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Abstract :-

An R-submodule N of an R-module M is called pure if IN =N nIM for every ideal | of R .
In this paper we introduce the notion of purely quasi-invertible submodule and a purely quasi-
Dedekind module, where an R-submodule N of an R-module M is called purely quasi-invertible if,
N is pure and Hom, (M /N ,M)=0. And an R-module M is called purely quasi-Dedekind if, every
nonzero pure submodule N of M is quasi-invertible ; that is Hom, (M /N ,M)=0. Beside these, we
also introduce the notion of purely prime module, where an R-module M is called purely prime
module if ann,M =ann,N for all nonzero pure submodule N of M .We gave many properties
related with this concepts. And we studied the relationships between these concepts and several other
types of modules. In this paper R is a commutative ring with unity and M is a unitary R-module .

0. Introduction:-

Let R be a ring and M be a unital R-module. If N is a submodule of M, we write N <M
and if N is an essential submodule of M then we write N <, M , also if N is a direct summand of

M then we write N <® M . Recall an R-submodule N of an R-module M is called pure if
IN=N~IM for every ideal I of R [5], [10], and N is called quasi-invertible if,
Hom, (M /N ,M)=0 [14] . And an R-module M is called quasi-Dedekind if, each nonzero

submodule of M is quasi-invertible [14] . And an R-module M is called prime module if
anngM =ann,N for all nonzero submodule N of M [8] . Ghawi Th.Y. in [11] introduced the

concepts of essentially quasi-invertible submodules and essentially quasi-Dedekind modules as a

Key Words : Purely quasi-invertible Submodules; Pure Submodules; Purely quasi-
Dedekind Modules; Purely prime Modules .

generalization of quasi-invertible submodules and quasi-Dedekind modules, where a submodule
N of an R-module M is called essentially quasi-invertible ifN <, M and N is quasi-invertible and
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M is called essentially quasi-Dedekind if every essential submodule of M is quasi-invertible .
This paper has been organized on three sections. In section 1, we generalized the concept of quasi-
invertible submodule to a purely quasi-invertible submodule, where a submodule N of a module
M is called purely quasi-invertible if N is a pure and quasi-invertible submodule. We give some
basic properties of this class of submodules.

In section 2, we introduce the concept of a purely quasi-Dedekind module as a generalization to
concept a quasi-Dedekind module, where an R-module M is called purely quasi-Dedekind if, every
nonzero pure submodule of M is quasi-invertible . We prove that if M a purely quasi-Dedekind
module with M /K is projective for all pure submodule K of M then M /N is a purely quasi-
Dedekind module, for all N <M . Also, we show by an example a direct sum of purely quasi-
Dedekind modules need not be a purely quasi-Dedekind module (see Ex 2.14) . On the other hand
we give a condition under which the direct sum of purely quasi-Dedekind modules is a gain purely

quasi-Dedekind ( see Prop 2.15) .  Finally, in section 3, we introduce and study the concept
purely prime module as a generalization of prime module, where an R-module M is called a purely
prime module if ann,M =ann, N for all nonzero pure submodule N of M . We see that

every prime module s a purely prime module, but the converse is not true. Also we give some
equivalent formulas and results of this concept .

1. Purely Quasi-Invertible Submodules

Firstly, we recall that an R-submodule N of an R-module M is pure if, IN =N ~IM for every
ideal I of R [5], [10] . Mijbass A.S. in [14] introduced the following concept, an R-submodule N
of an R-module M is called quasi-invertible if, Hom,(M /N ,M)=0. And an ideal J of aring R is

called quasi-invertible if J is a quasi-invertible R-submodule. In this section we introduce and
study a generalization of the concept a quasi-invertible submodule namely " purely quasi-
invertible " .

Definition 1.1. An R-submodule N of an R-module M is called purely quasi-invertible if N is pure
and Hom. (M /N ,M)=0.And an ideal | of aring R is called purely quasi-invertible if 1isa purely

quasi-invertible R-submodule . It is clear that every purely quasi-invertible submodule is a quasi-
invertible submodule . The following example shows that the converse is false .

Example 1.2. Let R be an integral domain and let R =R[x,y] be the polynomial ring of two

independent variables x and y , then R isalso an integral domain . Let I = (x ,y) is the ideal  of

R generated by x and y , so by [14, Ex 1.3(1), P.6] | is quasi-invertible. But I is not pure of R,
thus | is not purely quasi-invertible; To see this: Let R = Z , R=z[x,y], let | = (x \y) =

{xf,+yf,:f, f,eR} , thus by [14, Ex 1.3(1), P.6] | is quasi-invertible. Now, Let

J={f eR:f (x,y)=a ,ac2z} then JI ={axf,+ayf,:f,f, cR}={0}=1 NJIR ;that is | not pure,
hence | is not purely quasi-invertible .

