A New Subclass of Harmonic Univalent Functions

Waggas Galib Atshan
Department of Mathematics
College of Computer Science
and Information Technology
University of Al-Qadisiyah, Diwaniya-Iraq
E-mail: waggas.galib@qu.edu.iq

Najah Ali Jiben Al-Ziadi
Department of Mathematics College of Science
University of Baghdad, Baghdad -Iraq
E-mail: najah.ali@qu.edu.iq

Recived : 7\5\2017
Revised : //
Accepted : 14\6【2017

Abstract

In this paper, we define a new class of harmonic univalent functions of the form $f=h+\bar{g}$ in the open unit disk U. We obtain basic properties, like, coefficient bounds, extreme points, convex combination, distortion and growth theorems and integral operator.

Keywords: Univalent function; harmonic function; extreme point; convex combination; integral operator.
Mathematics subject classification : 30C45.

1. Introduction

A continuous complex-valued function $f=u+i v$ is said to be harmonic function in a simply connected domain D if both u and v are real harmonic in D. In any simply connected domain $D \subset \mathbb{C}$, we can write $f=h+$ \bar{g}, where h and g are analytic in D. We call h the analytic part and g the co-analytic part of f. Note that $f=h+\bar{g}$ reduces to h if the co-analytic part g is zero. A necessary and sufficient condition for f to be locally univalent and sense-preserving in D is that $\left|h^{\prime}(z)\right|>$ $\left|g^{\prime}(z)\right|$ in D (see [1]).

Let $N_{\mathcal{H}}$ denote the class of function $f=h+\bar{g}$ that are harmonic univalent and sense-preserving in the open unit disk $U=\{z:|z|<1\}$ for which $f(0)=f_{z}(0)-$ $1=0$. Then for $f=h+\bar{g} \in N_{\mathcal{H}}$ we may express the analytic functions h and g as
$h(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}$,
$g(z)=\sum_{n=1}^{\infty} b_{n} z^{n},\left|b_{1}\right|<1$.
Also, Let $R_{\mathcal{H}}$ denote the subclass of $N_{\mathcal{H}}$ containing all functions $f=h+\bar{g}$, where h and g are given by

$$
\begin{align*}
& h(z)=z-\sum_{n=2}^{\infty} a_{n} z^{n}, \quad g(z)=-\sum_{n=1}^{\infty} b_{n} z^{n}, \\
& \left(a_{n} \geq 0, b_{n} \geq 0,\left|b_{1}\right|<1\right) . \tag{1.2}
\end{align*}
$$

We denote by $W N_{\mathcal{H}}(\lambda, \alpha, \beta)$ the class of all functions of the form (1.1) that satisfy the condition:

$$
\begin{align*}
& \operatorname{Re}\left\{\frac{z f^{\prime}(z)+z^{2} f^{\prime \prime}(z)}{\lambda z f^{\prime}(z)+(1-\lambda) f(z)}\right\} \\
& \quad>\beta\left|\frac{z f^{\prime}(z)+z^{2} f^{\prime \prime}(z)}{\lambda z f^{\prime}(z)+(1-\lambda) f(z)}-1\right|+\alpha, \tag{1.3}
\end{align*}
$$

where $0 \leq \lambda \leq 1,0 \leq \alpha<1, \beta \geq 0$ and $z \in U$.
Let $W R_{\mathcal{H}}(\lambda, \alpha, \beta)$ be the subclass of $W N_{\mathcal{H}}(\lambda, \alpha, \beta)$, where $W R_{\mathcal{H}}(\lambda, \alpha, \beta)=R_{\mathcal{H}} \cap W N_{\mathcal{H}}(\lambda, \alpha, \beta)$.

Note that for the case $\lambda=1$ and $g \equiv 0$ the class $W R_{\mathcal{H}}(\lambda, \alpha, \beta)$ reduces to the class $U C T(\alpha, \beta)$ studied by Bharati et al. [2]. Also, for the case $\lambda=0, \beta=0$ and $g \equiv 0$ the class $W R_{\mathcal{H}}(\lambda, \alpha, \beta)$ reduces to the class $H(1, \beta)$ studied by Lashin [3].

Such type of study was carried out by various authors for another classes, like, Atshan and Wanas [4], ElAshwah and Kota [5] and Ezhilarasi and Sudharsan [6]. In order to derive our main results, we have to recall here the following lemmas:

Lemma 1[7]. Let $w=u+i v$ and β, α are real numbers.
Then $\operatorname{Re}(w) \geq \beta|w-1|+\alpha$ if and only if $\operatorname{Re}\{w(1+$ $\left.\left.\beta e^{i \theta}\right)-\beta e^{i \theta}\right\}>\alpha$.
Lemma 2[7]. Let $w=u+i v$. Then $\operatorname{Re}(w) \geq \alpha$ if and only if $|w-(1+\alpha)| \leq|w+(1-\alpha)|$.

