rings are given. 

     In Section 2, we give some basic properties of SS-

injective modules. For examples, we prove that a ring   

is right universally mininjective if and only if every 

simple right ideal is SS-injective. We also prove that if 

  is projective right  -module, then every quotient of 

an SS- -injective right  -module is SS- -injective if 

and only if             is projective. We show that  

 

 

Recived : 19\6\2017                      Revised  : 20\8\2017                            Accepted : 21\8\2017 

 

Math Page 57 - 70 

 
Akeel .R / Adel .S 

mailto:akeel.mehdi@qu.edu.iq
mailto:adel.tayh@qu.edu.iq


 

58 

 

Journal of AL-Qadisiyah for computer science and mathematics     Vol.9   No.2   Year  2017 

ISSN (Print): 2074 – 0204       ISSN (Online): 2521 –  3504 

 

if every simple singular right  -module is SS-injective, 

then    is projective and          for all       . 
     In Section 3, we show that a right  -module   is 

strongly SS-injective if and only if every small 

submodule   of a right  -module  , every  -

homomorphism       with      semisimple 

extends to  . In particular,   is semiprimitive if every 

simple right  -module is strongly SS-injective, but not 

conversely. We also prove that if   is a right perfect 

ring, then a right  -module   is strongly soc-injective 

if and only if   is strongly SS-injective. A results ([1, 

Theorem 3.6 and Proposition 3.7]) are extended. We 

prove that a ring   is right artinian if and only if every 

direct sum of strongly SS-injective right  -modules is 

injective, and   is    ring if and only if every strongly 

SS-injective right  -module is projective. 

     In Section 4, we extend the results ([1, Proposition 

4.6 and Theorem 4.12]) from a soc-injective ring to an 

SS-injective ring ( see Proposition 4.9 and Corollary 

4.10). 

     In Section 5, we show that a ring   is    if and only 

if it is strongly SS-injective and right noetherian with 

essential right socle if and only if it is strongly SS-

injective,       is countable generated left ideal, 

        , and the chain                 
               terminates for every infinite 

sequence         in   (see Theorem 5.9 and Theorem 

5.11). Finally, we prove that a ring   is    if and only 

if   is strongly left and right SS-injective, left Kasch, 

and   is left  -nilpotent (see Theorem 5.14), extending a 

result of I. Amin, M. Yousif and N. Zeyada [1, 

Propostion 5.8] on strongly soc-injective rings. 

     General background material can be found in [7], [8] 

and [9]. 

2. SS-Injective Modules 

Definition 2.1. Let   be a right  -module. A right 

 -module   is said to be SS- -injective, if for any 

semisimple small submodule   of  , any right  -

homomorphism       extends to  . A module   

is said to be SS-quasi-injective if   is SS- -injective. 

  is said to be SS-injective if   is SS- -injective. A 

ring   is said to be right SS-injective if the right  -

module    is SS-injective. 
Definition 2.2. A right  -module   is said to be 

strongly SS-injective if   is SS- -injective, for all 

right  -module  . A ring   is said to be strongly right 

SS-injective if the right  -module    is strongly SS-

injective. 
Example 2.3. 

(1) Every soc-injective module is SS-injective, but 

not conversely (see Example 5.7). 

(2) Every small injective module is SS-injective, 

but not conversely (see Example 5.5). 

 

 

 

 

(3) Every  -module is SS-injective. In fact, if   is 

a  -module, then   is small injective (by [3, 

Theorem 2.8) and hence it is SS-injective. 

(4) The two classes of principally small injective 

rings and SS-injective rings are different ( see 

[5, Example 5.2],  Example 4.4 and Example 

5.5). 

(5) Every strongly soc-injective module is strongly 

SS-injective, but not conversely (see Example 

5.7). 

(6) Every strongly SS-injective module is SS-

injective, but not conversely (see Example 

5.6). 

 

Theorem 2.4. The following statements hold: 

(1) Let   be a right  -module and let {      } be a 

family of right  -modules. Then the direct 

product        is SS- -injective if and only if 

each    is SS- -injective,    . 

(2) Let  ,   and   be right  -modules with    . 

If   is SS- -injective, then   is SS- -injective. 

(3) Let  ,   and   be right  -modules with    . 

If   is SS- -injective, then   is SS- -injective. 

(4) Let  ,   and   be right  -modules with     

and   is SS- -injective. Then   is SS- -

injective. 

(5) Let  ,   and   be right  -modules with   is a 

direct summand of  . If   is SS- -injective, 

then   is SS- -injective. 

Proof. Clear.          

 

Corollary 2.5.  
(1) If   is a right  -module, then a finite direct sum 

of SS- -injective modules is again SS- -

injective. Moreover, a finite direct sum of SS-

injective (resp. strongly SS-injective) modules is 

again SS-injective (resp. strongly SS-injective). 

(2) A direct summand of an SS-quasi-injective (resp., 

SS-injective, strongly SS-injective) module is 

again SS-quasi-injective (resp., SS-injective, 

strongly SS-injective). 

Proof. (1) Take the index   to be a finite set and apply 

Theorem 2.4 (1). 

(2) This follows from Theorem 2.4 (5).              
 

Proposition 2.6. Every SS-injective right  -module 

is a right mininjective. 
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Proof. Let   be a simple right ideal of  . By [10, 

Lemma 3.8, p. 29] we have that either   is nilpotent or a 

direct summand of  . If   is a nilpotent, then     by 

[11, Corollary 6.2.8, p. 181] and hence   is a simple 

small right ideal of  . Thus every SS-injective right  -

module is right mininjective.         
 

     It easy to prove the following proposition. 

 

Proposition 2.7. Let   be a right  -module. If      

is a small submodule of   , then a right  -module   is 

SS- -injective if and only if any  -homomorphism 

                extends to  .  
 

Proposition 2.8. Let   be a right  -module and 

{            } be a family of finitely generated 

right  -modules. Then   is SS-    
   -injective if and 

only if   is SS-  -injective, for all          . 
Proof. ( ) This follows from Theorem 2.4 ((2), (4)). 

( ) By [12, Proposition (I.4.1) and Proposition (I.1.2), 

p. 28 and 16] we have         
           

     
            

         
             

    
 (             ). For           consider the 

following diagram: 

 
                     (  )   (  )                         
   

                                           
                                

    
    

                  
 (             )                       

    

                               
                                                                             

                                               

                                           
where   ,    are inclusion maps and    

,    
 are injection 

maps. By hypothesis, there exists an  -homomorphism 

        such that          
, also there exists 

exactly one  -homomorphism       
      

satisfying        
 by [8, Theorem 4.1.6 (2), p. 83]. 

