Coefficients Bounds for a General Subclasses of m-Fold Symmetric Bi-Univalent Functions

Waggas Galib Atshan
Department of Mathematics
College of Computer Science
and Information Technology
University of Al-Qadisiyah, Diwaniya-Iraq
E-mail: waggas.galib@qu.edu.iq

Najah Ali Jiben Al-Ziadi
Department of Mathematics
College of Science
University of Baghdad, Baghdad -Iraq
E-mail: najah.ali@qu.edu.iq

Recived : 7\5\2017
Revised : 19\612017
Accepted : 9\712017

Abstract

In this paper, we introduce and investigate a new general subclasses $\mathcal{R}_{\Sigma_{m}}(\tau, \lambda, \eta ; \alpha)$ and $\mathcal{R}_{\Sigma_{m}}(\tau, \lambda, \eta ; \beta)$ of Σ_{m} consisting of analytic and m-fold symmetric bi-univalent functions in the open unit disk U. We obtain estimates on the Taylor-Maclaurin coefficients $\left|a_{m+1}\right|$ and $\left|a_{2 m+1}\right|$. Also, we obtain new special cases for our results.

Keywords: Analytic function, Univalent function, Bi-Univalent function, m-Fold symmetric function, m-Fold symmetric bi-univalent function.
Mathematics subject classification : 30C45. 30C50. 30C80.

1. Introduction

Symbolized by \mathcal{A} the class of functions of the form:
$f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}$
which are analytic in the open unit disk $U=$ $\{z: z \in \mathbb{C}$ and $|z|<1\}$. Also, symbolized by \mathcal{S} the class of all functions in \mathcal{A} which are univalent and normalized by $f(0)=0=f^{\prime}(0)-1$ in U. The wellinvestigated subclasses of the univalent function class \mathcal{S} are the class of starlike functions of order $\alpha(0 \leq \alpha<$ $1)$, symbolized by $\mathcal{S}^{*}(\alpha)$ and the class of convex functions of order α symbolized by $\mathcal{K}(\alpha)$ in U.

The Koebe One-Quarter Theorem [1] shows that the image of U under every function f from \mathcal{S} contains a disk of radius $1 / 4$. Thereby every such univalent function has an inverse f^{-1} which satisfies
$f^{-1}(f(z))=z \quad(z \in U)$
and
$f\left(f^{-1}(w)\right)=w \quad\left(|w|<r_{0}(f) ; r_{0}(f) \geq \frac{1}{4}\right)$,
where
$f^{-1}(w)=g(w)=w-a_{2} w^{2}+\left(2 a_{2}^{2}-a_{3}\right) w^{3}-\left(5 a_{2}^{3}\right.$
$\left.-5 a_{2} a_{3}+a_{4}\right) w^{4}+\cdots$.
The function $f \in \mathcal{A}$ is considered bi-univalent in U if both f and f^{-1} are univalent in U. Given by the TaylorMaclaurin series expansion (1.1), the class of all biunivalent functions in U can be symbolized by Σ.

For each function $f \in \mathcal{S}$, the function
$h(z)=\sqrt[m]{f\left(z^{m}\right)}(z \in U, m \in \mathbb{N})$
is univalent and the unit disk U can be mapped into a region with m -fold symmetry. It is considered m -fold symmetric (see $[2,3]$) if the function has the following normalized form:
$f(z)=z+\sum_{k=1}^{\infty} a_{m k+1} z^{m k+1} \quad(z \in U, m \in \mathbb{N})$.

The class of m-fold symmetric univalent functions in U, which are normalized by the series expansion (1.4) can be symbolized by \mathcal{S}_{m} and the functions in the class \mathcal{S} are one-fold symmetric (that is, m=1).

In [4] Srivastava et al. specified that m -fold symmetric bi-univalent function analogues to the concept of m-fold symmetric univalent functions and these gave some important results, such as each function $f \in \Sigma$ generates an m -fold symmetric bi-univalent function for each $m \in \mathbb{N}$, in their study. As for as the normalized form of f given by (1.4) is concerned, they obtained the series expansion for f^{-1} as follows:

$$
f^{-1}(w)=g(w)=w-a_{m+1} w^{m+1}
$$

$+\left[(m+1) a_{m+1}^{2}-a_{2 m+1}\right] w^{2 m+1}-$
$\left[\frac{1}{2}(m+1)(3 m+2) a_{m+1}^{3}-(3 m+2) a_{m+1} a_{2 m+1}+a_{3 m+1}\right]$ $w^{3 m+1}+\cdots$,
where $f^{-1}=g$. The class of m -fold symmetric biunivalent functions in U can be symbolized by Σ_{m}. For $m=1$, formula (1.5) coincides with formula (1.2) of the class Σ.