2. Coefficient bounds

First, we give the sufficient condition for $f=h+\bar{g}$ to be in the class $W N_{\mathcal{H}}(\lambda, \alpha, \beta)$.
Theorem 2.1. Let $f=h+\bar{g}$ with h and g are given by (1.1). If
$\sum_{n=2}^{\infty}\left[n^{2}(\beta+1)-(\beta+\alpha)(\lambda n-\lambda+1)\right]\left|a_{n}\right|$
$+\sum_{n=1}^{\infty}\left[n^{2}(\beta+1)-(\beta+\alpha)(\lambda n-\lambda+1)\right]\left|b_{n}\right|$

$$
\begin{equation*}
\leq 1-\alpha \tag{2.1}
\end{equation*}
$$

where $0 \leq \lambda \leq 1,0 \leq \alpha<1, \beta \geq 0$, then f is harmonic univalent, sense-preserving in U and $f \in W N_{\mathcal{H}}(\lambda, \alpha, \beta)$.
Proof. If $z_{1} \neq z_{2}$, then
$\left|\frac{f\left(z_{1}\right)-f\left(z_{2}\right)}{h\left(z_{1}\right)-h\left(z_{2}\right)}\right| \geq 1-\left|\frac{g\left(z_{1}\right)-g\left(z_{2}\right)}{h\left(z_{1}\right)-h\left(z_{2}\right)}\right|$
$=1-\left|\frac{\sum_{n=1}^{\infty} b_{n}\left(z_{1}^{n}-z_{2}^{n}\right)}{\left(z_{1}-z_{2}\right)+\sum_{n=2}^{\infty} a_{n}\left(z_{1}^{n}-z_{2}^{n}\right)}\right|$
$>1-\frac{\sum_{n=1}^{\infty} n\left|b_{n}\right|}{1-\sum_{n=2}^{\infty} n\left|a_{n}\right|}$
≥ 1
$-\frac{\sum_{n=1}^{\infty} \frac{\left[n^{2}(\beta+1)-(\beta+\alpha)(\lambda n-\lambda+1)\right]}{1-\alpha}\left|b_{n}\right|}{1-\sum_{n=2}^{\infty} \frac{\left[n^{2}(\beta+1)-(\beta+\alpha)(\lambda n-\lambda+1)\right]}{1-\alpha}\left|a_{n}\right|}$
≥ 0,
which proves univalence. f is sense-preserving in U.
This is because
$\left|h^{\prime}(z)\right| \geq 1-\sum_{n=2}^{\infty} n\left|a_{n}\right||z|^{n-1}$
$>1-\sum_{n=2}^{\infty} n\left|a_{n}\right|$
$\geq 1-\sum_{n=2}^{\infty} \frac{\left[n^{2}(\beta+1)-(\beta+\alpha)(\lambda n-\lambda+1)\right]}{1-\alpha}\left|a_{n}\right|$
$\geq \sum_{n=1}^{\infty} \frac{\left[n^{2}(\beta+1)-(\beta+\alpha)(\lambda n-\lambda+1)\right]}{1-\alpha}\left|b_{n}\right|$
$\geq \sum_{n=1}^{\infty} n\left|b_{n}\right|>\sum_{n=1}^{\infty} n\left|b_{n}\right||z|^{n-1}$
$\geq\left|g^{\prime}(z)\right|$.
For proving $f \in W N_{\mathcal{H}}(\lambda, \alpha, \beta)$, we must show that (1.3) holds true. By using Lemma (1), it is sufficient to show that
$\operatorname{Re}\left\{\frac{z f^{\prime}(z)+z^{2} f^{\prime \prime}(z)}{\lambda z f^{\prime}(z)+(1-\lambda) f(z)}\left(1+\beta e^{i \theta}\right)-\beta e^{i \theta}\right\}$
$>\alpha \quad(-\pi \leq \theta \leq \pi)$,
or equivalently

$$
\begin{align*}
& \operatorname{Re}\left\{\frac{\left(1+\beta e^{i \theta}\right)\left(z f^{\prime}(z)+z^{2} f^{\prime \prime}(z)\right)}{\lambda z f^{\prime}(z)+(1-\lambda) f(z)}\right. \\
& \left.-\frac{\beta e^{i \theta}\left(\lambda z f^{\prime}(z)+(1-\lambda) f(z)\right)}{\lambda z f^{\prime}(z)+(1-\lambda) f(z)}\right\}>\alpha \tag{2.2}
\end{align*}
$$