Remarks and Examples 1.3.
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1) Inany nonzero module M. 0 is not purely quasi-invertible, but M is a purely quasi-invertible
submodule .

2) If N is a proper direct summand of an R-module M then N is pure by [21], but not quasi-
invertible, since there exists 0K <M suchthat M =K &N and
Hom, (M /N ,M)=Hom, (K ®N /N ,K &N )=Hom, (K,K &N )=0.

Recall that an R-module M is called semisimple if, every submodule of M is a direct summand
of M[ 12, P.189] .

3) If M is a semisimple module, then M is the only purely quasi-invertible submodule of M ;
since every proper submodule of M is direct summand; that is pure not quasi-invertible

(see Rem.and.Ex 1.3(2)) .

4) Let M =Z, as Z-module, N =(2)is not a purely quasi-invertible submodule of Z, as
Z-module . In fact N is not quasi-invertible , since Hom, (Z,/(2),2,)=Z, #0. Also, N
is not pure, since 2=21e(2)n2(Z,) but 2&2(2).

5) If N is a purely quasi-invertible R-submodule of an R-module M, then ann,M =ann;N .

Proof. Follows by [14, Prop 1.4,P.7]. T[]
However, the converse of (Rem.and.Ex 1.3(5)) is not true as the following example shows:

Consider Z-moduleZ ®Z,,let N =2Z ®Z2,<Z ®Z,, then ann, (Z ®Z,)=ann, (2Z ©Z,)=0
but N =2Z @©Z, is not purely quasi-invertible of Z ©Z, as Z-module. In fact N is not pure,
since (2,2)=2(L)) e(2Z ®Z,)n2(Z ®Z,) but (2,2) 222 ®Z,).

6) Letl beanideal ofaringR . If | is purely quasi-invertible then ann, (1) =0 .

Proof. Obvious. 0O

The converse of (Rem.and.Ex 1.3(6)) is not true in general, consider the following example:Let
R=2Z,letl=2Z then ann,(I)=ann, (22)=0, but I is not pure of Z, since J = 4Z be an ideal

of Zand J =(4Z)(22)=8Z #4Z =(2Z)(4Z)=1 nJZ , so it is not purely quasi-invertible
ideal of Z.
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7) If M =M, ®M, isan R-module and let K be a purely quasi-invertible in M, for some -1,

then it is not necessarily that K is a purely quasi-invertible submodule of M ; For example: In

the Z-moduleZ ®Z,, K =Z, is a purely quasi-invertible submodule of Z, as Z-module , but
Z,=(0)®Z, which is not a purely quasi-invertible submodule of Z ®Z,as Z-module, since

Hom, (Z ®Z,/(0)®Z,,Z ®Z,)=Hom,(Z,Z ®Z,)#0; that is (0)® Z, not quasi-invertible .

Remark 1.4. We do not whether the intersection of purely quasi-invertible submodules is purely
quasi-invertible.

Recall that an R-module M has the pure intersection property (briefly PIP) if, the intersection of any
two pure submodules is again pure [3, def 2.1, P.33] .

Now we can introduce the following result .

Proposition 1.5. Let M be an R-module has PIP. If Ni,N2> are purely quasi-invertible submodules
of M then N, AN, is also .

Proof. Since M has PIP then N, "N, is pure in M. But it is easy to see that
Hom(M/N, "N,,M) < Hom(M/N,,M) + Hom(M/N,,M) . Hence Hom(M/N, "N,,M)=0 and  so
that N, NN, is apurely quasi- invertible submodule of M. [J

Recall that an R-module M is called multiplication if, for each submodule N of M, N =IM
for some ideal | of R. Equivalently, M is multiplication if, for each submodule N of M,
N =[N :M]M ,where [N :M]={reR:rM <N} [19].

Corollary 1.6. Let M be a multiplication R-module. If N1,N2 are purely quasi-invertible submodules
of M then N,nN, isalso.

Proof. Follows by [3, Prop 2.3, p.33] and (Prop 1.5) . [
However, the following results (1.5) , (1.6) gives necessary conditions for make (Rem 1.4) is true .

Remark 1.7. Let M be an R-module and let N be a purely quasi-invertible submodule of M. If
K <M such that K =N then it is not necessarily that K is a purely quasi-invertible submodule
of M. We can give the following example show that .
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Example 1.8. Let M = Z as Z-module, let N = Z be a submodule of M, then N is a purely quasi-
invertible submodule of M, but K =2Z =Z =N is not a purely quasi-quasi-invertible
submodule of M . In the fact K =2Z isnot purein M .