Thus     
          

         
 for all   

       . Let                   
 (        

     ), thus       (  )   (  ), for all          , 

and 

                   (   
    )   (   

    )    

 (   
    )                     . Thus       

and the proof is complete.              

Corollary 2.9.  
(1) Let              in  , where the    are 

orthogonal idempotents. Then   is SS-injective if 

and only if   is SS-   -injective for every 

         . 

(2) For idempotents   and   of  . If       and   is 

SS-  -injective, then   is SS-  -injective. 

 

 

Proof. (1) From [7, Corollary 7.3, p. 96], we have 

      
    , thus it follows from Proposition 2.8 that 

  is SS-injective if and only if   is SS-   -injective 

for all      . 

(2) This follows from Theorem 2.4 (4).           

Corollary 2.10. A right  -module   is SS-injective 

if and only if   is SS- -injective, for every finitely 

generated projective right  -module  . 

Proof. By Proposition 2.8 and Theorem 2.4 ((2), (4)).       

  

Proposition 2.11. The following statements are 

equivalent for a right  -module  : 

(1) Every right  -module is SS- -injective. 

(2) Every simple submodule of   is SS- -injective. 

(3)              . 

 

Proof. (1) (2) and (3) (1) are obvious. 

(2) (3) Assume that              , thus 

                    where     is a simple small 

submodule of  , for each    . Therefore     is SS- -

injective for each     by hypothesis. For any    , the 

inclusion map from     to   is split, so we have that 

      . Since     is small submodule of  , it 

follows that       and hence      for all     and 

this a contradiction.        

     A ring   is called right universally mininjective ring 

if it is satisfies the condition        (see for 

example [2, Lemma 5.1]). 

Corollary 2.12. The following statements are 

equivalent for a ring  : 

(1)   is right universally mininjective. 

(2)  Every right  -module is SS-injective. 

(3)  Every simple right ideal is SS-injective. 

 

Proof. By Proposition 2.11.         

Theorem 2.13. (SS-Baerʼs condition) The following 

statement are equivalent for a ring  : 

(1)   is an SS-injective right  -module. 

(2) If         , and       is an  -

homomorphism, then there exists     such that 

        for all     and     . 

 

Proof. Clear.            

 

Theorem 2.14. If   is a projective right  -module, 

then the following statements are equivalent: 

(1) Every quotient of an SS- -injective right  -

module is SS- -injective. 

(2) Every quotient of a soc- -injective right  -module 

is SS- -injective.  

(3)  

 

 

Akeel .R / Adel .S 



 

60 

 

Journal of AL-Qadisiyah for computer science and mathematics     Vol.9   No.2   Year  2017 

ISSN (Print): 2074 – 0204       ISSN (Online): 2521 –  3504 

  

𝑖 

 

(4) Every quotient of an injective right  -module is 

SS- -injective. 

(5) Every sum of two SS- -injective submodules of a 

right  -module is SS- -injective. 

(6) Every sum of two soc- -injective submodules of a 

right  -module is SS- -injective. 

(7) Every sum of two injective submodules of a right 

 -module is SS- -injective. 

(8) Every semisimple small submodule of   is 

projective. 

(9) Every simple small submodule of   is projective. 

(10)             is projective. 

 

Proof. (1) (2) (3), (4) (5) (6) and (9) (7) (8) 

are obvious. 

(8) (9) Since             is a direct sum of simple 

submodules of   and since every simple in      is 

small in  , thus             is projective. 

(3) (7) Let   and   be right  -modules and consider 

the diagram: 

                                                           

 
                                                         
 

                                                                
 

where   is a semisimple small submodule of  ,   is a 

right  -epimorphism,   is a right  -homomorphism, 

and   is the inclusion map. We can take   to be 

injective  -module (by [13, Proposition 5.2.10, p. 

148]). Since   is SS- -injective, then we can extend   

to an  -homomorphism      . By projectivity of 
 , thus   can be lifted to an  -homomorphism 

 ̃     such that   ̃   . Let  ̃     be the 

restriction of  ̃ over  . Obviously,   ̃    and this 

implies that   is projective. 

(7) (1) Let       be an  -epimorphism, where   

and   are right  -modules, and   is SS- -injective. Let 

  be any semisimple small submodule of  ,       

be any  -homomorphism, and   is the inclusion map. 

By hypothesis,   is projective, thus   can be lifted to  -

homomorphism       such that     . Since   

is SS- -injective, then there exists  -homomorphism 

 ̃     such that  ̃   . Put     ̃    . 

Thus      ̃      . Hence   is an SS- -

injective right  -module. 

(1) (4) Let    and    be two SS- -injective 

submodules of a right  -module  . Then       is a 

homomorphic image of the direct sum      . Since 

       is SS- -injective, thus       is SS- -

injective by hypothesis. 

 

 

 

 

 

 

(6) (3) Let   be an injective right  -module and 

   . Let         {             }  ̅  
  ⁄     {     ̅        } and    
{     ̅         }. Then  ̅       . Since 
          and          , thus      
     . Since       {     ̅          
 }  {     ̅          }, thus         

under       for all      . By hypothesis,  ̅  

is SS- -injective. Since    is injective, thus  ̅     
  for some    ̅, so            ⁄  
         ⁄    ⁄ . By Theorem 2.4 (5),   ⁄  is 

SS- -injective.     

 

Corollary 2.15. The following statements are 

equivalent for a ring  : 

(1) Every quotient of an SS-injective right  -module is 

SS-injective. 

(2)  Every quotient of a soc-injective right  -module is 

SS-injective. 

(3)  Every quotient of a small injective right  -module 

is SS-injective.  

(4)  Every quotient of an injective right  -module is 

SS-injective. 

(5)  Every sum of two SS-injective submodules of any 

right  -module is SS-injective. 
(6)  Every sum of two soc-injective submodules of any 

right  -module is SS-injective. 

(7)  Every sum of two small injective submodules of 

any right  -module is SS-injective. 

(8)  Every sum of two injective submodules of any 

right  -module is SS-injective. 

(9)  Every semisimple small submodule of any 

projective right  -module is projective. 

(10)  Every semisimple small submodule of any finitely 

generated projective right  -module is projective. 

(11)  Every semisimple small submodule of    is 

projective. 

(12)  Every simple small submodule of    is projective. 

(13)       is projective. 

(14)     is projective (   is a right   -ring). 