Mathematicians such as Lewin [5], Brannan and Clunie [6] as well as Netanyahu [7] studied the functions in Σ and proved the following, the first investigated the bi-univalent function class Σ and showed that $\left|a_{2}\right|<1.51$, the second showed that $\left|a_{2}\right|<\sqrt{2}$, whereas the third showed that $\max \left|a_{2}\right|=$ $4 / 3$ if $f(z) \in \Sigma$, but the best known estimate for functions in Σ were obtained by Tan [8] in 1984, that is, $\left|a_{2}\right| \leq 1.485$. The coefficient estimate problem involving the bound of $\left|a_{2}\right|(n \in \mathbb{N} \backslash\{1,2\})$ for each $f \in \Sigma$ given by (1.4) is still an open problem. In fact, the aforecited work of Srivastava et al. [9] essentially revived the investigation of various subclasses of the biunivalent function class Σ in recent years. Recently, many authors investigated bounds for various subclasses of bi-univalent functions (see[10, 11, 12, 13, 14, 9, 15]).

The object of the present paper is to obtain estimates on the Taylor-Maclaurin coefficients $\left|a_{m+1}\right|$ and $\left|a_{2 m+1}\right|$ for functions belonging to the new general subclasses $\mathcal{R}_{\Sigma_{m}}(\tau, \lambda, \eta ; \alpha)$ and $\mathcal{R}_{\Sigma_{m}}(\tau, \lambda, \eta ; \beta)$ of Σ_{m}. Also, some interesting applications of the results presented here are also discussed.
In order to derive our main result, we have to recall here the following lemma [1].
Lemma 1.1. If $h \in \mathcal{P}$, then $\left|c_{k}\right| \leq 2$ for each $k \in \mathbb{N}$, where \mathcal{P} is the family of all functions h, analytic in U, for which
$R(h(z))>0 \quad(z \in U)$,
where
$h(z)=1+c_{1} z+c_{2} z^{2}+\cdots \quad(z \in U)$.

2. Coefficients bounds for the function class

$\mathcal{R}_{\Sigma_{m}}(\boldsymbol{\tau}, \lambda, \boldsymbol{\eta} ; \boldsymbol{\alpha})$
Definition 2.1. A function $f \in \Sigma_{m}$ given by (1.4) is said to be in the class $\mathcal{R}_{\Sigma_{m}}(\tau, \lambda, \eta ; \alpha)$ if the following conditions are satisfied:
$\left|\arg \left(1+\frac{1}{\tau}\left[(1-\lambda) \frac{f(z)}{z}+\lambda f^{\prime}(z)+\eta z f^{\prime \prime}(z)-1\right]\right)\right|$
$<\frac{\alpha \pi}{2} \quad(z \in U)$
and
$\left|\arg \left(1+\frac{1}{\tau}\left[(1-\lambda) \frac{g(w)}{w}+\lambda g^{\prime}(w)+\eta w g^{\prime \prime}(w)-1\right]\right)\right|$
$<\frac{\alpha \pi}{2}(w \in U)$,
where $(\tau \in \mathbb{C} \backslash\{0\} ; \lambda \geq 1 ; 0 \leq \eta \leq 1 ; 0<\alpha \leq 1)$ and the function g is given by (1.5).
Theorem 2.1. Let the function $f(z)$, given by (1.4), be in the class $\mathcal{R}_{\Sigma_{m}}(\tau, \lambda, \eta ; \alpha)$. Then
$\left|a_{m+1}\right| \leq$
$\frac{2 \alpha|\tau|}{\sqrt{\left|\alpha \tau(m+1)(1+2 \lambda m+2 \eta m(2 m+1))+(1-\alpha)(1+\lambda m+\eta m(m+1))^{2}\right|}}$
and
$\left|a_{2 m+1}\right| \leq \frac{2 \alpha^{2}|\tau|^{2}(m+1)}{(1+\lambda m+\eta m(m+1))^{2}}$
$+\frac{2 \alpha|\tau|}{(1+2 \lambda m+2 \eta m(2 m+1))}$.
Proof. Let $f \in \mathcal{R}_{\Sigma_{m}}(\tau, \lambda, \eta ; \alpha)$. Then
$1+\frac{1}{\tau}\left[(1-\lambda) \frac{f(z)}{z}+\lambda f^{\prime}(z)+\eta \mathrm{z} f^{\prime \prime}(z)-1\right]$
$=[p(z)]^{\alpha}$
and
$1+\frac{1}{\tau}\left[(1-\lambda) \frac{g(w)}{w}+\lambda g^{\prime}(w)+\eta w g^{\prime \prime}(w)-1\right]$
$=[q(w)]^{\alpha}$,
where $g=f^{-1}, p(z), q(z)$ in \mathcal{P} and have the forms
$p(z)=1+p_{m} z^{m}+p_{2 m} z^{2 m}+p_{3 m} z^{3 m}+\cdots$
and
$q(w)=1+q_{m} w^{m}+q_{2 m} w^{2 m}+q_{3 m} w^{3 m}+\cdots$.
Now, equating the coefficients in (2.5) and (2.6), we get

