Some results on IS-algebras
 بعض النتائـج حول جبورIS

Assistant lecturer Sundus Najah Jabir
Faculty of Education /Kufa university

Abstract
In this paper we study IS- algebra, subIS- algebra, IS-algebra homomorphism and congruence relations on IS-algebra, and prove some results about this .

1.Introduction

The notion of BCK-algebras was proposed by Y.Imai and K.Iseki [1] in 1966 in the same year K.Iseki [2] introduced the notion of a BCI- algebras which is a generalization of a BCK-algebras for the general development of BCK / BCI- algebras, the ideal theory plays an important role in 1993 Y.B.Jun et al. [6] introduced a new class of algebras related to BCI- algebras and semigroups called a BCI- semigroup . from now on, we rename it as an IS- algebra for the convenience of study .

2. preliminary

we review some definitions and properties that will be useful in our results.
Definition 2.1 A Semigroup is an ordered pair ($\mathrm{X}, \cdot \cdot$, where X is a non empty set and "." is an associative binary operation on X . [3]

Definition 2.2 A BCI- algebra is triple ($\mathrm{X}, *, 0$) where X is a non empty set "*" is binary operation on $\mathrm{X}, 0 \in \mathrm{X}$ is an element such that the following axioms are satisfied for all $x, y, z \in \mathrm{X}$:

1) $((x * y) *(x * z)) *(z * y)=0$,
2) $(x *(x * y)) * y=0$,
3) $x * x=0$,
4) $0 * x=0$
if $x * y=0$ and $y * x=0$ then $x=y, \forall x, y, z \in \mathrm{X}$
Definition 2.3 An IS-algebra is a non empty set with two binary operation "*" and "." and constant 0 satisfying the axioms :
1. $(\mathrm{X}, *, 0)$ is a BCI-algebra.
2. ($\mathrm{X},$.) is a semigroup,
3. $x \cdot(y * z)=(x . y) *(x . z)$ and $(x * y) \cdot z=(x . z) *(y . z)$, for all $x, y, z \in X$. [9]

Example 2.4 let $\mathrm{X}=\{0, \mathrm{a}, \mathrm{b}, \mathrm{c}\}$ define "*" operation and multiplication "." by the following tables:

$*$	0	a	b	c
0	0	a	b	c
a	a	0	c	b
b	b	c	0	a
c	c	b	a	0

.	0	a	b	c
0	0	0	0	0
a	0	a	b	c
b	0	a	b	c
c	0	0	0	0

Then by routine calculations we can see that X is an $\boldsymbol{I S}$-algebra.

Example 2.5 let $\mathrm{X}=\{0, \mathrm{a}, \mathrm{b}, \mathrm{c}\}$ define $" *$ " operation and multiplication "." by the following tables:

$*$	0	a	b	c
0	0	0	c	b
a	a	0	c	b
b	b	b	0	c
c	c	c	b	0

.	0	a	b	c
0	0	0	0	0
a	0	0	0	0
b	0	0	b	c
c	0	0	c	b

Then by routine calculations we can see that X is an IS-algebra.
Example 2.6 let $\mathrm{X}=\{0, \mathrm{a}, \mathrm{b}, \mathrm{c}\}$ define $" * "$ operation and multiplication "." by the following tables:

$*$	0	a	b	c
0	0	0	b	b
a	a	0	c	b
b	b	b	0	0
c	c	b	a	0

.	0	a	b	c
0	0	0	0	0
a	0	a	0	a
b	0	0	b	b
c	0	a	c	b

It is easy to prove that X is an $\boldsymbol{I S}$-algebra.