 

Proof. The equivalence between (1), (2), (4), (5), (6), 

(8), (11), (12) and (13) is from Theorem 2.14.  

(1) (3) (4), (5) (7) (8) and (9) (10) (13) are 

clear. 

(14) (9) By [1, Corollary 2.9]. 

(13) (14) Let            , where          

and    is a right simple and direct summand of   , for 

all    . Thus   is projective, but      is  projective, 

so it follows that    is projective.     
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Theorem 2.16. If every simple singular right  -

module is SS-injective, then          for every 

       and    is projective. 
Proof. Let        and let           . Thus 

there exists      such that          . Assert 

that       , then we find         such that 

     , and so        . By hypothesis,   ⁄  is SS-

injective. Consider the map        ⁄  is given by 

          which is well define  -homomorphism. 

Thus, there exists     with          and hence  

      . But          which leads to    , a 

contradiction. Thus        and hence     
          . Since       , then         . 

Put            , for some       , so it 

follows that        (because            , and 

so          ) for all     and this leads to  

      . Let          be defined by       
    for all    . Then   is a well defined  -

epimorphism. Clearly,        {           }  
{             }           . Hence   is an 

isomorphism and so    is projective. Since      is a 

direct sum of simple small right ideals, thus      is 

projective and it follows from Corollary 2.15 that    is 

projective.    

 

Corollary 2.17. A ring   is right mininjective and 

every singular simple right  -module is SS-injective if 

and only if   is a right universally mininjective. 

Proof. By Theorem 2.16 and [2, Lemma 5.1].       

 

     Recall that a ring   is called zero insertive if 

      for all       with      (see [3]). Note 

that if    is zero insertive ring, then     
           for every     (see [3, Lemma 2.11]). 

Proposition 2.18. Let   be a zero insertive ring. If 

every simple singular right  -module is SS-injective, 

then   is right universally mininjective. 

Proof. Let       . We claim that          
 , thus        (since      ), so     and this 

means that       . Otherwise, if           , 

then there exists a maximal right ideal   of   such that 

          . Since         by Lemma 2.1.22, 

then   ⁄  is SS-injective by hypothesis. Consider 

       ⁄  is given by           for all     

which is well defined  -homomorphism. Thus     
     for some    . Since         , then     

and this contradicts the maximality of  , so we must 

have            and this ends the proof.      

Theorem 2.19. If   is a finitely generated right  -

module, then the following statements are equivalent: 

(1)             is a noetherian  -module. 

(2)             is finitely generated. 

(3) Any direct sum of SS- -injective right  -modules 

is SS- -injective. 

(4) Any direct sum of soc- -injective right  -modules 

is SS- -injective. 

  

(5) Any direct sum of injective right  -modules is SS-

 -injective. 

(6)      is SS- -injective for every injective right  -

module   and for any index set  . 

(7)      is SS- -injective for every injective right  -

module  . 

 

Proof. (1) (2) and (3) (4) (5) (6) (7) Clear. 

 (2) (3) Let          be a direct sum of SS- -

injective right  -modules and       be a right  -

homomorphism where   is a semisimple small 

submodule of  . Since             is finitely 

generated, thus   is finitely generated and hence 

          
   , for a finite subset    of  . Since a 

finite direct sums of SS- -injective right  -modules is 

SS- -injective, thus      
   is SS- -injective and 

hence   can be extended to an  -homomorphism 

     . Thus   is SS- -injective. 

(7) (1) Let         be a chain of submodules of 

           . For each    , let         ⁄   and 

      
    . For every    , we put        

    

   (     
   

   ), then    is injective. By hypothesis, 

    
         

     (    
      

   

   ) is SS- -

injective, so it follows from Theorem 2.4 (5) that   is 

SS- -injective. Define     ⋃      
    by 

             . It is clear that   is a well defined 

 -homomorphism. Since   is finitely generated, thus 

            is a semisimple small submodule of   

and hence ⋃   
 
    is a semisimple small submodule of 

 , so   can be extended to a right  -homomorphism 

     . Since   is finitely generated, then we have 

         
       ⁄  for some   and hence      

    
       ⁄ . Since          ((    )   

)  

     for all     and    , where 

            ⁄        ⁄   be the projection map. 

Thus           ⁄  for all    . Since      
    

       ⁄ . Thus             ⁄ , for all 

     , so      for all       and hence the 

chain           terminates at     . Thus 

            is a noetherian  -module.       
Corollary 2.20. If   is a finitely generated right  -

module, then the following statements are equivalent: 

(1)             is finitely generated. 

(2)      is SS- -injective for every soc- -injective 

right  -module   and for any index set  . 

(3)      is SS- -injective for every SS- -injective 

right  -module   and for any index set  .  

(4)      is SS- -injective for every soc- -injective 

right  -module  . 

(5)      is SS- -injective for every SS- -injective 

right  -module  . 
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Proof. By Theorem 2.19.          

Corollary 2.21. The following statements are 

equivalent : 

(1)       is finitely generated. 

(2)  Any direct sum of SS-injective right  -modules is 

SS-injective. 

(3) Any direct sum of soc-injective right  -modules is 

SS-injective. 

(4)  Any direct sum of small injective right  -modules 

is SS-injective.  
(5)  Any direct sum of injective right  -modules is ss-

injective. 

(6)       is SS-injective for every injective right  -

module   and for any index set  . 

(7)       is SS-injective for every soc-injective right 

 -module   and for any index set  . 

(8)       is SS-injective for every small injective right 

 -module   and for any index set  . 

(9)       is SS-injective for every SS-injective right  -

module   and for any index set  . 

(10)       is SS-injective for every injective right  -

module  . 

(11)       is SS-injective for every soc-injective right 

 -module  . 

(12)       is SS-injective for every small injective right 

 -module  . 

(13)       is SS-injective for every SS-injective right  -

module  . 

Proof. By applying Theorem 2.19 and Corollary 2.20. 

  

3. Strongly SS-Injective Modules 

Proposition 3.1. A right  -module   is a strongly 

SS-injective if and only if every  -homomorphism 

      extends to  , for all right  -module  , 

where     and      is a semisimple submodule in 

 . 

Proof. ( ) Clear. 

( ) Let   be a small submodule of  , and       

be an  -homomorphism with      is a semisimple 

submodule of  . If         , then   induces an  -

homomorphism  ̃   ⁄    defined by  ̃      
    , for all    . Clearly,  ̃ is well define because if 

          we have        , so       
     , that is  ̃        ̃      . Since   is 

strongly SS-injective and   ⁄  is semisimple and small 

in   ⁄ , thus  ̃ extends to an  -homomorphism 

    ⁄   . If       ⁄  is the canonical map, 

then the  -homomorphism          is an 

extension of   such that if    , then      

                ̃          as desired.      

