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Abstract- In this paper, a numerical solution for solving a special class of optimal 

control problems is considered. The main idea of the solution is to parameterize 

the state space by approximating the state function using a linear combination of 

Hermite polynomial with unknown coefficients an iterative method is proposed in 

order to facilitate the computation of unknown coefficients. Some illustrated 

examples are included to test the efficiency of algorithm. 
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1. Introduction 
Optimal control has many applications in every 

area of science and engineering. And has been 

studied by many researches[1-4]. 

Since the analytic solution is not always available 

for optimal control problems, therefor a numerical 

solution must be found. Numerical methods for 

solving optimal control problem are vary in their 

approach and complexity. in [5] ,the authors 

suggested a new algorithm for solving optimal 

control problems and controlled duffing oscillator 

using Chebyshev polynomial as a basis function. 

While numerical solution for solving optimal 

control problems based on state parameterization 

technique were consider in [6] and [7]. 

Furthermore the fundamental of control 

parameterization method and solving its various 

applications were introduced in [8]. In addition, 

control parameterization technique for discrete 

value control problems was considered in [9]. 

In recent year different approximate methods and 

many algorithms has been introduced to solve the 

optimal control problems [10-13]. 

The organization of this paper is presented into the 

following sections. In section 2 the Hermite 

polynomial which are used as a basis function are 

reviewed briefly. Section 3, is about mathematical 

formulation of optimal control problem.in 

section4, the proposed algorithm is derived. While 

section 5 includes numerical example and results. 

Finally, the paper is concluded in section 6. 

 

2. Hermite polynomials  
In mathematics, the Hermite polynomials are a 

classical orthogonal polynomial sequence that 

arises in probability, such as the Edgeworth series, 

in combinatorics, as an example of an Appell 

sequence, obeying the umbral calculus, and in 

physics, where they give rise to the Eigenstates of 

the quantum harmonic oscillator. They are named 

in honor of Charles Hermite." 

" in a sense to be described below, of the form 

  ( )  (  )
   

   

   
   

 
     For n=1,2,3,….. 

The first four Hermite polynomials are 

  ( )      
  ( )      
  ( )    

     

  ( )    
       

  ( )     
         " 

1-1 Definition:  "For n ∈  N, we define Hermite 

polynomials      ( ) by 

∑
  ( )

  
   

          
 
for  | |                 (1) 

To find      ( ) expand the right hand side of (1) 

as a Maclaurin series in r and equate coefficients. 

From Equation (1) we derive the closed expression 

  ( )  ∑
(  )   

  (    ) 
(  )    

⌊   ⌋
                     (2) 

Where ⌊ ⌋ denoted the largest integer less than or 

equal to t .checking with n=0,1,2,…. We find that 

(2) yields the expected Hermite polynomials." 

 

3.  Mathematical formulate 
The process illustrated by the following system of 

nonlinear differential equation on the final time 

interval [0,1] is consider  

  ( )   (   ( )  ̇( ))                                       (3) 

With initial condition x(0)= x0 ,x(1)=x1                 (4) 

Where   ( ) [   ]       is the state variable, 

 ( ) [   ]     is the control variable, and f is a 

real valued continuously differential function. 

Along with the controlled process (3-4) a cost 

functional of the form  
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  ∫  (   ( )  ( ))  
 

 
                                      (5) 

is defined. 

There are admissible control are always assume 

that pass through (0,x0)and (1,x1) and in  the set of 

controls, the control variable is searched which 

minimizes J and call it optimal control. 

 

4.  The proposed algorithm 
The following approximate for   ( ) Is first 

consider which is in terms the Hermite 

polynomials    ( )           

  ( )      ( )      ( )      ( )             (6) 

Using the boundary condition (4), yields: 

                 
     

 
                   (7) 

By substitution of (7) into (6), we obtain   

  ( )      ( )  (
     

 
   )  ( )  (   

   )  ( )                                                            (8) 

The control variable u(t) are then obtained using 

eq.(3). Then, substituting x1(t) and u(t), we obtain J 

as a function of a2. The solution of the optimal 

control problem (3-4) is J(a
*
) (a

* 
is the value which 

minimizes J(a2)). 