Example 2.7 let $\mathrm{X}=\{0, \mathrm{a}, \mathrm{b}, \mathrm{c}\}$ define "*" operation and multiplication "." by the following tables:

$*$	0	a	b	c
0	0	0	c	b
a	a	0	c	b
b	b	b	0	c
c	c	c	b	0

.	0	a	b	c
0	0	0	0	0
a	0	a	0	a
b	0	0	b	b
c	0	0	b	c

Then by routine calculations we can see that X is an IS-algebra.
Example 2.8 let $\mathrm{X}=\{0, \mathrm{a}, \mathrm{b}, \mathrm{c}\}$ define "*" operation and multiplication "." by the following tables:

$*$	0	a	b	c	d
0	0	0	0	0	0
a	a	0	a	a	0
b	b	b	0	0	0
c	c	c	c	0	0
d	d	d	d	d	0

.	0	a	b	c	d
0	0	0	0	0	0
a	0	0	0	0	0
b	0	0	0	0	b
c	0	0	0	b	c
d	0	a	b	c	d

Then X is an IS-algebra.
Remark 2.9 let X be an IS-algebra then we have

1) $0 x=x 0=0$
2) $x \leq y$ implies that $x z \leq y z$ and $z x \leq z y \quad \forall x, y, z \in \mathrm{X}$.

Definition 2.10 let (S, \cdot) be a semigroup P a non empty set proper subset of S is said to be a subsemigroup if (P, \cdot) is semigroup .[3]

Journal University of Kerbala, Vol. 15 No. 3 Scientific . 2017

Definition 2.11 A non empty subset S of X with binary operation "*" and " ." is called subISalgebra of X if it satisfies the following condition :

1) $x^{*} y \in S \quad \forall x, y \in S$.
2) $x y \in S \quad \forall \quad x, y \in S$.

Definition 2.12 Let X and Y be IS-algebra a mapping $f: \mathrm{X} \rightarrow \mathrm{Y}$ is called a $\boldsymbol{I S}$-algebra homomorphism (briefly homomorphism) if $f(x * y)=f(x) * f(y)$ and $f(x y)=f(x) f(y)$ for all $x, y \in \mathrm{X}$.

Let $f: \mathrm{X} \rightarrow \mathrm{Y}$ IS-algebra homomorphism . then the set $\{x \in \mathrm{X}: f(x)=0\}$ is called the kernel $\boldsymbol{o f} \boldsymbol{f}$, and denote by $\operatorname{ker} f$. moreover, the set $\{f(x) \in \mathrm{Y}: x \in \mathrm{X}\}$ is called the image of \boldsymbol{f} and denote by $\operatorname{Im} \boldsymbol{f}$.
Definition 2.13 Let X, Y be a IS-algebra and $f: \mathrm{X} \rightarrow \mathrm{Y}$ IS-algebra homomorphism then :

1) f is a monomorphism iff one to one homomorphism .
2) f is an epimorphism iff onto homomorphism .
3) f is an isomorphism iff bijective homomorphism .
$\begin{array}{lll}\text { Definition } 2.14 & \text { A } \quad \begin{array}{l}\text { BCI algebra } \\ x^{*}\left(x^{*} y\right)=y^{*}\left(y^{*} x\right)\end{array} \quad \begin{array}{l}\text { is } \\ x, y \in \mathrm{X} .\end{array} & \text { said to be commutative if }\end{array}$
Definition 2.15 Let X be a IS-algebra and let ρ be binary relation on X then :
4) ρ is right (left) compatible if when every $(x, y) \in \rho$ then $\left(x * z, y^{*} z\right) \in \rho\left[\left(z^{*} x, z * y\right) \in \rho\right]$ and $(x \cdot z, y \cdot z) \in \rho[(z \cdot x, z \cdot y) \in \rho]$

$$
\forall x, y, z \in \mathrm{X}
$$

2) ρ is compatible if $(x, y) \in \rho$ and $(u, v) \in \rho$ imply

$$
\left(x * u, y^{*} v\right) \in \rho \quad \text { and } \quad(x \cdot u, y \cdot v) \in \rho \forall x, y, u, v \in \mathrm{X} .
$$

3) A compatible equivalence relation is called a congruence relation .[10]

Remark 2.16

$x \rho=\{y \in \mathrm{X}:(x, y) \in \rho\}$ and $\mathrm{X} / \rho=\{x \rho: x \in \mathrm{X}\}$.