 

 

Corollary 3.2.  
(1) Let   be a semisimple right  -module. If   is a 

strongly SS-injective, then   is a small injective. 

(2) If every simple right  -module is strongly SS-

injective, then   is a semiprimitive ring. 

Proof. (1) By Proposition 3.1. 

(2) By (1) and applying [3, Theorem 2.8].            

Remark 3.3. The converse of Corollary 3.2 is not 

true ( see Example 3.8). 
Theorem 3.4. If   is a strongly SS-injective ( or just 

SS-    -injective) right  -module, then for every 

semisimple small submodule   of  , there is an 

injective  -module    such that         where 

     with       . Moreover, if    , then    

can be taken        . 
Proof. Let   be a semisimple small submodule of  . 

If    , we end the proof by taking      and 

    . Suppose that     and let       and    be 

inclusion maps and         is the injective hull of   

in     . Since   is strongly SS-injective, thus   is 

SS-    -injective. Since   is a semisimple small 

submodule of  , so it follows from [8, Lemma 5.1.3 

(a)] that   is a semisimple small submodule in      

and hence there exists an  -homomorphism 

         such that         . Put   
        , thus   is an extension of   . Since 

       ,   is an  -monomorphism. Put         . 

Since    is an injective submodule of  , thus   
      for some     . Since       ,   
         and this means that       . Moreover, 

define  ̃         , thus  ̃ is an isomorphism. 

Since        , thus  ̃         . But  ̃    

      , so        .         

Corollary 3.5. If   is a right  -module has a 

semisimple small submodule   such that       , 

then the following statements are equivalent: 

(1)   is injective. 

(2)   is strongly SS-injective. 

(3)   is SS-    -injective. 

Proof. (1) (2) and (2) (3) are obvious. 

(3) (1) By Theorem 3.4, we can write         

where    injective and       . Since       , 

thus      and hence     . Therefore   is an 

injective  -module.     

Example 3.6.    as  -module is not strongly SS-

injective. In particular,    is not SS-   -injective. 
Proof. Assume that    is strongly SS-injective  -

module. Let     ̅   { ̅  ̅}. It is clear that   is a 
semisimple small and essential submodule of    as  -

module. By Corollary 3.5,    is injective  -module and 

this a contradiction. Thus    as  -module is not 

strongly SS-injective. Moreover, Since            

as  -module, thus    is not SS-   -injective, by 

Corollary 3.5.        
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Corollary 3.7. Let   be a right  -module such that 

              (in particular, if   is finitely 

generated). If   is strongly SS-injective, then   
   , where   is injective and               
 . Moreover, if              , then we can take 

                . 
Proof. By taking               and applying 

Theorem 3.4.     

    The following example shows that the converse of 

Theorem 3.4 and Corollary 3.7 is not true. 

Example 3.8. Let      as  -module. Since 

       and         , thus              . 

So, we can write       with   (       

    )   . Let      as  -module. Since       

 ̅   and          ̅  . Define               
  by    ̅   ̅, thus   is a  -homomorphism. Assume 

that   is strongly SS-injective, thus   is SS- -

injective, so there exists  -homomorphism       

such that      , where   is the inclusion map from 

            to  . Since  (    )      , thus 

 ̅     ̅     ̅   (    )         and this 

contradiction, so   is not strongly SS-injective  -

module. 
Corollary 3.9. The following statements are 

equivalent: 

(1)              , for all right  -module  . 

(2) Every right  -module is strongly SS-injective. 

(3) Every simple right  -module is strongly SS-

injective. 

 

Proof. By Proposition 2.11.      

Lemma 3.10. Let  and   be right  -modules and 

    with   ⁄  is a semisimple. Then every  -

homomorphism from a submodule (resp. semisimple 

submodule)   of   to   can be extended to an  -

homomorphism from   to   if and only if every  -

homomorphism from a submodule (resp. semisimple 
submodule)   of   to   can be extended to an  -

homomorphism from   to  . 

Proof. ( ) is obtained directly. 

( ) let   be an  -homomorphism from a submodule   

of   to  . Since   ⁄  is a semisimple, there exists 

    such that       and       ( see [6, 

Proposition 2.1]). Thus there exists an  -

homomorphism       such that           for 

all      . Define       such that for any 

     ,    ,    ,               . Thus   

is a well define  -homomorphism, because if       
     ,     ,     ,      , then          
      , that is                   which 

leads to                  . Therefore   is a well 

define  -homomorphism and extension of  .      

 

 

 

  

Corollary 3.11. For right  -modules   and  , the 

following hold: 

(1) If   is finitely generated and      ⁄  is 

semisimple right  -module, then   is soc- -

injective if and only if   is SS- -injective. 

(2) If        ⁄  is semisimple right  -module, then 

  is soc- -injective if and only if   is  -injective. 

(3) If    ⁄  is semisimple as right  -module, then   is 

soc-injective if and only if   is injective. 

(4) If    ⁄  is semisimple as right  -module, then   is 

SS-injective if and only if   is small injective. 

Proof. (1) ( ) Clear. 

( ) Since   is a right SS- -injective, thus every  -

homomorphism from a semisimple small submodule of 

  to   extends to  . Since   is finitely generated, thus 

       and hence every  -homomorphism from 

any semisimple submodule of      to   extends to  . 

Since      ⁄  is semisimple, thus every  -

homomorphism from any semisimple submodule of   

to   extends to   by Lemma 3.10. Therefore,   is soc-

 -injective right  -module. 

(2) ( ) Since   is soc- -injective. Thus every  -

homomorphism from any submodule of        to   

extends to  . Since        ⁄  is semisimple, thus 

Lemma 3.10 implies that every  -homomorphism from 
any submodule of   to   extends to  . Hence   is  -

injective. 

( ) Clear. 

(3) By (2). 

(4) Since    ⁄  is semisimple as right  -module, thus 

     ⁄    . By [8, Theorem 9.1.4(b)], we have      

and hence       . Thus   is SS-injective if and only 

is   is small injective.    

Corollary 3.12. Let   be a semilocal ring, then 

     is finitely generated if and only if    is finitely 

generated. 
Proof. Suppose that      is finitely generated. By 

Corollary 2.21, every direct sum of soc-injective right 

 -modules is SS-injective. Thus it follows from 

Corollary 3.11 (1) and [1, Corollary 2.11] that    is 

finitely generated.      