If we put
$A(z)=\left(1+\beta e^{i \theta}\right)\left(z f^{\prime}(z)+z^{2} f^{\prime \prime}(z)\right)$
$-\beta e^{i \theta}\left(\lambda z f^{\prime}(z)+(1-\lambda) f(z)\right)$
and
$B(z)=\lambda z f^{\prime}(z)+(1-\lambda) f(z)$.
In view of Lemma (2) we only need to prove that
$|A(z)+(1-\alpha) B(z)|-|A(z)-(1+\alpha) B(z)|$
≥ 0, for $0 \leq \alpha<1$.
So, $|A(z)+(1-\alpha) B(z)|$
$=\mid\left(1+\beta e^{i \theta}\right)\left(z+\sum_{n=2}^{\infty} n^{2} a_{n} z^{n}+\sum_{n=1}^{\infty} n^{2} b_{n}(\bar{z})^{n}\right)$
$-\beta e^{i \theta}\left(z+\sum_{n=2}^{\infty}(\lambda n-\lambda+1) a_{n} z^{n}\right.$
$\left.+\sum_{n=1}^{\infty}(\lambda n-\lambda+1) b_{n}(\bar{z})^{n}\right)$
$+(1-\alpha)\left(z+\sum_{n=2}^{\infty}(\lambda n-\lambda+1) a_{n} z^{n}\right.$
$\left.+\sum_{n=1}^{\infty}(\lambda n-\lambda+1) b_{n}(\bar{z})^{n}\right) \mid$
$=\mid(2-\alpha) z$
$+\sum_{n=2}^{\infty}\left[n^{2}\left(1+\beta e^{i \theta}\right)-\left(\beta e^{i \theta}+\alpha-1\right)(\lambda n-\lambda+1)\right] a_{n} z^{n}$
$+\sum_{n=2}^{\infty}\left[n^{2}\left(1+\beta e^{i \theta}\right)-\left(\beta e^{i \theta}+\alpha-1\right)(\lambda n-\lambda+1)\right] b_{n}(\bar{z})^{n} \mid$.
Also, $|A(z)-(1+\alpha) B(z)|$
$=\mid\left(1+\beta e^{i \theta}\right)\left[z+\sum_{n=2}^{\infty} n a_{n} z^{n}+\sum_{n=1}^{\infty} n b_{n}(\bar{z})^{n}\right.$
$\left.+\sum_{n=2}^{\infty}(n-1) a_{n} z^{n}+\sum_{n=1}^{\infty} n(n-1) b_{n}(\bar{z})^{n}\right]$
$-\beta e^{i \theta}\left[\lambda\left(z+\sum_{n=2}^{\infty} n a_{n} z^{n}+\sum_{n=1}^{\infty} n b_{n}(\bar{z})^{n}\right)\right.$
$\left.+(1-\lambda)\left(z+\sum_{n=2}^{\infty} a_{n} z^{n}+\sum_{n=1}^{\infty} b_{n}(\bar{z})^{n}\right)\right]$
$-(1+\alpha)\left[\lambda\left(z+\sum_{n=2}^{\infty} n a_{n} z^{n}+\sum_{n=1}^{\infty} n b_{n}(\bar{z})^{n}\right)\right.$
$\left.+(1-\lambda)\left(z+\sum_{n=2}^{\infty} a_{n} z^{n}+\sum_{n=1}^{\infty} b_{n}(\bar{z})^{n}\right)\right] \mid$
$=\mid-\alpha z$
$+\sum_{n=2}^{\infty}\left[n^{2}\left(1+\beta e^{i \theta}\right)-\left(\beta e^{i \theta}+\alpha+1\right)(\lambda n-\lambda+1)\right] a_{n} z^{n}$
$+\sum_{n=1}^{\infty}\left[n^{2}\left(1+\beta e^{i \theta}\right)-\left(\beta e^{i \theta}+\alpha+1\right)(\lambda n-\lambda+1)\right] b_{n}(\bar{z})^{n} \mid$.
Therefore,
$|A(z)+(1-\alpha) B(z)|-|A(z)-(1+\alpha) B(z)|$
$\geq 2\{(1-\alpha)$
$-\sum_{n=2}^{\infty}\left[n^{2}(\beta+1)-(\beta+\alpha)(\lambda n-\lambda+1)\right]\left|a_{n}\right|$
$\left.-\sum_{n=1}^{\infty}\left[n^{2}(\beta+1)-(\beta+\alpha)(\lambda n-\lambda+1)\right]\left|b_{n}\right|\right\} \geq 0$.
By inequality (2.1), which implies that
$f \in W N_{\mathcal{H}}(\lambda, \alpha, \beta)$.
The harmonic univalent function
$f(z)=z+\sum_{n=2}^{\infty} \frac{x_{n}}{n^{2}(\beta+1)-(\beta+\alpha)(\lambda n-\lambda+1)} z^{n}$
$+\sum_{n=1}^{\infty} \frac{\bar{y}_{n}}{n^{2}(\beta+1)-(\beta+\alpha)(\lambda n-\lambda+1)}(\bar{z})^{n}$,
where $\sum_{n=2}^{\infty}\left|x_{n}\right|+\sum_{n=1}^{\infty}\left|y_{n}\right|=1-\alpha$, show that coefficient bound given by (1.3) is sharp.