3. Main Results

In this section, we find some results about subIS-algebra, IS-algebra homomorphism and congruence relation on IS-algebra.

Proposition 3.1 Let A and B are subIS-algebra of X then $A \cap B$ is subIS-algebra of X .

Proof:

Let A and B be subIS-algebra of X , and let $x, y \in A \cap B$. Then
$x, y \in A$ and $x, y \in B$
so $x^{*} y \in A$ and $\quad x^{*} y \in B \quad$ [since A, B are subIS-algebra]
then $\quad x * y \in A \cap B$
Now, let $x, y \in A \cap B$
then $x, y \in A \quad$ and $\quad x, y \in B$
so $x y \in A$ and $x y \in B \quad$ [since A, B are subIS-algebra]
therefore $\quad x y \in A \cap B$
Hence $A \cap B$ is a subIS-algebra.

Proposition 3.2 Let A and B are subIS-algebra of X then $A \cup B$ is a subIS-algebra If $A \subseteq B$ or $B \subseteq A$.

Proof:

Suppose that A and B are subIS-algebra of X , and $x, y \in A \cup B$
if $A \subseteq B$ then $A \cup B=B$
so $A \cup B$ is a subIS-algebra . [since B is a subIS-algebra]
if $B \subseteq A$ then $A \cup B=A$
so $A \cup B$ is a subIS-algebra . [since A is a subIS-algebra]

Lemma 3.3 Let $f: \mathrm{X} \rightarrow \mathrm{Y}$ be a IS-algebra homomorphism then $\operatorname{ker} f$ is a subIS-algebra .

Proof:

Let $x, y \in \operatorname{ker} f$. Then $f(x)=0$ and $f(y)=0$
$f(x * y)=f(x) * f(y)=0 * 0=0 \quad$ [since f is a homomorphism]
so $\quad x^{*} y \in \operatorname{ker} f \quad$, also
$f(x y)=f(x) f(y)=0$,
Therefore $x y \in \operatorname{ker} f$
Hence ker f is a subIS-algebra .
Lemma 3.4 Let $f: \mathrm{X} \rightarrow \mathrm{Y}$ be a IS-algebra homomorphism then:

1) $f(0)=0$
2) if $x \leq y$ then $f(x) \leq f(y)$
3) if $x \wedge y=x^{*}\left(x^{*} y\right) \quad$ then $\quad f(x \wedge y)=f(x) \wedge f(y)$.

Proof:

1) let $x \in \mathrm{X} \quad f(0)=f(x * x)=f(x) * f(x)=0$.
2) let $x \leq y \rightarrow x^{*} y=0$ then $f\left(x^{*} y\right)=f(0)=0$

$$
f(x * y)=0 \rightarrow f(x) * f(y)=0 \Rightarrow f(x) \leq f(y) .
$$

3) let $x, y \in \mathrm{X}$ and $x \wedge y=x^{*}\left(x^{*} y\right) \Rightarrow f(x \wedge y)=f(x *(x * y))$

$$
=f(x) *(f(x) * f(y))=f(x) \wedge f(y)
$$

Proposition 3.5 Let $f: \mathrm{X} \rightarrow \mathrm{Y}$ and $g: \mathrm{Y} \rightarrow \mathrm{Z}$ are IS-algebra homomorphism then $g \circ f: \mathrm{X} \rightarrow \mathrm{Z}$ is a IS-algebra homomorphism.