Theorem 3.13. If   is a right perfect ring, then   is 

a strongly soc-injective right  -module if and only if   

is a strongly SS-injective. 

Proof. ( ) Clear. 
( ) Let   be a right perfect ring and   be a strongly 

SS-injective right  -module. Since   is a semilocal 

ring, thus it follows from [14, Theorem 3.5] that every 

right  -module   is semilocal and hence      ⁄  is 

semisimple right  -module. Since   is a right perfect 

ring, the Jacobson radical of every right  -module is 

small by [13, Theorem 4.3 and 4.4, p. 69]. Thus 

     ⁄  is semisimple and       , for any    

Mod- . Since   is strongly SS-injective it follows 

Lemma 3.10  implies that   is strongly soc-injective.   
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Corollary 3.14. A ring   is    if and only if every 

strongly SS-injective right  -module is projective. 

Proof. ( ) If   is    ring, then   is a right perfect 

ring, so by Theorem 3.13 and [1, Proposition 3.7] we 

have that every strongly SS-injective right  -module is 

projective. 

 ( ) By hypothesis we have that every injective right  -

module is projective and hence   is    ring ( see for 

instance [11, Proposition 12.5.13]).     

Theorem 3.15. The following statements are 

equivalent for a ring  : 

(1) Every direct sum of strongly SS-injective right  -

modules is injective. 

(2) Every direct sum of strongly soc-injective right  -

modules is injective. 

(3)   is right artinian. 

Proof. (1) (2) Clear. 

(2) (3) Since every direct sum of strongly soc-injective 

right  -modules is injective. Thus   is right noetherian 

and right semiartinian by [1, Theorem 3.3 and Theorem 

3.6], so it follows from [15, Proposition VIII.5.2, p. 

189] that   is right artinian. 

(3) (1) By hypothesis,   is right perfect and right 

noetherian. It follows from Theorem 3.13 and [1, 

Theorem 3.3] that every direct sum of strongly SS-

injective right  -modules is strongly soc-injective. 

Since   is right semiartinian, so [1, Theorem 3.6] 

implies that every direct sum of strongly SS-injective 

right  -modules is injective.    
     Recall that a submodule   of a right  -module   is 

called  -essential in   (written       ) if for every 

submodule   of  ,           implies that 

        (see [16]). A right  -module   is said to be 

 -semisimple if every submodule   of   there exists a 

direct summand   of   such that        (see [16]). A 

ring   is said to be right  -ring (  -ring,   -ring, 

respectively) if every simple (simple singular, singular, 

respectively) right  -module is injective. A right  -

module is called strongly s-injective if every  -

homomorphism from   to   extends to   for every 

right  -module  , where        (see [17]). In the 

next results, we will give the connection  between 

injectivity and strongly s-injectivity and we characterize 

 -rings,   -rings,   -rings and semisimple rings by this 

connection. 

Theorem 3.16. If   is a right  -semisimple, then a 

right  -module   is injective if and only if   is 

strongly s-injective. 
Proof. ( ) Obvious. 

( ) Let   be a strongly s-injective,       is injective 

by [17, Proposition 3, p. 27]. Thus every  -

homomorphism      , where     
  extends to   

by [17, Lemma 1, p. 26]. Since   is a right  -

semisimple, thus    
 ⁄  is a right semisimple by [16,  

 

 
Theorem 2.3]. So by applying Lemma 3.10, we 

conclude that   is injective.    

Corollary 3.17. A ring   is right    and right  -

semisimple if and only if it is semisimple. 

Proof. ( ) Since   is a right   -ring, thus every right 

 -module is strongly s-injective by [17, Theorem 1, p. 

29]. By Theorem 3.16, we have that every right  -

module is injective and hence   is semisimple ring. 

( ) Clear.    

Corollary 3.18. If   is a right  -semisimple ring. 

Then   is right  -ring if and only if    is right   -ring. 

Proof. By [17, Proposition 5, p. 28] and Theorem 

3.16.     

Corollary 3.19. If   is a right  -semisimple ring, 

then    ⁄  is noetherian right  -module if and only if   

is right noetherian. 

Proof. If    ⁄  is noetherian right  -module, then 

every direct sum of injective right  -modules is 

strongly s-injective by [17, Proposition 6]. Since   is 

right  -semisimple, so it follows from Theorem 3.16 

that every direct sum of injective right  -modules is 

injective and hence   is right noetherian. The converse 

is clear.    

4. SS-Injective Rings 

     We recall that the dual of a right  -module   is 

              and clearly that    is a left  -

module. 

Proposition 4.1. The following statements are 

equivalent for a ring  : 

(1)   is a right SS-injective ring. 

(2) If   is a semisimple right  -module,   and   are 

finitely generated projective right  -modules, 

      is an  -monomorphism with        

and       is an  -homomorphism, then   can 

be extended to an  -homomorphism      . 

(3) If   be a right semisimple  -module and   is a 

nonzero  -monomorphism from   to    with 

       , then      . 

Proof. (2) (1) Clear. 

(1) (2) Since   finitely generated, there is an  -

epimorphism     
    for some     . Since   is 

a projective, there is an  -homomorphism         

such that        . Define   ̃        by  ̃    

     for all    . Since   is a right SS-injective ring 

by hypothesis, it follows from Proposition 2.8 and 

Corollary 2.5 (1) that    is a right SS- -injective  -

module. So there exists an  -homomorphism     

   such that        ̃  . Put          . Thus 

            (    ̃  )    ̃   and hence 

         ( (    ))  (  ̃  )(    )       for 

all    . Therefore, there is an  -homomorphism 

      such that     . 
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 (1) (3) Let     , we have             , 

since      is a semisimple small right ideal of   and   

is a right SS-injective ring ( by hypothesis),         
for some    . Therefore,      and hence    
  . 

(3) (1) Let       be a right  -homomorphism, 

where   is a semisimple small right ideal of   and 

      be the inclusion map, thus by (3) we have 

      and hence      in    for some    . Thus 

there is     such that         for all     and 

this implies that   is a right SS-injective ring.     

Example 4.2. 
(1) Every universally mininjective ring is SS-injective, 

but not conversely (see Example 5.6). 

(2) The two classes of universally mininjective rings 

and soc-injective rings are different ( see Example 

5.6 and Example 5.7). 

Lemma 4.3. Let   be a right SS-injective ring. Then: 

(1)   is a right mininjective ring. 

(2)          for all       . 

(3)          ,       ,     implies      . 

(4)  (       )         , for all       , 

   . 