$$
\begin{align*}
& \left(\frac{1+\lambda m+\eta m(m+1)}{\tau}\right) a_{m+1}=\alpha p_{m} \tag{2.9}\\
& \left(\frac{1+2 \lambda m+2 \eta m(2 m+1)}{\tau}\right) a_{2 m+1}
\end{align*}
$$

$$
\begin{equation*}
=\alpha p_{2 m}+\frac{1}{2} \alpha(\alpha-1) p_{m}^{2} \tag{2.10}
\end{equation*}
$$

$-\left(\frac{1+\lambda m+\eta m(m+1)}{\tau}\right) a_{m+1}=\alpha q_{m}$
and

$$
\begin{align*}
& \left(\frac{1+2 \lambda m+2 \eta m(2 m+1)}{\tau}\right)\left[(m+1) a_{m+1}^{2}-a_{2 m+1}\right] \\
& =\alpha q_{2 m}+\frac{1}{2} \alpha(\alpha-1) q_{m}^{2} \tag{2.12}
\end{align*}
$$

From (2.9) and (2.11), we find
$p_{m}=-q_{m}$
and
$2\left(\frac{1+\lambda m+\eta m(m+1)}{\tau}\right)^{2} a_{m+1}^{2}$
$=\alpha^{2}\left(p_{m}^{2}+q_{m}^{2}\right)$.
From (2.10), (2.12) and (2.14), we get
$\left(\frac{1+2 \lambda m+2 \eta m(2 m+1)}{\tau}\right)(m+1) a_{m+1}^{2}$

$$
\begin{align*}
& =\alpha\left(p_{2 m}+q_{2 m}\right)+\frac{\alpha(\alpha-1)}{2}\left(p_{m}^{2}+q_{m}^{2}\right) \\
& =\alpha\left(p_{2 m}+q_{2 m}\right) \\
& +\frac{(\alpha-1)}{\alpha}\left(\frac{1+\lambda m+\eta m(m+1)}{\tau}\right)^{2} a_{m+1}^{2} \tag{2.15}
\end{align*}
$$

Therefore, we have
$a_{m+1}^{2}=$
$\frac{\alpha^{2} \tau^{2}\left(p_{2 m}+q_{2 m}\right)}{\alpha \tau(m+1)(1+2 \lambda m+2 \eta m(2 m+1))+(1-\alpha)\left((1+\lambda m+\eta m(m+1))^{2}\right.}$.

Applying Lemma (1.1) for the coefficients $p_{2 m}$ and $q_{2 m}$, we immediately have
$\left|a_{m+1}\right| \leq$
$\frac{2 \alpha|\tau|}{\sqrt{\left|\alpha \tau(m+1)(1+2 \lambda m+2 \eta m(2 m+1))+(1-\alpha)(1+\lambda m+\eta m(m+1))^{2}\right|}}$

The last inequality gives the desired estimate on $\left|a_{m+1}\right|$ given in (2.3).