Proof:

Let $f: \mathrm{X} \rightarrow \mathrm{Y}$ and $g: \mathrm{Y} \rightarrow \mathrm{Z}$ are a IS-algebra homomorphism
Now,

$$
\begin{aligned}
(g \circ f)(x y) & =g(f(x y)) \\
= & g(f(x) \cdot f(y)) \\
= & g(f(x)) \cdot g(f(y)) \\
& =g \circ f(x) \cdot g \circ f(y)
\end{aligned}
$$

Journal University of Kerbala , Vol. 15 No. 3 Scientific . 2017

And

$$
\begin{aligned}
(g \circ f)(x * y) & =g(f(x * y)) \\
= & g(f(x) * f(y)) \\
= & g(f(x)) * g(f(y)) \\
= & g \circ f(x) * g \circ f(y)
\end{aligned}
$$

Hence $g \circ f$ is a IS-algebra homomorphism .
Proposition 3.6 Let $f: \mathrm{X} \rightarrow \mathrm{Y}$ be a IS-algebra homomorphism and $A \subseteq \mathrm{X}$ is subIS-algebra then $f(A)$ is subIS-algebra .

Proof:

Let $a^{\prime}, b^{\prime} \in f(A) \quad \exists a, b \in A \quad$ s.t $\quad f(a)=a^{\prime},(b)=b^{\prime}$
$a^{*} * b^{\prime}=f(a) * f(b)=f(a * b) \in f(A) \quad \therefore a^{*} * b^{\prime} \in f(A)$
Now,

$$
a^{\prime} \cdot b^{\prime}=f(a) \cdot f(b)=f(a \cdot b) \in f(A) \quad \therefore a^{\prime} \cdot b^{\prime} \in f(A)
$$

Hence $f(A)$ is subIS-algebra.
Proposition 3.7 Let $f: \mathrm{X} \rightarrow \mathrm{X}^{\prime}$ be a IS-algebra homomorphism if X is commutative then $f(\mathrm{X})$ is commutative .

Proof:

to prove $f(\mathrm{X})$ is IS-algebra
let $y_{1}, y_{2} \in f(x) \exists x_{1}, x_{2} \in X$ s.t $f\left(x_{1}\right)=y_{1}, f\left(x_{2}\right)=y_{2}$
so, $\quad y_{1} \cdot y_{2}=f\left(x_{1}\right) \cdot f\left(x_{2}\right)=f\left(x_{1} \cdot x_{2}\right) \in f(x)$
let $x, y, z \in f(x) \subseteq \mathrm{Y}$ so $(x \cdot y) \cdot z=x \cdot(y \cdot z)$
hence ($f(x), \cdot)$ is semigroup .
to prove $(f(\mathrm{X}), *, \cdot)$ is BCI algebra
let X is commutative then

$$
\begin{array}{rl}
f(x) *(f(x) * f(y))=f(x) * & f(x * y) \\
& =f(x *(x * y)) \\
= & f(y *(y * x)) \\
= & f(y) * f(y * x) \\
= & f(y) *[f(y) * f(x)]
\end{array}
$$

Hence $f(\mathrm{X})$ is commutative .
Proposition 3.8 Let $f: \mathrm{X} \rightarrow \mathrm{X}^{\prime}$ be a IS-algebra homomorphism if $f(\mathrm{X})$ is commutative then X is commutative .

Proof:

Let $x, y \in \mathrm{X} \rightarrow f(x), f(y) \in f(\mathrm{X})$
Let $f(\mathrm{X})$ is commutative

Journal University of Kerbala , Vol. 15 No. 3 Scientific . 2017

$f(x) *[f(x) * f(y)]=f(y) *[f(y) * f(x)]$
$\Rightarrow f(x *(x * y))=f\left(y^{*}\left(y^{*} x\right)\right)$
$\Rightarrow x^{*}(x * y)=y^{*}\left(y^{*} x\right)$
Hence X is commutative .
Proposition 3.9 Let $f: \mathrm{X} \rightarrow \mathrm{Y}$ epimorphism and let X is commutative with operation of semigroup then Y is commutative with operation of semigroup .

Proof:

Let $x^{\prime}, y^{\prime} \in \mathrm{Y} \quad \exists x, y \in \mathrm{X} \quad$ s.t $\quad f(x)=x^{\prime} \quad, \quad f(y)=y^{\prime}$
$x^{\prime} \cdot y^{\prime}=f(x) \cdot f(y)=f(x \cdot y)=f(y \cdot x)=f(y) \cdot f(x)=y^{\prime} \cdot x^{\prime}$
Hence Y is commutative with operation of semigroup .
Proposition 3.10 Let X be a IS-algebra then an equivalence relation ρ on X is congruence if and only if is both left and right compatible .