The functions of the form (2.3) are in the class
$W N_{\mathcal{H}}(\lambda, \alpha, \beta)$, because
$\sum_{n=2}^{\infty}\left[n^{2}(\beta+1)-(\beta+\alpha)(\lambda n-\lambda+1)\right]$
$\times \frac{\left|x_{n}\right|}{n^{2}(\beta+1)-(\beta+\alpha)(\lambda n-\lambda+1)}$
$+\sum_{n=1}^{\infty}\left[n^{2}(\beta+1)-(\beta+\alpha)(\lambda n-\lambda+1)\right]$
$\times \frac{\left|y_{n}\right|}{n^{2}(\beta+1)-(\beta+\alpha)(\lambda n-\lambda+1)}$
$=\sum_{n=2}^{\infty}\left|x_{n}\right|+\sum_{n=1}^{\infty}\left|y_{n}\right|=1-\alpha$.
The restriction placed in Theorem (2.1) on the moduli of the coefficients of $f=h+\bar{g}$ enables us to conclude for arbitrary rotation of the coefficients of f that the resulting functions would still be harmonic univalent and $f \in W N_{\mathcal{H}}(\lambda, \alpha, \beta)$.

In the following theorem, it is shown that the condition (2.1) is also necessary for functions in $W R_{\mathcal{H}}(\lambda, \alpha, \beta)$.
Theorem (2.2). Let $f=h+\bar{g}$ with h and g be given by (1.2). Then $f \in W R_{\mathcal{H}}(\lambda, \alpha, \beta)$ if and only if

$$
\begin{align*}
& \sum_{n=2}^{\infty}\left[n^{2}(\beta+1)-(\beta+\alpha)(\lambda n-\lambda+1)\right] a_{n} \\
+ & \sum_{n=1}^{\infty}\left[n^{2}(\beta+1)-(\beta+\alpha)(\lambda n-\lambda+1)\right] b_{n} \\
\leq & 1-\alpha \tag{2.4}
\end{align*}
$$

where $0 \leq \lambda \leq 1,0 \leq \alpha<1$ and $\beta \geq 0$.
Proof. Since $W R_{\mathcal{H}}(\lambda, \alpha, \beta) \subset W N_{\mathcal{H}}(\lambda, \alpha, \beta)$, we only need to proof the " only if " part of the theorem.
Assume that $f \in W R_{\mathcal{H}}(\lambda, \alpha, \beta)$. Then by (1.3), we have $\operatorname{Re}\left\{\frac{z f^{\prime}(z)+z^{2} f^{\prime \prime}(z)}{\lambda z f^{\prime}(z)+(1-\lambda) f(z)}\left(1+\beta e^{i \theta}\right)-\beta e^{i \theta}\right\} \geq \alpha$.

This is equivalent to
$\operatorname{Re}\left\{\frac{\left(1+\beta e^{i \theta}\right)\left(z f^{\prime}(z)+z^{2} f^{\prime \prime}(z)\right)}{\lambda z f^{\prime}(z)+(1-\lambda) f(z)}\right.$

$$
\left.-\frac{\left(\beta e^{i \theta}+\alpha\right)\left(\lambda z f^{\prime}(z)+(1-\lambda) f(z)\right)}{\lambda z f^{\prime}(z)+(1-\lambda) f(z)}\right\}
$$

$=\operatorname{Re}\left\{\frac{(1-\alpha)-\sum_{n=2}^{\infty}\left[n^{2}+\beta e^{i \theta} n^{2}-\beta e^{i \theta}(\lambda n-\lambda+1)-\alpha(\lambda n-\lambda+1)\right] a_{n} z^{n-1}}{1-\sum_{n=2}^{\infty}(\lambda n-\lambda+1) a_{n} z^{n-1}-\sum_{n=1}^{\infty}(\lambda n-\lambda+1) b_{n}(\bar{z})^{n-1}}\right.$
$\left.-\frac{\sum_{n=1}^{\infty}\left[n^{2}+\beta e^{i \theta} n^{2}-\beta e^{i \theta}(\lambda n-\lambda+1)-\alpha(\lambda n-\lambda+1)\right] b_{n}(\bar{z})^{n-1}}{1-\sum_{n=2}^{\infty}(\lambda n-\lambda+1) a_{n} z^{n-1}-\sum_{n=1}^{\infty}(\lambda n-\lambda+1) b_{n}(\bar{z})^{n-1}}\right\}$