Next, in order to find the bound on $\left|a_{2 m+1}\right|$, by subtracting (2.12) from (2.10), we obtain

$$
\begin{align*}
& 2\left(\frac{1+2 \lambda m+2 \eta m(2 m+1)}{\tau}\right) a_{2 m+1} \\
& -\left(\frac{1+2 \lambda m+2 \eta m(2 m+1)}{\tau}\right)(m+1) a_{m+1}^{2} \\
& =\alpha\left(p_{2 m}-q_{2 m}\right)+\frac{\alpha(\alpha-1)}{2}\left(p_{m}^{2}-q_{m}^{2}\right) \tag{2.18}
\end{align*}
$$

It follows from (2.13), (2.14) and (2.18) that
$a_{2 m+1}=\frac{\alpha^{2} \tau^{2}(m+1)\left(p_{m}^{2}+q_{m}^{2}\right)}{4(1+\lambda m+\eta m(m+1))^{2}}$
$+\frac{\alpha \tau\left(p_{2 m}-q_{2 m}\right)}{2(1+2 \lambda m+2 \eta m(2 m+1))}$.
Applying Lemma (1.1) once again for the coefficients
$p_{m}, p_{2 m}, q_{m}$ and $q_{2 m}$, we readily get
$\left|a_{2 m+1}\right| \leq \frac{2 \alpha^{2}|\tau|^{2}(m+1)}{(1+\lambda m+\eta m(m+1))^{2}}$
$+\frac{2 \alpha|\tau|}{(1+2 \lambda m+2 \eta m(2 m+1))}$.
This completes the proof of Theorem (2.1).