Proof:

Let ρ is congruence relation and let $x, y \in \mathrm{X} \quad$ s.t $(x, y) \in \rho$ then
$(z, z) \in \rho \quad$ [since ρ is reflexive] and ρ is compatible then $\left(x * z, y^{*} z\right) \in \rho$ and $(x \cdot z, y \cdot z) \in \rho$
Hence ρ is right compatible.
In a similar way, we can prove that ρ is left compatible .

Conversely

Let ρ is both left and right compatible and let $x, y, u, v \in \mathrm{X}$ s.t $(x, y) \in \rho$ and $(u, v) \in \rho$
Since ρ is right compatible then

$$
(x * u, y * u) \in \rho \text { and }(x \cdot u, y \cdot u) \in \rho
$$

Since ρ is left compatible then

$$
(y * u, y * v) \in \rho \quad \text { and } \quad(y \cdot u, y \cdot v) \in \rho
$$

Since ρ is transitive

$$
\text { So }(x * u, y * v) \in \rho \quad \text { and } \quad(x \cdot u, y \cdot v) \in \rho
$$

Hence ρ is congruence.
Proposition 3.11 Let ρ is congruence relation on IS-algebra X then X / ρ is IS-algebra under operations $x \rho * y \rho=(x * y) \rho$ and $(x \rho) \cdot(y \rho)=(x \cdot y) \rho$
Proof: Let ρ is congruence relation
It is clear the operation are well define then
($\mathrm{X} / \rho, *, 0$) is BCI algebra and ($\mathrm{X} / \rho,$.) is semigroup
Let $x \rho, y \rho, z \rho \in \mathrm{X} / \rho$ then

$$
\begin{aligned}
&(x \rho \cdot y \rho) * z \rho=(x \cdot y) \rho * z \rho \\
&=((x \cdot y) * z) \rho \\
&=(x * z \cdot y * z) \rho \\
&=(x * z) \rho \cdot(y * z) \rho \\
&=(x \rho * z \rho) \cdot(y \rho * z \rho)
\end{aligned}
$$

Hence ($\mathrm{X} / \rho, *, ., 0$) is IS-algebra .

Journal University of Kerbala , Vol. 15 No. 3 Scientific . 2017

Proposition 3.12 Let ρ is congruence relation on IS-algebra X then the mapping $\Omega: \mathrm{X} \rightarrow \mathrm{X} / \rho$ define by $\Omega(x)=x \rho \quad \forall x \in \mathrm{X}$ is IS-algebra homomorphism .

Proof: Let ρ is congruence relation and let $x, y \in \mathrm{X}$ then
$\Omega(x * y)=(x * y) \rho=x \rho * y \rho=\Omega(x) * \Omega(y)$ and
$\Omega(x \cdot y)=(x \cdot y) \rho=x \rho \cdot y \rho=\Omega(x) \cdot \Omega(y)$
Hence Ω is IS-algebra homomorphism .
Proposition 3.13 Let X and Y be IS-algebra and $f: \mathrm{X} \rightarrow \mathrm{Y}$ homomorphism then Φ is congruence relation on X where $\Phi=\{(x, y) \in \mathrm{X} \times \mathrm{X}: f(x)=f(y)\}$.