Remark 1.9. Let M1, M2 be R-modules and let f :M,——M, be R-homomorphism . If N is
a purely quasi-invertible submodule of My then not necessary that the image of N is a purely
quasi-invertible submodule of M. For example : Consider Z-modules Z,,Z, . Let
f :Z,——>Z, be Z-homomorphism define by f (x)=2x forall x eZ,.LetN=Zg, itis well
known that N is a purely quasi-invertible submodule of Ze as Z-module, but
f (N)=f (Z,)={0,2}=(2) is not purely quasi-invertible submodule of Z, as Z-module (see
Rem.and.Ex 1.3(4)) .

Recall that a nonzero R-module M is called a rational extension of the R-submodule Nof M
if, for all m;,m, e M, m, =0 there exists an element r € R such that rm, e N and rm, =0 [20]

. And recall that an R-module M is regular if for all a< M and for all r eR , there exists x eR
such that rxra =ra. Equivalently, every submodule of M is pure [7] .

Proposition 1.10. Let M be a module over regular ring R and let N <M . If M is a rational
extension of N then N is a purely quasi-invertible submodule of M .

Proof. Since M is a rational extension of N then by [14, Prop 3.3, P.14] N is a quasi-invertible

submodule of M . On the other hand, since R is a regular ring then M is a regular R-module ; that
is every submodule of M is pure, thus N is a purely quasi-invertible submodule of M. [

Recall that an R-submodule N of an R-module M is called small ( briefly N<«M ) if, for all
K <M with N+K =M implies K= M [ 12, P.106] . And recall that an R-submodule N of  R-

module M is called SQI-submodule if, for each f € Hom_, (M /N ,M) then f (I\N/I_) is a small in
M [17, p.44] .

Remark 1.11. It is clear that every quasi-invertible submodule is SQI-submodule, hence every
purely quasi-invertible submodule is SQI-submodule. But the converse is not true in general, the
following example shows .

Example 1.12. Let M = Z4 as Z-module and let N =(2) <M . Then N is SQI-submodule of Za,
but it is known that N is not a purely quasi-invertible submodule of Zs (See Rem.and.Ex 1.3(4)).

We end this section by the following theorem .

Theorem 1.13. Let M be a faithful multiplication over integral domain R . If N is a pure
submodule of M then [N :M ] is a purely quasi-invertible ideal of R .
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Proof. Assume that N is a pure submodule of M . Since M be a faithful multiplication R-module,
so by [4, Coro 1.2, P.65] [N : M ] is a pure ideal of R. But R is an integral domain, hence by [14,

Ex 1.3(1), P.6] every nonzero ideal of R is quasi-invertible,thus [N :M ] is a quasi-invertible
ideal of R. Hence [N : M ] is a purely quasi-invertible ideal of R . [

2. Purely Quasi-Dedekind Modules

Recall that an R-module M is called quasi-Dedekind if, every nonzero submodule of M is quasi-
invertible; that is Hom, (M /N ,M ) =0 for all nonzero submodule N of M [14, P.24] . In this section

we give generalization of the concept a quasi-Dedekind module namely " purely quasi-Dedekind
module ". We list some basic properties of purely guasi-Dedekind modules. Also we give a
characterization of this concept. We study the relationships between a purely quasi-Dedekind
modules with other related modules .We begin with the following definition :

Definition 2.1. An R-module M is said to be purely quasi-Dedekind if, every proper nonzero pure
submodule of M is quasi-invertible. And a ring R is called purely quasi-Dedekind if R is a purely
quasi-Dedekind R-module .

It is clear that every quasi-Dedekind R-module is a purely quasi-Dedekind R-module . But the
converse may note be, as the following example shows :

Example 2.2. Consider Z-module Z ,, it is clear that Z, is purely quasi-Dedekind , since Z, as
Z-module has no proper pure submodule. But it is not quasi-Dedekind , since (i) <Z, and
Hom, (Z,/(2),2,)=Z,#0.

Remarks and Examples 2.3.
1) Every simple R-module is a purely quasi-Dedekind R-module .
2) Every nonzero semisimple and (not simple) module is not a purely quasi-Dedekind module.

In particular Z, as Z-module is semisimple and (not simple) but it is not purely quasi-Dedekind.

3) Every integral domain R is a quasi-Dedekind R-module [14, Ex 1.4(1), P.24] , so it is a purely
quasi-Dedekind R-module. But the converse need not be in general; For example: Let M =Z,

as Z,-module, then Z, is purely quasi-Dedekind, but Z, is not an integral domain .

4) Z as Z-module is purely quasi-Dedekind . 0, Z are the only pure submodules of Z .
5) Let M be a regular R-module . Then M is purely quasi-Dedekind if and only if M is quasi-
Dedekind .
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Proof. Clear. 1[I
6) Let M be a module over regular ring R. Then M is purely quasi-Dedekind if and only if
M is quasi-Dedekind .