$$
\begin{equation*}
\geq 0 \tag{2.5}
\end{equation*}
$$

The above required condition (2.5) must hold for all values of z in U. Upon choosing the values of z on the positive real axis where $0<|z|=r<1$, we must have
$\operatorname{Re}\left\{\frac{(1-\alpha)-\sum_{n=2}^{\infty}\left[n^{2}+\beta e^{i \theta} n^{2}-\beta e^{i \theta}(\lambda n-\lambda+1)-\alpha(\lambda n-\lambda+1)\right] a_{n} r^{n-1}}{1-\sum_{n=2}^{\infty}(\lambda n-\lambda+1) a_{n} r^{n-1}-\sum_{n=1}^{\infty}(\lambda n-\lambda+1) b_{n} r^{n-1}}\right.$ $\left.-\frac{\sum_{n=1}^{\infty}\left[n^{2}+\beta e^{i \theta} n^{2}-\beta e^{i \theta}(\lambda n-\lambda+1)-\alpha(\lambda n-\lambda+1)\right] b_{n} r^{n-1}}{1-\sum_{n=2}^{\infty}(\lambda n-\lambda+1) a_{n} r^{n-1}-\sum_{n=1}^{\infty}(\lambda n-\lambda+1) b_{n} r^{n-1}}\right\} \geq 0$.
Since $\operatorname{Re}\left(-e^{i \theta}\right) \geq-\left|e^{i \theta}\right|=-1$, and let $r \rightarrow 1^{-}$. This gives (2.4) and the proof is complete.

3. Extreme points

In the following theorem, we obtain the extreme points of the class $W R_{\mathcal{H}}(\lambda, \alpha, \beta)$.

Theorem 3.1. Let f be given by (1.2). Then $f \in$ $W R_{\mathcal{H}}(\lambda, \alpha, \beta)$ if and only if f can be expressed as
$f(z)=\sum_{n=1}^{\infty}\left(\mu_{n} h_{n}(z)+\delta_{n} g_{n}(z)\right)(z \in U)$,
where $h_{1}(z)=z$,
$h_{n}(z)=z-\frac{1-\alpha}{n^{2}(\beta+1)-(\beta+\alpha)(\lambda n-\lambda+1)} z^{n}$,
($n=2,3, \ldots$)
and
$g_{n}(z)=z-\frac{1-\alpha}{n^{2}(\beta+1)-(\beta+\alpha)(\lambda n-\lambda+1)}(\bar{z})^{n}$,
$(n=1,2,3, \ldots)$,
$\sum_{n=1}^{\infty}\left(\mu_{n}+\delta_{n}\right)=1, \quad\left(\mu_{n} \geq 0, \quad \delta_{n} \geq 0\right)$.
In particular, the extreme points of $W R_{\mathcal{H}}(\lambda, \alpha, \beta)$ are $\left\{h_{n}\right\}$ and $\left\{g_{n}\right\}$.
Proof. Assume that f can be expressed by (3.1). Then, we have

$$
\begin{aligned}
& f(z)=\sum_{n=1}^{\infty}\left[\mu_{n} h_{n}(z)+\delta_{n} g_{n}(z)\right] \\
& =\sum_{n=1}^{\infty}\left(\mu_{n}+\delta_{n}\right) z \\
& -\sum_{n=2}^{\infty} \frac{1-\alpha}{n^{2}(\beta+1)-(\beta+\alpha)(\lambda n-\lambda+1)} \mu_{n} z^{n} \\
& -\sum_{n=1}^{\infty} \frac{1-\alpha}{n^{2}(\beta+1)-(\beta+\alpha)(\lambda n-\lambda+1)} \delta_{n}(\bar{z})^{n} \\
& =z-\sum_{n=2}^{\infty} \frac{1-\alpha}{n^{2}(\beta+1)-(\beta+\alpha)(\lambda n-\lambda+1)} \mu_{n} z^{n} \\
& -\sum_{n=1}^{\infty} \frac{1-\alpha}{n^{2}(\beta+1)-(\beta+\alpha)(\lambda n-\lambda+1)} \delta_{n}(\bar{z})^{n} .
\end{aligned}
$$