3. Coefficients bounds for the function class

$\mathcal{R}_{\Sigma_{m}}(\tau, \lambda, \eta ; \boldsymbol{\beta})$
Definition 3.1. A function $f \in \Sigma_{m}$ given by (1.4) is said to be in the class $\mathcal{R}_{\Sigma_{m}}(\tau, \lambda, \eta ; \beta)$ if the following conditions are satisfied:
$\operatorname{Re}\left(1+\frac{1}{\tau}\left[(1-\lambda) \frac{f(z)}{z}+\lambda f^{\prime}(z)+\eta \mathrm{z} f^{\prime \prime}(z)-1\right]\right)$
$>\beta \quad(z \in U)$
and
$\operatorname{Re}\left(1+\frac{1}{\tau}\left[(1-\lambda) \frac{g(w)}{w}+\lambda g^{\prime}(w)+\eta \mathrm{w} g^{\prime \prime}(w)-1\right]\right)$
$>\beta \quad(w \in U)$,
where ($\tau \in \mathbb{C} \backslash\{0\} ; \lambda \geq 1 ; 0 \leq \eta \leq 1 ; 0 \leq \beta<1$) and the function g is given by (1.5).
Theorem 3.1. Let the function $f(z)$, given by (1.4), be in the class $\mathcal{R}_{\Sigma_{m}}(\tau, \lambda, \eta ; \beta)$. Then
$\left|a_{m+1}\right| \leq \sqrt{\frac{4|\tau|(1-\beta)}{(m+1)(1+2 \lambda m+2 \eta m(2 m+1))}}$
and
$\left|a_{2 m+1}\right| \leq \frac{2|\tau|^{2}(1-\beta)^{2}(m+1)}{(1+\lambda m+\eta m(m+1))^{2}}$
$+\frac{2|\tau|(1-\beta)}{(1+2 \lambda m+2 \eta m(2 m+1))}$.
Proof. It follows from (3.1) and (3.2) that there exist $p, q \in \mathcal{P}$ such that
$1+\frac{1}{\tau}\left[(1-\lambda) \frac{f(z)}{z}+\lambda f^{\prime}(z)+\eta z f^{\prime \prime}(z)-1\right]$
$=\beta+(1-B) p(z)$
and
$1+\frac{1}{\tau}\left[(1-\lambda) \frac{g(w)}{w}+\lambda g^{\prime}(w)+\eta \mathrm{w} g^{\prime \prime}(w)-1\right]$
$=\beta+(1-B) q(w)$,
where $p(z)$ and $q(w)$ have the forms (2.7) and (2.8), respectively. Equating coefficients in (3.5) and (3.6), we get
$\left(\frac{1+\lambda m+\eta m(m+1)}{\tau}\right) a_{m+1}$
$=(1-\beta) p_{m}$,
$\left(\frac{1+2 \lambda m+2 \eta m(2 m+1)}{\tau}\right) a_{2 m+1}$
$=(1-\beta) p_{2 m}$,
$-\left(\frac{1+\lambda m+\eta m(m+1)}{\tau}\right) a_{m+1}=(1-\beta) q_{m}$
and
$\left(\frac{1+2 \lambda m+2 \eta m(2 m+1)}{\tau}\right)\left[(m+1) a_{m+1}^{2}-a_{2 m+1}\right]$
$=(1-\beta) q_{2 m}$.
From (3.7) and (3.9), we find
$p_{m}=-q_{m}$
and
$2\left(\frac{1+\lambda m+\eta m(m+1)}{\tau}\right)^{2} a_{m+1}^{2}$
$=(1-\beta)^{2}\left(p_{m}^{2}+q_{m}^{2}\right)$.
Adding (3.8) and (3.10), we have
$\left(\frac{1+2 \lambda m+2 \eta m(2 m+1)}{\tau}\right)(m+1) a_{m+1}^{2}$
$=(1-\beta)\left(p_{2 m}+q_{2 m}\right)$.
Therefore, we obtain
$a_{m+1}^{2}=\frac{\tau(1-\beta)\left(p_{2 m}+q_{2 m}\right)}{(m+1)(1+2 \lambda m+2 \eta m(2 m+1))}$.
Applying Lemma (1.1) for coefficients $p_{2 m}$ and $q_{2 m}$, we obtain
$\left|a_{m+1}\right| \leq \sqrt{\frac{4|\tau|(1-\beta)}{(m+1)(1+2 \lambda m+2 \eta m(2 m+1))}}$.
This gives the bound on $\left|a_{m+1}\right|$ as asserted in (3.3).
In order to find the bound on $\left|a_{2 m+1}\right|$, by subtracting (3.10) from (3.8), we get
$2\left(\frac{1+2 \lambda m+2 \eta m(2 m+1)}{\tau}\right) a_{2 m+1}$
$-\left(\frac{1+2 \lambda m+2 \eta m(2 m+1)}{\tau}\right)(m+1) a_{m+1}^{2}$
$=(1-\beta)\left(p_{2 m}-q_{2 m}\right)$
or equivalently
$a_{2 m+1}=\frac{(m+1)}{2} a_{m+1}^{2}$
$+\frac{\tau(1-\beta)\left(p_{2 m}-q_{2 m}\right)}{2(1+2 \lambda m+2 \eta m(2 m+1))}$.

Upon substituting the value of a_{m+1}^{2} from (3.12), we get
$a_{2 m+1}=\frac{\tau^{2}(1-\beta)^{2}(m+1)\left(p_{m}^{2}+q_{m}^{2}\right)}{4(1+\lambda m+\eta m(m+1))^{2}}$
$+\frac{\tau(1-\beta)\left(p_{2 m}-q_{2 m}\right)}{2(1+2 \lambda m+2 \eta m(2 m+1))}$.
Applying Lemma (1.1) once again for the coefficients $p_{m}, p_{2 m}, q_{m}$ and $q_{2 m}$, we find
$\left|a_{2 m+1}\right| \leq \frac{2|\tau|^{2}(1-\beta)^{2}(m+1)}{(1+\lambda m+\eta m(m+1))^{2}}$
$+\frac{2|\tau|(1-\beta)}{(1+2 \lambda m+2 \eta m(2 m+1))}$.
This completes the proof of Theorem (3.1).

4. Corollaries and Consequences

For one-fold symmetric bi-univalent functions, the classes $\mathcal{R}_{\Sigma_{m}}(\tau, \lambda, \eta ; \alpha)$ and $\mathcal{R}_{\Sigma_{m}}(\tau, \lambda, \eta ; \beta)$ reduce to the classes $\mathcal{R}_{\Sigma}(\tau, \lambda, \eta ; \alpha)$ and $\mathcal{R}_{\Sigma}(\tau, \lambda, \eta ; \beta)$ and thus, Theorem (2.1) and Theorem (3.1) reduce to Corollary (4.1) and Corollary(4.2), respectively.