(5)                     , for all semisimple 

small right ideals    and    of  . 

 

Proof. Clear.   

 
     The following is an example of a right mininjective 

ring which is not right SS-injective. 

Example 4.4. (The Bjӧrk Example [5, Example 2.5, 

p. 38]). Let   be a field and let    ̅ be an 

isomorphism    ̅   , where the subfield  ̅   . 

Let   denote the left vector space on basis {   }, and 

make   into an  -algebra by defining      and 

    ̅  for all    . By [5, Example 2.5 and 5.2, p. 

38 and 97] we have   is a right principally injective and 

local ring. It is mentioned in [1, Example 4.15], that   

is not right soc-injective. Since   is local, thus by 

Corollary 3.11 (1),   is not right SS-injective ring. 
Proposition 4.5. Let   be a right SS-injective ring. 

Then : 

(1) If    is a simple left ideal of  , then         

      is zero or simple. 

(2)               if and only if         for all 

semisimple small right ideals   of  . 

 

Proof. (1) Suppose that               is a 

nonzero. Let     and     be any simple small right 

ideals of   with      ,      . If          , 

then by Lemma 4.3 (5),              . Since 

     , thus        for some     ,      , that is 

                 ,      . Since    is a simple, 

then          , that is                 .  

 

Therefore,        and hence     and this 

contradicts the minimality of   . Thus         
      is simple. 

(2) Suppose that               and let   be a 

semisimple small right ideal of  , trivially we have 

       . If        for some        , then by 

Lemma 4.3 (5),                     , since 

                     . If       , then 

    , that is         for all     and hence 

          . Thus        , so     and this 

means that           . Since            
             , it follows that        . The 

converse is trivial.    

     Recall that a right ideal   of   is said to be lie over 

summand of   , if there exists a direct decomposition 

         with     and        (see [18]) 

which leads to          . 

Lemma 4.6. Let   be an  -generated semisimple 

right ideal lies over summand of   . If   is a right SS-

injective ring, then every  -homomorphism from   to 

   can be extended to an endomorphism of   . 

Proof. Let       be a right  -homomorphism. By 

hypothesis,       , for some       , where 

  is an  -generated semisimple small right ideal of  . 

Now, we need to prove that            . 

Clearly,           is a direct sum. Let    , then 

     , for some         , so we can write 

              and this implies that      
      . Conversely, let            . Thus 

          , for some         . We obtain 

                        . It is 

obvious that        is an  -generated semisimple 

small right ideal. Since   is a right SS-injective, then 

there exists           such that                  . 

Define         by             (      ), 

for all     which is well defined  -homomorphism. 

If    , then       where      and   
      , so             (      )       

                    which yields   is an 

extension of  .    

Corollary 4.7. Let    be a finitely generated and lies 

over summand of   . Then   is a right SS-injective 

ring if and only if   is a right soc-injective . 
Proof. By Lemma 4.6.     

     Recall that a ring   is called right minannihilator if 

        for every simple right ideal   of   (see [2]) 

(equivalently, for every simple small right ideal   of 

 ). 

Corollary 4.8. For a right SS-injective ring  , the 

following hold: 

(1) If              , then   is right 

minannihilator. 

(2) If      , then: 

(a)      . 

(b)   is a left minannihilator ring. 
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Proof. (1) By Proposition 4.5 (2). 

(2) (a) By [2, Proposition 1.14 (4)]. 

(b) By Lemma 4.3 (2).    
Proposition 4.9. The following statements are 

equivalent for a right SS-injective ring  : 

(1)      . 

(2)      . 

(3)   is a left mininjective ring. 

Proof. (1) (2) By Corollary 4.8 (2) (a). 

(2) (3) By Corollary 4.8 (2) and [5, Corollary 2.34, p. 

53], we must show that   is right minannihilator ring. 

Let    be a simple small right ideal, then    is a simple 

small left ideal by [2, Theorem 1.14]. Let     
      , then          . Since          , thus 

          and hence    is simple left ideal, that is 

    . Now, if       for some       , then 

     for some      . Since         , then 
         , that is           and this implies 

that      . Thus       , but    is semisimple 

right ideal, so        and hence     . Therefore, 

    , that is    , a contradiction. Thus     and 

hence       . Therefore,               . 

Now, let         for some         , thus 

                      . Since         , 

thus             and hence        , that is   
 . Therefore,             , so           as 

desired. 

(3) (1) Follows from [5, Corollary 2.34, p. 53].     

     Recall that a ring   is said to be right minfull if it is 

semiperfect, right mininjective and           for 

each local idempotent     (see [5]). A ring   is called 

right min-  , if it is a semiperfect, right mininjective, 

        ,         for every simple left ideal 

     for some local idempotent     (see [5]). 

Corollary 4.10. Let   be a right SS-injective ring, 

semiperfect with         . Then   is a right minfull 

ring and the following statements hold: 

(1) Every simple right ideal of   is essential in a 

summand. 

(2)         is simple and essential in    for every 

local idempotent    . Moreover,   is right 

finitely cogenerated. 

(3) For every semisimple right ideal   of  , there exists 

       such that                 . 

(4)             . 

(5) If   is a semisimple right ideal of   and    is a 

simple right ideal of   with       , then 

                     . 

(6)        
          

        , where     
     is a 

direct sum of simple right ideals. 

(7) The following statements are equivalent: 

(a)          . 

(b)        , for every semisimple right ideals   

of  . 

 

(c)          , for every simple right ideals    of 

 . 

(d)      . 

(e)         is a simple for all local idempotent 

   . 

(f)            , for all local idempotent    . 

(g)   is a left mininjective. 

(h)        , for every semisimple left ideals   of 

 . 

(i)   is a left minfull ring. 

(j)              . 

(k)        , for every semisimple small right 

ideals   of  . 

(l)        , for every semisimple small left ideals 

  of  .  

(8) If   satisfies any condition of (7), then      

        . 

Proof. (1), (2), (3), (4), (5) and (6) are obtained by 

Corollary 2.1.32 (1) and [1, Theorem 4.12]. 

(7) The equivalence of (a), (b), (c), (d), (e), (f), (g), (h) 

and (i) follows from Corollary 3.11 and [1, Theorem 

4.12]. 

(b) (j) Clear. 

(j) (k) By Proposition 4.5 (2). 

(k) (c) By Corollary 4.8 (1). 

(h) (l) Clear. 

(l) (d) Let    be a simple left ideal of  . By 

hypothesis,         for any simple small left ideal   

of  . Since        , for any simple left ideal   of  ,  

         . Thus   is a right min-   ring and it 

follows from [2, Theorem 3.14] that      . 