Therefore,
$\sum_{n=2}^{\infty}\left[n^{2}(\beta+1)-(\beta+\alpha)(\lambda n-\lambda+1)\right]$
$\times \frac{1-\alpha}{n^{2}(\beta+1)-(\beta+\alpha)(\lambda n-\lambda+1)} \mu_{n}$
$+\sum_{n=1}^{\infty}\left[n^{2}(\beta+1)-(\beta+\alpha)(\lambda n-\lambda+1)\right]$
$\times \frac{1-\alpha}{n^{2}(\beta+1)-(\beta+\alpha)(\lambda n-\lambda+1)} \delta_{n}$
$=(1-\alpha)\left(\sum_{n=1}^{\infty}\left(\mu_{n}+\delta_{n}\right)-\mu_{1}\right)$
$=\left(1-\alpha_{1}\right)\left(1-\mu_{1}\right) \leq 1-\alpha$.
So $f \in W R_{\mathcal{H}}(\lambda, \alpha, \beta)$.
Conversely, let $f \in W R_{\mathcal{H}}(\lambda, \alpha, \beta)$, by putting
$\mu_{n}=\frac{n^{2}(\beta+1)-(\beta+\alpha)(\lambda n-\lambda+1)}{1-\alpha} a_{n}$,
$(n=2,3, \ldots)$
and
$\delta_{n}=\frac{n^{2}(\beta+1)-(\beta+\alpha)(\lambda n-\lambda+1)}{1-\alpha} b_{n}$,
$(n=1,2,3, \ldots)$.

We define $\mu_{1}=1-\sum_{n=2}^{\infty} \mu_{n}-\sum_{n=1}^{\infty} \delta_{n}$.
Then, note that $0 \leq \mu_{n} \leq 1 \quad(n=2,3, \ldots)$,
$0 \leq \delta_{n} \leq 1 \quad(n=1,2, \ldots)$.
Hence,
$f(z)=z-\sum_{n=2}^{\infty} a_{n} z^{n}-\sum_{n=1}^{\infty} b_{n}(\bar{z})^{n}$
$=z-\sum_{n=2}^{\infty} \frac{1-\alpha}{n^{2}(\beta+1)-(\beta+\alpha)(\lambda n-\lambda+1)} \mu_{n} z^{n}$
$-\sum_{n=1}^{\infty} \frac{1-\alpha}{n^{2}(\beta+1)-(\beta+\alpha)(\lambda n-\lambda+1)} \delta_{n}(\bar{z})^{n}$
$=z-\sum_{n=2}^{\infty}\left(z-h_{n}(z)\right) \mu_{n}-\sum_{n=1}^{\infty}\left(z-g_{n}(z)\right) \delta_{n}$
$=\left(1-\sum_{n=2}^{\infty} \mu_{n}-\sum_{n=1}^{\infty} \delta_{n}\right) z$
$+\sum_{n=2}^{\infty} \mu_{n} h_{n}(z)+\sum_{n=1}^{\infty} \delta_{n} g_{n}(z)$
$=\mu_{1} h_{1}(z)+\sum_{n=2}^{\infty} \mu_{n} h_{n}(z)+\sum_{n=1}^{\infty} \delta_{n} g_{n}(z)$
$=\sum_{n=1}^{\infty}\left[\mu_{n} h_{n}(z)+\delta_{n} g_{n}(z)\right]$,
that is the required representation.

4. Convex combination

Now, we show $W R_{\mathcal{H}}(\lambda, \alpha, \beta)$ is closed under convex combination of its members.
Theorem (4.1). The class $W R_{\mathcal{H}}(\lambda, \alpha, \beta)$ is closed under convex combination.

Proof. For $j=1,2,3, \ldots$, let $f_{j} \in W R_{\mathcal{H}}(\lambda, \alpha, \beta)$, where f_{j} is given by
$f_{j}(z)=z-\sum_{n=2}^{\infty} a_{n, j} z^{n}-\sum_{n=1}^{\infty} b_{n, j}(\bar{z})^{n}$.
Then by (2.4), we have
$\sum_{n=2}^{\infty}\left[n^{2}(\beta+1)-(\beta+\alpha)(\lambda n-\lambda+1)\right] a_{n, j}$
$+\sum_{n=1}^{\infty}\left[n^{2}(\beta+1)-(\beta+\alpha)(\lambda n-\lambda+1)\right] b_{n, j}$
$\leq(1-\alpha)$.

For $\sum_{j=1}^{\infty} t_{j}=1, \quad 0 \leq t_{j} \leq 1$, the convex
combination of f_{j} may be written as
$\sum_{j=1}^{\infty} t_{j}=z-\sum_{n=2}^{\infty}\left(\sum_{j=1}^{\infty} t_{j} a_{n, j}\right) z^{n}$
$-\sum_{n=1}^{\infty}\left(\sum_{j=1}^{\infty} t_{j} b_{n, j}\right)(\bar{z})^{n}$.
Then by (4.1), we have
$\sum_{n=2}^{\infty}\left[n^{2}(\beta+1)-(\beta+\alpha)(\lambda n-\lambda+1)\right]\left(\sum_{j=1}^{\infty} t_{j} a_{n, j}\right)$
$+\sum_{n=1}^{\infty}\left[n^{2}(\beta+1)-(\beta+\alpha)(\lambda n-\lambda+1)\right]\left(\sum_{j=1}^{\infty} t_{j} b_{n, j}\right)$
$=\sum_{j=1}^{\infty} t_{j}\left\{\sum_{n=2}^{\infty}\left[n^{2}(\beta+1)-(\beta+\alpha)(\lambda n-\lambda+1)\right] a_{n, j}\right.$
$\left.+\sum_{n=1}^{\infty}\left[n^{2}(\beta+1)-(\beta+\alpha)(\lambda n-\lambda+1)\right] b_{n, j}\right\}$
$\leq \sum_{j=1}^{\infty} t_{j}(1-\alpha)=1-\alpha$.
Therefore,
$\sum_{j=1}^{\infty} t_{j} f_{j}(z) \in W R_{\mathcal{H}}(\lambda, \alpha, \beta)$.
This completes the proof.
Corollary 4.1. The class $W R_{\mathcal{H}}(\lambda, \alpha, \beta)$ is a convex set.