Corollary 4.1. Let $f(z)$ given by (1.1) be in the class $\mathcal{R}_{\Sigma}(\tau, \lambda, \eta ; \alpha)$. Then
$\left|a_{m+1}\right|$
$\leq \frac{2 \alpha|\tau|}{\sqrt{\left|2 \alpha \tau(1+2 \lambda+6 \eta)+(1-\alpha)(1+\lambda+2 \eta)^{2}\right|}}$
and
$\left|a_{2 m+1}\right| \leq \frac{4 \alpha^{2}|\tau|^{2}}{(1+\lambda+2 \eta)^{2}}+\frac{2 \alpha|\tau|}{(1+2 \lambda+6 \eta)}$.
Corollary 4.2. Let $f(z)$ given by (1.1) be in the class $\mathcal{R}_{\Sigma}(\tau, \lambda, \eta ; \beta)$. Then

$$
\begin{equation*}
\left|a_{m+1}\right| \leq \sqrt{\frac{2|\tau|(1-\beta)}{(1+2 \lambda+6 \eta)}} \tag{4.3}
\end{equation*}
$$

and
$\left|a_{2 m+1}\right| \leq \frac{4|\tau|^{2}(1-\beta)^{2}}{(1+\lambda+2 \eta)^{2}}+\frac{2|\tau|(1-\beta)}{(1+2 \lambda+6 \eta)}$.
The classes $\mathcal{R}_{\Sigma}(\tau, \lambda, \eta ; \alpha)$ and $\mathcal{R}_{\Sigma}(\tau, \lambda, \eta ; \beta)$ are defined in the following way:

Definition 4.1. A function $f(z) \in \Sigma$ given by (1.1) is said to be in the class $\mathcal{R}_{\Sigma}(\tau, \lambda, \eta ; \alpha)$ if the following conditions are satisfied:
$\left|\arg \left(1+\frac{1}{\tau}\left[(1-\lambda) \frac{f(z)}{z}+\lambda f^{\prime}(z)+\eta z f^{\prime \prime}(z)-1\right]\right)\right|$
$<\frac{\alpha \pi}{2} \quad(z \in U)$
and
$\left|\arg \left(1+\frac{1}{\tau}\left[(1-\lambda) \frac{g(w)}{w}+\lambda g^{\prime}(w)+\eta w g^{\prime \prime}(w)-1\right]\right)\right|$
$<\frac{\alpha \pi}{2} \quad(w \in U)$,
where $(\tau \in \mathbb{C} \backslash\{0\} ; \lambda \geq 1 ; 0 \leq \eta \leq 1 ; 0<\alpha \leq 1)$ and the function g is given by (1.2).
Definition 4.2. A function $f(z) \in \Sigma$ given by (1.1) is said to be in the class $\mathcal{R}_{\Sigma}(\tau, \lambda, \eta ; \beta)$ if the following conditions are satisfied:
$\operatorname{Re}\left(1+\frac{1}{\tau}\left[(1-\lambda) \frac{f(z)}{z}+\lambda f^{\prime}(z)+\eta z f^{\prime \prime}(z)-1\right]\right)$
$>\beta \quad(z \in U)$
and
$\operatorname{Re}\left(1+\frac{1}{\tau}\left[(1-\lambda) \frac{g(w)}{w}+\lambda g^{\prime}(w)+\eta w g^{\prime \prime}(w)-1\right]\right)$
$>\beta \quad(w \in U)$,
where $(\tau \in \mathbb{C} \backslash\{0\} ; \lambda \geq 1 ; 0 \leq \eta \leq 1 ; 0 \leq \beta<1)$ and the function g is given by (1.2).
Remark 4.1. For m -fold symmetric bi-univalent functions, if we put $\lambda=1$ in Theorem (2.1) and Theorem (3.1), we obtain the results which were given by Srivastava et al.[16]. In addition, if we put $\eta=0$ in Theorem (2.1) and Theorem (3.1), we obtain the results which were given by Srivastave et al. [17]
Remark 4.2. For one-fold symmetric bi-univalent functions, if we put $\tau=1$ and $\lambda=1$ in Theorem (2.1) and Theorem (3.1), we obtain the results which were given by Frasin [12]. In addition, if we put $\tau=1$ and $\eta=0$ in Theorem (2.1) and Theorem (3.1), we obtain the results which were given by Frasin and Aouf [13].