(8) Let   be a right ideal of   such that         
   . Then             and we have   

                  . Now,  (       

    )              . Since   is left Kasch, then 

              by [9, Corollary 8.28 (5), p. 281]. 

Thus        and hence    , so              .   

  

     N. Zeyada, S. Hussein and A. Amin [19] introduced 

the notion almost-injective, a right  -module   is 

called almost-injective if      , where   is 

injective and   has zero radical. They proved that, 

every almost-injective right  -module is an injective if 

and only if every almost-injective is a quasi-continuous 

if and only if   is a semilocal ring ( see [19, Theorem 

2.12]). After reflect of [19, Theorem 2.12] we found it 

is not true always and the reason is due to the  -

homomorphism             in the proof of the 

part of the Theorem 2.12 in [19] is not well define, so 

most of the other results in [19] are not necessary to be 

correct, because they are based on [19, Theorem2.12]. 

The following examples show that the contradiction in 

[19, Theorem 2.12] is exist. 
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Example 4.11. In particular from the proof of the 

part (3)  (1) in [19, Theorem 2.12], we consider 

     and       ̅  . Thus      , where 

    is a trivial injective  -module and       . Let 

      is the identity map, where    . So, the 

map homomorphism             which is given 

by             is not well define, because 

   ̅    but         ̅   ̅   ̅     ̅     ̅  
  . 

Example 4.12.  
(1) Let   be an artinian ring. Assume that   is not 

semisimple ring, then   is not right  -ring. Thus 

there is simple right  -module is not injective. 

Therefore, there is almost-injective right  -module 

is not injective. So it follows from [19, Theorem 

2.12] that   is not semilocal. Hence,   is not right 

artinian and this a contradiction. Thus every right 

artinian ring is semisimple, but this is not true in 

general (see below example).   

(2) The ring    is semilocal. Since   ̅   { ̅  ̅} is 

almost-injective as   -module, then   ̅   is 

injective   -module by [19, Theorem 2.12]. Thus 

  ̅       and this a contradiction. 

 

Theorem 4.13. The following statements are 

equivalent for a ring  : 

(1)   is a semiprimitive and every almost-injective 

right  -module is quasi-continuous. 

(2)   is a right SS-injective and right minannihilator 

ring,   is a right artinian, and every almost-injective 

right  -module is quasi-continuous. 

(3)   is a semisimple ring.    

Proof. (1) (2) and (3) (1) are clear. 

(2) (3) Let   be a right  -module with zero Jacobson 

radical and let   be a nonzero submodule of  . Thus 

    is a quasi-continuous. By [20, Corollary 2.14, p. 

23],   is an  -injective. Thus      and hence   is 

semisimple. In particular,   ⁄  is a semisimple  -

module and hence   ⁄  is artinian by [8, Theorem 9.2.2 

(b), p. 219], so   is semilocal ring. Since   is a right 

artinian, then   is a right artinian. So, it follows from 

Corollary 4.10 (7) that   is right and left mininjective. 

Thus [2, Corollary 4.8] implies that   is    ring. By 

hypothesis      ⁄   is quasi-continuous ( since   is 

self-injective), so again by [20, Corollary 2.14, p. 23] 

we have that   ⁄  is an injective. Since   is    ring, 

then   ⁄  is a projective (see [8, Theorem 13.6.1]). Thus 

the canonical map       ⁄  is a splits and hence 

    , that is    . Therefore,   is semisimple.    

 

 

 

 

 

 

5. Strongly SS-Injective Rings 

     A ring   is called a right Ikeda-Nakayama ring if 

                 for all right ideals   and   of 

  (see [5, p. 148]). In the next proposition, the strongly 

SS-injectivity gives a new version of Ikeda-Nakayama 

rings. 

Proposition 5.1. Let   be a strongly right SS-

injective ring, then                  for all 

semisimple small right ideals   and all right ideals   of 

 . 

Proof. Suppose that          and define 

         by           for all     and 

   . Clearly,   is well define, because if       
     , then            , that is          
 , so                  . Define the  -

homomorphism  ̃       ⁄     by  ̃      
   for all     which induced by  . Since 

      ⁄        ⁄       ⁄   and   is a strongly 

right SS-injective,  ̃ can be extended to an  -

homomorphism     ⁄    . If         , for 

some    , then          , for all     and 

   . In particular,       for all     and      

for all    . Hence                    . 

Therefore,                 . Since the converse 

is always holds, thus the proof is complete.    
     Recall that a ring   is said to be right simple  -
injective if for any small right ideal   and any  -

homomorphism        with simple image,      
for some     (see [14]). 

Corollary 5.2. Every strongly right SS-injective ring 

is a right simple  -injective. 

Proof. By Proposition 3.1.   

Remark 5.3. The converse of Corollary 5.2 is not 

true (see Example 5.6). 

Proposition 5.4. Let   be a right Kasch and strongly 

right SS-injective. Then: 

(1)        , for every small right ideal   of  . 

Moreover,   is right minannihilator. 

(2) If   is left Kasch, then           . 

 

Proof.(1) By Corollary 5.2 and [14, Lemma 2.4]. 

(2) Let   be a right ideal of   and         . Then 

        and we obtain          , because   is 

left Kasch. By (1), we have  (      )         

  and this means that          ( since   is left 

Kasch). Thus     and hence           .    

     The following examples show that the three classes 

of rings: strongly SS-injective rings, soc-injective rings 

and small injective rings are different. 
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Example 5.5. Let        { 
 

 
       does not 

divide  }, the localization ring of   at the prime  . Then 

  is a commutative local ring and it has zero socle but 

not principally small injective (see [4, Example 4]). 

Since     , thus   is strongly soc-injective ring and 

hence   is strongly SS-injective ring. 

 

Example 5.6. Let   {(
  
  

)             }. 

Thus   is a commutative ring,      {(
  
  

)        

  } and   is small injective ( see [3, Example (i)]). Let 

    and   {(
   
   

)        }, then      

{(
   
   

)             } and 

     {(
  
  

)          }. Thus           

{(
   
   

)             }. Since      , then 

         and this implies that           
      . Therefore   is not strongly SS-injective and 

not strongly soc-injective by Proposition 5.1. 