The state and control variables are also found from 

a
* 
approximately. 

In the second step, the following approximated is 

use  

  ( )    ( )      ( )      ( )      ( )              
                                                                             (9) 

Using the boundary conditions (4) one can obtain  

  ( )    ( )      ( )      ( )      ( )    
                                                                           (10) 

  ( )    ( )      ( )      ( )      ( )    
                                                                           (11) 

From (10-11) we have  

                                                      (12) 

In this case the solution of optimal control problem 

(3-4)is J(a
*
) where a

* 
is the value which minimizes 

J(a3). 

In general, the approximate solution in the n
th
 step 

will be  

  ( )      ( )          ( )      ( )  
        ( )                                                     (13) 

Using the first condition   x(0)=x0 to get  

  ( )      ( )          ( )      ( )  
        ( )              ( )  
    ( )          ( )        ( )  
    ( )          ( )                             (14) 

Form the second condition of (4) we obtained 

        ( )      ( )          ( )               
                                                                           (15) 

We solve the equation (14) and (15) 

simultaneously to obtain      and    as a function 

of      as follows: 

Multiply eq.(14) and (15)by   ( )      ( ) 
respectively ,yields: 

  ( )(        ( )      ( )  
        ( ))         ( )(        ( )  
    ( )          ( ))   From the above 

equations ,one can get  

     
  ( )    ( )   ( )    ( )

    ( )  ( )     ( )  ( )
                 (16) 

   
    ( )    ( )     ( )    ( )

    ( )  ( )     ( )  ( )
             (17) 

The denominator in Eq.(16) and (17) are not zero 

as illustrate in the following lemma. 

Lemma (1): 

The result of  

     ( )  ( )      ( )  ( )                     (18) 

is not zero. 

Proof : If n is even ,then (18)becomes  

     ( )   ( )       ( )   ( ) , m=0,1,2  

Since we have    ( )  (  )
 (  ) 

  
 

And      ( )     , Therefor 
     ( )   ( )       ( )   ( )

  (  ) 
(  ) 

  
   ( )  (  )

     
(  ) 

  
   ( ) 

Since    ( )    

     ( )   ( )       ( )   ( )      

Now if n is odd ,then      ( )     
⇒    ( )  ( )      ( )  ( )  

     ( )  ( )
 And  

    ( )     ( )               
Hence 

      ( )  ( )   (  )
 (  ) 

  
  ( ) 

                  (  )   
(  ) 

  
  ( ) 

Therefore 

    ( )  ( )      ( )  ( )     
The proposed algorithm can be summarized by the 

following steps: 

Step 1: Choose an       
Step 2: For n=1 , calculate : 

  ( )      ( )  (
     

 
   )  ( )  (   

   )  ( )And then calculate a2. 

Step 3: For n=2 , calculate  

  ( )    ( )      ( )      ( )      ( ) 
Set    a2=0    and    a1=2a3   calculate a3. 

Step 4: For   ⇒     , calculate  

  ( )      ( )          ( )      ( )
         ( ) 

Set             
  ( )    ( )   ( )    ( )

    ( )  ( )     ( )  ( )
                 

                      
    ( )    ( )     ( )    ( )

    ( )  ( )     ( )  ( )
    Calculate an+1 . 

 

5. Numerical Examples  
The efficiency of the proposed algorithms is the 

illustrated by same examples which have analytical 

solutions, so that the validation of the method can 
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be allowed by comparing with the results of the 

exact solution. 