5. Distortion and growth theorems

We introduce the distortion theorems for the functions in the class $W R_{\mathcal{H}}(\lambda, \alpha, \beta)$.
Theorem 5.1. Let $f \in W R_{\mathcal{H}}(\lambda, \alpha, \beta)$. Then for $|z|=$ $r<1$, we have
$|f(z)|$
$\geq\left(1-b_{1}\right) r-\frac{(1-\alpha)\left(1-b_{1}\right)}{4(\beta+1)-(\beta+\alpha)(\lambda+1)} r^{2}$
and
$|f(z)|$
$\leq\left(1+b_{1}\right) r+\frac{(1-\alpha)\left(1-b_{1}\right)}{4(\beta+1)-(\beta+\alpha)(\lambda+1)} r^{2}$.

Proof. Assume that $f \in W R_{\mathcal{H}}(\lambda, \alpha, \beta)$. Then, by (2.4), we get
$|f(z)|=\left|z-\sum_{n=2}^{\infty} a_{n} z^{n}-\sum_{n=1}^{\infty} b_{n}(\bar{z})^{n}\right|$
$\geq\left(1-b_{1}\right) r-\sum_{n=2}^{\infty}\left(a_{n}+b_{n}\right) r^{n}$
$\geq\left(1-b_{1}\right) r-\sum_{n=2}^{\infty}\left(a_{n}+b_{n}\right) r^{2}$
$=\left(1-b_{1}\right) r-\frac{1}{4(\beta+1)-(\beta+\alpha)(\lambda+1)}$
$\times \sum_{n=2}^{\infty}[4(\beta+1)-(\beta+\alpha)(\lambda+1)]\left(a_{n}+b_{n}\right) r^{2}$
$\geq\left(1-b_{1}\right) r-\frac{1}{4(\beta+1)-(\beta+\alpha)(\lambda+1)}$
$\times\left[(1-\alpha)-(1-\alpha) b_{1}\right] r^{2}$
$=\left(1-b_{1}\right) r-\frac{(1-\alpha)\left(1-b_{1}\right)}{4(\beta+1)-(\beta+\alpha)(\lambda+1)} r^{2}$.
Relation (5.2) can be proved by using similar statements. So the proof is complete.
Theorem 5.2. Let $f \in W R_{\mathcal{H}}(\lambda, \alpha, \beta)$. Then for $|z|=$ $r<1$, we have
$\left|f^{\prime}(z)\right|$
$\geq\left(1-b_{1}\right)-\frac{2(1-\alpha)\left(1-b_{1}\right)}{4(\beta+1)-(\beta+\alpha)(\lambda+1)} r$
and
$\left|f^{\prime}(z)\right|$
$\leq\left(1-b_{1}\right)+\frac{2(1-\alpha)\left(1-b_{1}\right)}{4(\beta+1)-(\beta+\alpha)(\lambda+1)} r$.
Proof. The proof is similar to that of Theorem (5.1).

6. Integral operator

Definition (6.1)[8]. The Bernardi operator is defined by
$L_{c}(k(z))=\frac{c+1}{z^{c}} \int_{0}^{z} \epsilon^{c-1} k(\epsilon) d \epsilon$,
$c \in \mathbb{N}=\{1,2, \ldots\}$.
If $k(z)=z+\sum_{n=2}^{\infty} e_{n} z^{n}$, then
$L_{c}(k(z))=z+\sum_{n=2}^{\infty} \frac{c+1}{c+n} e_{n} z^{n}$.