Proof: Let $f: \mathrm{X} \rightarrow \mathrm{Y}$ homomorphism
To show that Φ is an equivalence relation
then $(x, x) \in \Phi \quad[$ since $f(x)=f(x)]$
Let $(x, y) \in \Phi \quad$ s.t $\quad f(x)=f(y) \Rightarrow f(y)=f(x) \quad \therefore(y, x) \in \Phi$
Let $(x, y) \in \Phi$ and $(y, z) \in \Phi$
$\rightarrow f(x)=f(y)$ and $f(y)=f(z) \Rightarrow f(x)=f(z) \quad \therefore(x, z) \in \Phi$
$\therefore \Phi$ is equivalence relation
Let $x, y, u, v \in \mathrm{X}$ s.t $(x, y),(u, v) \in \Phi \Rightarrow f(x)=f(y), f(u)=f(v)$
$\Rightarrow f(x * u)=f(x) * f(u)=f(y) * f(v)=f(y * v)$ and
$f(x \cdot u)=f(x) \cdot f(u)=f(y) \cdot f(v)=f(y \cdot v) \quad$ then
$\left(x * u, y^{*} v\right) \in \Phi \quad$ and $\quad(x \cdot u, y \cdot v) \in \Phi$
$\therefore \Phi$ is congruence relation.
Proposition 3.14 Let $f: \mathrm{X} \rightarrow \mathrm{Y}$ be IS-algebra homomorphism and $\rho \subseteq \Phi$ a congruence relation of X then there exist a unique homomorphism $g: \mathrm{X} / \rho \rightarrow \mathrm{Y}$ where Φ as define above .

Proof:

Let g define by $g(x \rho)=f(x)$ then g is well define

$$
\begin{aligned}
& \because x \rho=y \rho \rightarrow(x, y) \in \rho \quad \because \rho \subseteq \Phi \quad \text { and } \quad(x, y) \in \rho \rightarrow(x, y) \in \Phi \\
& \Rightarrow f(x)=f(y) \quad \therefore g(x \rho)=g(y \rho)
\end{aligned}
$$

Now,

$$
\begin{aligned}
g(x \rho * y \rho)=g & ((x * y) \rho) \\
& =f(x * y) \\
& =f(x) * f(y) \\
& =g(x \rho) * g(x \rho)
\end{aligned}
$$

And

$$
\begin{aligned}
g(x \rho \cdot y \rho)=g & ((x \cdot y) \rho) \\
& =f(x \cdot y) \\
& =f(x) \cdot f(y) \\
& =g(x \rho) \cdot g(x \rho)
\end{aligned}
$$

Hence g is IS-algebra homomorphism and g is a unique .

Journal University of Kerbala , Vol. 15 No. 3 Scientific . 2017

References

[1] Y.Imai and K.Iseki, "On Axiom Systems of Propositional Calculi XIV ", Proc.Japan Acad,42 ,19-22, 1966.
[2] K.Iseki, " An Algebra Related with a Propositional Calculus" , Japan Acad . ,42 1966.
[3] Petrich, Mario."Introduction to Semigroups" Charles E.Merrill Publishing Company A Bell and Howell Company ,USA. 1973.
[4] Q.P.Hu and K.Iseki ,"On BCI-algebras satisfying (x*y)*z=x*(y*z), Math. Seminar Notes (presently,Kobe J. Math.), 8(1980), 553-555.
[5] M.Aslam and A.B.Thaheem, A note on p-semisimple BCI-algebras, Math. Japon., 36:1(1991),39-45.
[6] Y.B.Jun, S.M.Hong and E.H.Roh, "BCI-semigroups", Honam Math. J., 15:1 (1993),59-64 .
[7] Y.B.Jun and E.H.Roh,"On the BCI-G pert of BCI-algebras, Math. Japon., 38:4(1993),697-702.
[8] S.S.Ahn and H.S.Kim, "A note on I-ideals in BCI-semigroups ",Comm.Korean Math. Soc., 11:4(1996),895-902.
[9] Young Bae Jun, Xiao Long Xin and Eun Hwan Roh "A Class of algebras related to BCIalgebras and semigroups ", Soochow Journal of Math. , 24, no. 4,pp. 309- 321,(1998) .
[10] K. H. Kim ,"On Structure of KS-Semigroups" ,Int . Math. Forum, 1, No. 2, 67- 76, (2006) .
[11] Joncelyn S.Paradero-Vilela and Mila Cawi "On KS-Semigroup Homomorphism " International Mathematical Forum ,4, no. 23, 1129-1138, (2009) .