Example 5.7. Let      be the field of two 

elements,      for         ,       
   ,   

    
   . If   is the subring of   generated by   and  , 

then   is a von Neumann regular ring ( see [17, 

Example (1), p. 28]). Since   is commutative, thus 

every simple  - module is injective by [9, Corollary 

3.73. Thus   is  -ring and hence and hence        

for every right  -module  . It follows from Corollary 

3.9 that every  -module is a strongly SS-injective. In 

particular,   is a strongly SS-injective ring. But   is not 

soc-injective ( see [17, Example (1)]). 

Example 5.8. Let               where    is the 

field of two elements,   
    for all  ,        for all 

    and   
    

    for all   and  . If     
 , then   

is a commutative, local, soc-injective ring with   
    {         }, and   has simple essential socle 

       ( see [1, Example 5.7]). It follows from [1, 

Example 5.7] that the  -homomorphism       

which is given by         for all     with simple 

image can not extend to  , then   is not simple  -
injective and not small injective, so it follows from 

Corollary 5.2 that   is not strongly SS-injective. 

     Recall that a ring   is called right minsymmetric if 

   is simple,    , implies that    is simple left ideal 

(see [2]). Every right mininjective ring is right 

minsymmetric by [2, Theorem 1.14]. 

Theorem 5.9. A ring   is    if and only if   is a 

strongly right SS-injective and right noetherian ring 

with         . 

Proof. ( ) This is clear. 

( ) By Lemma 4.3 (1),   is a right minsymmetric. It 

follows from [3, Lemma 2.2] that   is right perfect. 

Thus,   is strongly right soc-injective, by Theorem 

3.13. Since         , so it follows from [1, Corollary 

3.2] that   is a self-injective and hence   is   .     

 

Corollary 5.10. For a ring  , the following 

statements are true: 

(1)   is a semisimple if and only if          and 

every semisimple right  -module is strongly soc-

injective. 

 

(2)   is    if and only if   is a strongly right SS-

injective, semiperfect with essential right socle and 

   ⁄  is noetherian as right  -module. 

Proof. (1) Suppose that          and every 

semisimple right  -module is strongly soc-injective, 

then   is a right noetherian right  -ring by [1, 

Proposition 3.12], so it follows from Corollary 3.9 that 

  is a strongly right SS-injective. Thus   is    by 

Theorem 5.9. But    , so   is a semisimple. The 

converse is clear. 

(2) By [2, Theorem 2.9],     . Since    
 ⁄  is a 

homomorphic image of    ⁄  and   is a semilocal ring, 

thus   is a right  -semisimple. By Corollary 3.19,   is 

right noetherian, so it follows from Theorem 5.9 that   

is   . The converse is clear.    

Theorem 5.11. A ring   is    if and only if   is 

strongly right SS-injective,       is a countable 

generated left ideal,          and the chain       
                           terminates for 

every infinite sequence         in  . 

Proof. ( ) Clear.  

( ) By [3, Lemma 2.2],   is right perfect. Since 

        , thus   is right Kasch  by [2, Theorem 3.7]. 

Since   is a strongly right SS-injective,    is a right 

simple  -injective, by Corollary 5.2. Now, by 

Proposition 5.4 (1) we have              , so 

Corollary 4.10 (7) leads to       . By [5, Lemma 

3.36, p. 73],   
       . The result now follows from 

[14, Theorem 2.18].    

Remark 5.12. The condition          in Theorem 

5.9 and Theorem 5.11 can be not be deleted, for 

example,   is a strongly SS-injective noetherian ring 

but not   . 

     The following two results are extension of 

Proposition 5.8 in [1]. 
Corollary 5.13. A ring   is    ring if and only if it 

is left perfect, strongly left and right SS-injective ring. 
Proof. By Corollary 5.2 and [14, Corollary 2.12].    

Theorem 5.14. For a ring  , the following 

statements are equivalent: 

(1)   is a    ring. 

(2)   is a strongly left and right SS-injective, right 

Kasch and   is left  -nilpotent. 

(3)   is a strongly left and right SS-injective, left 

Kasch and   is left  -nilpotent. 
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Proof. (1) (2) and (1) (3) are clear. 

(3) (1) Suppose that    is simple right ideal. Thus 

either              or    . If    , then 

         ( since   is right minannihilator), so 

Theorem 3.4 implies that               . 

Therefore,       is an essential in a direct summand of 

   for every simple right ideal   . Let   be a left 

maximal ideal of  . Since   is a left Kasch, thus 

       by [9, Corollary 8.28, p. 281]. Choose 

        , so        and we conclude that  

      . Since         ⁄ , thus    is simple left 

ideal. But   is a left mininjective ring, so    is a simple 

right ideal by [2, Theorem 1.14] and this implies that 

           for some        ( since      
     ). Thus   is semiperfect by [5, Lemma 4.1, p. 79] 

and hence   is a left perfect ( since   is left  -nilpotent), 

so it follows from Corollary 5.13 that   is   . 

(2) (1) is similar to proof of (3) (1).     

Theorem 5.15. The ring   is    if and only if   is a 

strongly left and right SS-injective, left and right Kasch, 

and the chain                            
  terminates for every           . 

Proof. ( ) Clear. 

( ) By Proposition 5.4,      is essential in R . Thus 

    . Let          , we have               
               . Thus there exists     such 
that                       (by hypothesis). 

Suppose that        , so                    
  ( since         is essential in R ). Thus          

and              for some    , a contradiction. 

So,         and hence   is left  -nilpotent, so it 

follows from Theorem 5.14 that   is   .    
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 SS-الموديولات والحلقات الاغمارية من النمط
 

 

 
  

 

 
 
 

 
 المستخلص :

والاغمارٌة  soc-كلاً من الاغمارٌة من النمطكتعمٌم الى  SS-قدمنا وناقشنا الاغمارٌة من النمط     

هو مودٌول اٌمن   )حٌث  SS- -النمط ٌقال انه اغماري من  على الحلقة   الصغٌرة. المودٌول الاٌمن 
  الى   من مودٌول جزئً صغٌر شبه بسٌط من   ( اذا كان كل تماثل مودٌولً على الحلقة  على الحلقة 

( اذا SS-)اغماري قوي من النمط SS-نسمٌه مودٌول اغماري من النمط  . المودٌول  ٌمكن توسٌعه الى 
على   لكل مودٌول اٌمن  SS- -مودٌول اغماري من النمط) SS- -هو مودٌول اغماري من النمط  كان 

قد اعطٌت.  SS-(. بعض تشخٌصات وخصائص المودٌولات والحلقات الاغمارٌة )القوٌة( من النمط الحلقة 
. SS-قد تم توسٌعها الى الاغمارٌة من النمط soc-النمط ج على الاغمارٌة منبعض النتائ
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