 

Example (1) 

This example concerns with the minimization of  

 

                                      

(19) 

 

Subject to 

  ̇( )   ( )   ( )                                          (20) 

With boundary conditions 

 ( )                 ( )  
 

 
(  

 

 
)
 
  

                                                                           (21) 

Where the analytical solution is: 

 ( )    
 

 
     (

 

  
  )                        (22) 

 ( )                                                        (23) 

Consider on approximation of   ( ) to be: 

  ( )      ( )      ( )      ( )                
                                                                           (24) 

Using the boundary conditions (21) yields: 

                                                                  (25) 

   
 

 
(  

 

 
)
 
                                          (26) 

Relations (25-26) are substituted into (24) to get 

the  

  ( )        (
 

 
(  

 

 
)
 
    )             

                                                                           (27) 

The control variable u(t) can be found from 

Eq.(20) with the use of Eq.(24) to be  

 ( )       ̇  (
 

 
(  

 

 
)
 
    )  ̇      ̇  

      (
 

 
(  

 

 
)
 
    )                (28) 

Then substituted the Eqs.(24)and (26) into Eq.(19) 

,we obtain J as a function of a2   

  
    

    
 
  

  
  
  

    

    
                          

The value which minimize J is       =  -0.1023 

then   (  )              

In addition  a0 = -0.2046 and   a1= 0.3045. 

The state and control variables can be calculated 

approximately as  

   
    

    
  

    

    
    

  
    

    
 
    

    
  

    

    
       

Now the approximated solution can be modified as 

below  

  ( )    ( )      ( )      ( )      ( )    
                                                                           (29) 

And the results of repeated the above procedure are 

summarization as follows : 

    
    

    
 
 

 
(  

 

 
)
 
        

  ( )  
    

    
  

    

    
   ( 

    

    
 
 

 
(  

 

 
)
 
 

   )                                     

                

   
    

    
  

    

    
   

    

    
                              

  
    

    
 
    

    
  

    

    
   

    

    
           

And the value of J*: 0.08401684. 

The approximate results are listed in table (1) and 

are plotted in Figure (1) and Figure (2). 

 

Table (1) 

time Hermite polynomial 

t x u 

0 0 0.6089 

0.1 0.0568 0.5839 

0.2 0.1054 0.5507 

0.3 0.1459 0.5093 

0.4 0.1781 0.4597 

0.5 0.2022 0.4020 

0.6 0.2181 0.3360 

0.7 0.2258 0.2619 

0.8 0.2253 0.1796 

0.9 0.2166 0.0891 

1 0.1998 -0.0096 

J
* 0.08401684  

exact 0.0840456  

 

 

 
Figure (1) State vector 
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Figure (2) Optimal control vector 

 

Example (2): The performance index to be 

minimized is  

  
 

 
∫ (   ( )    ( ))  
 

 
                         (30) 

 ̇( )   ( )   ( )                                          (31) 

 ( )              ( )                                     (32) 

we will solved by expanding x(t) into two order 

Hermite series.   

N =2 the state variable can be written as  

  ( )      ( )      ( )      ( )           (33) 

And the same steps above in example (1) we 

obtain  

   
 

 
  

  

 
     

  
 

 
 
  

 
  

  

 
       

and the result value of      is  6.1905. 

The modified equation of x1 is 

                                      (34) 

And re-sequencing solution steps, such as the first 

example. The value of   is 6.0693 

The approximate results are listed in table (2) 

 

Table (2) 

n J 

1 6.6667 

2 6.1905 

2(modified method) 6.0693 

 

Example (3): 

Consider the following quadratic optimal control 

problem  

Minimize   

  ∫ (  ( )    ( ))  
 

 
                                 (35) 

 ̇( )   ( )                                                       (36) 

 ( )           ( )  
 

 
                                       (37) 

we approximate the state variable by 2nd order 

series of unknown parameters. 

                                                  (38) 

The first result of x1 is  

   
  

  
  

 

  
       and  

  
  

  
 
  

  
       

the value of  J =0.3286 .And the value of J 

becomes  0.32857867 after use the modified 

equation                          

And we can use other the approximated solution x 

as 

                         

And the value of   J=0.328587046. See Table (3). 

 

Table (3) 

n J 

2 0.3286 

2(modified method) 0.32857867 

 

6. Conclusion 
The proposed algorithm for treating optimal 

control problem depending on Hermite polynomial 

and their propertied provided a simple way to 

obtain an optimal control with fast convergence. 
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