Remark 6.1. If $f=h+\bar{g}$, where
$h(z)=z-\sum_{n=2}^{\infty} a_{n} z^{n}, \quad g(z)=-\sum_{n=1}^{\infty} b_{n} z^{n}$,
($a_{n} \geq 0, b_{n} \geq 0$), then
$L_{c}(f(z))=L_{c}(h(z))+\overline{L_{c}(g(z))}$.
Theorem 6.1. if $f \in W R_{\mathcal{H}}(\lambda, \alpha, \beta)$, then $L_{c}(f)(c \in \mathbb{N})$ is also in the class $W R_{\mathcal{H}}(\lambda, \alpha, \beta)$.
Proof. By (6.2) and (6.3), we get
$L_{c}(f(z))=L_{c}\left(z-\sum_{n=2}^{\infty} a_{n} z^{n}-\sum_{n=1}^{\infty} b_{n}(\bar{z})^{n}\right)$
$=z-\sum_{n=2}^{\infty} \frac{c+1}{c+n} a_{n} z^{n}-\sum_{n=1}^{\infty} \frac{c+1}{c+n} b_{n}(\bar{z})^{n}$.
Since $f \in W R_{\mathcal{H}}(\lambda, \alpha, \beta)$, then by (2.4), we have
$\sum_{n=2}^{\infty} \frac{\left[n^{2}(\beta+1)-(\beta+\alpha)(\lambda n-\lambda+1)\right]}{1-\alpha} a_{n}$
$+\sum_{n=1}^{\infty} \frac{\left[n^{2}(\beta+1)-(\beta+\alpha)(\lambda n-\lambda+1)\right]}{1-\alpha} b_{n} \leq 1$.
Since $c \in \mathbb{N}$, then $\frac{c+1}{c+n} \leq 1$, therefore
$\sum_{n=2}^{\infty} \frac{\left[n^{2}(\beta+1)-(\beta+\alpha)(\lambda n-\lambda+1)\right]}{1-\alpha}\left(\frac{c+1}{c+n}\right) a_{n}$
$+\sum_{n=1}^{\infty} \frac{\left[n^{2}(\beta+1)-(\beta+\alpha)(\lambda n-\lambda+1)\right]}{1-\alpha}\left(\frac{c+1}{c+n}\right) b_{n}$
$\leq \sum_{n=2}^{\infty} \frac{\left[n^{2}(\beta+1)-(\beta+\alpha)(\lambda n-\lambda+1)\right]}{1-\alpha} a_{n}$
$+\sum_{n=1}^{\infty} \frac{\left[n^{2}(\beta+1)-(\beta+\alpha)(\lambda n-\lambda+1)\right]}{1-\alpha} b_{n} \leq 1$,
and this gives the result.

References

[1] J. Clunie, T. Sheil-Small, Harmonic univalent functions, Ann. Acad. Aci. Fenn. Ser. A. I. Math., 9, 3-25, (1984).
[2] R. Bharati, R. Parvatham and A. Swaminathan, On subclasses of uniformly convex functions and corresponding class of starlike functions, Tamkang J. Math., 26(1), 17-32, (1997).
[3] A. Y. Lashin, On a certain subclass of starlike functions with negative coefficients, J. Ineq. Pure Appl. Math., 10(2), 1-8, (2009).
[4] W.G. Atshan and A. K. Wanas, On a new class of harmonic univalent functions, J. of Matematicki Vesink, 65(4), 555-564, (2013).
[5] R. M. El-Ashwah and W. Y. Kota, Some Properties of a subclass of harmonic univalent functions defined by salagean operator, Int. J. Open Problems Complex Analysis, 8(2), 21-40, (2016).
[6] R. Ezhilarasi and T. V. Sudharsan, A subclass of harmonic univalent functions defined by an integral operator, Asia Pacific J. of Math., 1(2), 225-236, (2014).
[7] E. S. Aqlan, Some problems connected with geometric function theory, Ph. D. Thesis, Pune University, Pune, (2004).
[8] S. D. Bernardi, Convex and starlike univalent functions, Trans. Amer. Math. Soc., 135, 429-446, (1969)

$$
\begin{aligned}
& \text { نجاح علي جبن الزيادي } \\
& \text { قسم ألرياضيات } \\
& \text { كلية البعوم } \\
& \text { جامعة بغذادم } \\
& \text { E-mail: najah.ali@qu.edu.iq }
\end{aligned}
$$

$$
\begin{aligned}
& \text { وقاص غالب عطشان } \\
& \text { قسم الرياضيـات } \\
& \text { كلية علوم الحاسبـات وتكنولوجيا المعلومـات } \\
& \text { جامعة القادسية } \\
& \text { E-mail: waggas.galib@qu.edu.iq }
\end{aligned}
$$

Abstract

(المستخلص : في هذا البحث، عرفنا صنف جديد من الدوال أحادية التكافؤ النو افقية من الثكل f $f=h+\bar{g}$ في قرص الوحدة المفتوح U. U حصلنا على الخواص الأساسية مثل، حدود المعامل، نقاط متطرفة، التركيب المحدب، مبر هنات النمو والتشوية ومؤثر

تكاملي.