References

[1] P. L. Duren, Univalent Functions, Grundlehren der Mathematischen Wissenschaften 259, Springer, New York, USA, (1983).
[2] W. Koepf, Coefficients of symmetric functions of bounded boundary rotations, Proc. Amer. Math. Soc., 105, 324-329, (1989).
[3] C. Pommerenke, On the coefficients of close-toconvex functions, Michigan Math. J., 9, 259-269, (1962).
[4] H. M. Srivastava, S. Sivasubramanian and R. Sivakumar, Initial coefficient bounds for a subclass of m-fold symmetric bi-univalent functions, Tbilisi Mathematical J., 7(2), 1-10, (2014).
[5] M. Lewin, On a coefficient problem for bi-univalent functions, Proc. Amer. Math. Soc., 18, 63-68, (1967),.
[6] D. Brannan and J. G. Clunie (Eds), Aspects of contemporary complex analysis, (Proceedings of the NATO advanced study institute held at the Univ. of Durham, Durham; July 1-20, 1979). New York, London: Academic Press, (1980).
[7] E. Netanyahu, The minimal distance of the image boundary from the origin and the second coefficient of a univalent function in $|z|<1$, Archive for Rotional Mechanics and Analysis, 32 (2), 100-112, (1969).
[8] D. -L. Tan, Coefficient estimates for bi-univalent functions, Chinese Ann Math Ser, A5, 559-568, (1984).
[9] H. M. Srivastava, A. K. Mishra and P. Gochhayat, Certain subclasses of analytic and bi-univalent functions, Appl. Math, Lett., 23, 1188-1192, (2010).
[10] S. Bulut, Faber polynomial coefficient estimates for a subclass of analytic bi-univalent functions, Filomat, 30 (6), 1567-1575, (2016).
[11] E. Deniz, Certain subclasses of bi-univalent functions satisfying subordinate conditions, Journal of Classical Analysis, 2(1), 49-60, (2013).
[12] B. A. Frasin, Coefficient bounds for certain classes of bi-univalent functions, Hacet. J. Math. Stat., 43(3), 383-389, (2014).
[13] B. A. Frasin and M. K. Aouf, New subclasses of bi-univalent functions, Appl. Math. Lett., 24,15691573, (2011),.
[14] X. - F. Li and A. - P. Wang, Tow new subclasses of bi-univalent functions, Int. Math. Forum, 7, 1495-1504, (2012).
[15] Q.-H. Xu, Y.-C. Gui and H. M. Srivastava, Coefficient estimates for a certain subclass of analytic and bi-univalent functions, Appl. Math. Lett., 25 (6), 990-994, (2012).
[16] H. M. Srivastava, S. Gaboury and F. Ghanim, Coefficient estimates for some subclasses of mfold symmetric bi-univalent functions, Acta Universitatis Apulensis, 41, 153-164, (2015).
[17] H. M. Srivastava, S. Gaboury and F. Ghanim, Initial coefficient estimates for some subclasses of m-fold symmetric bi-univalent functions, Acta Mathematica Scientia, 36 B(3), 863-871, (2016).

حدود المعاملات لاصناف جزئية عامة للدوال الثنائية التكافؤ المتنـاظرة المطويـة من النمط m

$$
\begin{aligned}
& \text { نجاح علي جبن الزيادي } \\
& \text { قـد الرياضيات } \\
& \text { كلية العلوم } \\
& \text { جامعة بغاد } \\
& \text { E-mail: najah.ali@qu.edu.iq }
\end{aligned}
$$

وقاص غالب عطشان
قسم الرياضيات
كلية علوم الحاسبات وتكنولوجيا المعلومات
جامعة القادسية
E-mail: waggas.galib@qu.edu.iq

المستخلص :
في هذا البحث، قدمنا وناقشنا اصناف جزئية عامة جديدة والمنكونة من الاو ال التحليلية الثنائية النكافؤ المتناظرة المطوية من النمط m في قرص الوحدة المفتوح U U حصلنا على تخمينات حول معاملات مكلورين - تايلور |am+1 \mid و | \mid | \mid. حصلنا ايضاً على حالات خاصة
جديدة لنتائجنا.