Proof. Follows by (Rem.and.Ex 2.3(5)) and since every module over a regular ring is regular .
0

7) If M isa purely quasi-Dedekind R-module then ann,N =ann,M for all nonzero pure

submodule N of M .
Proof. Follows by (Rem.and.Ex 1.3(5)) . [!

Proposition 2.4. Let M be an R-module with R =R/J , where J is an ideal of R such that
J canngM . M is a purely quasi-Dedekind R-module if and only if M is a purely quasi-

Dedekind R -module .

Proof. We have by [12, P.51] Hom, (M /N ,M)=Hom_ (M /N ,M) for all submodule N of M.
Thus the result is obtained . [

Proposition 2.5. Let M be a uniform R-module with ann, M is a maximal ideal of R, then M is a
purely quasi-Dedekind R-module .

Proof. Follows by [11, Coro 1.2.10 and (Rem.and.Ex 1.2.2(5))] . [

Theorem 2.6. Let M be an R-module. If M is purely quasi-Dedekind then for allf € End, (M)

and Kerf is a pure submodule of M implies f=0.

Proof. Let f eEnd, (M) and Kerf is a pure submodule of M . Suppose that f =0, define

g:M/Kerf ——M by g(m+Kerf )=f (m) forall meM . Itis easy to see that g is Well-
defined and g =0 (since f #0) . Hence Hom, (M /Kerf ,M )0 which is a Contradiction. [

Proposition 2.7. Let M be an R-module such that for all pure submodule N of M, and for all

K <M suchthat N <K <M impliesKispurein M. If forall f eEnd, (M) , Kerf is a pure
submodule of M implies f=0, then M is a purely quasi-Dedekind R-module .

Proof. Suppose that there exists 0=N <M , N is pure such that Hom.(M /N ,M)=0; that is
there exists R-homomorphism f :M /N ——M and f =0. Now, consider the following
diagram : M —=->M /N ——M , where 7 is the canonical projection map. Let g=for, so
pcEnd, (M), but N cKerg and N is a nonzero pure submodule of M, thus Kerg is a
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nonzero pure submodule of M (by hypothesis) . On the other hand ¢(M )=f (M /N ) =0 whichisa
contradiction . [

We will need the following lemma for the proof next proposition .

Lemma 2.8. Let M1, M2 be R-modules and let f :M,——>M, be R-epimorphism . If Nis a
pure submodule of M, then f "*(N) is a pure submodule of M .

Proof. Assume that | is anideal of R, then 1.f *(N)=f *(IN)=f *(N nIM,) =

f Y(N)Af (ML) =f *(N)ALF *(M,)=f *(N)~1.M,, since f is epimorphism . Thus
f 1(N) is a pure submodule of My . T[]

Now, we can introduce the following proposition .

Proposition 2.9. Let M1, M2 be R-modules such that M1 is isomorphic to Mz . Then My is purely
quasi-Dedekind if and only if M is purely quasi-Dedekind .

Proof. Suppose that Mz is a purely quasi-Dedekind R-module. Since M, =M ,, so there exists
f :M,——>M, be R-isomorphism. Let N be a nonzero pure submodule of Mz, thus

by above lemma f ~'(N) is a nonzero pure submodule of M1, so Hom, (M, /f *(N),M,)=0.
But Hom, (M, /N ,M,) =(Hom, (M,/f *(N),M,), since M, =M. Thus Hom, (M,/N ,M,)=0

for all nonzero pure submodule N of M. . Therefore Mz is purely quasi-Dedekind .

The proof of the converse is similarly . [

Remark 2.10. Let M be a purely quasi-Dedekind R-module and N <M then not necessary that
M /N is a purely quasi-Dedekind R-module, as the following example shows .

Example 2.11. It is know that Z as Z-module is purely quasi-Dedekind, let N =6Z <Z . But
Z/6z =z, is not a purely quasi-Dedekind as Z-module ( see Rem.and.Ex 2.3(2)) .

Now, we shall give a necessary condition under which the (Rem 2.10) is true .
Proposition 2.12. Let M be a purely quasi-Dedekind R-module with ?IS projective for all pure

submodule K of M, then '\lgl— is a purely quasi-Dedekind R-module forall N <M .
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Proof. Let N <M . If N =0, then nothing to prove . Now, let 0N <M . Suppose that lI\Jl_

is a pure submodule of '\N/I— then by ( Lemma 2.8) ”_1(%) is a pure submodule of M, where 7z
is the canonical projection map, so U is a pure submodule of M, hence 'CJ/I— is projective by

hypothesis. Assume that '\N/I— is not purely quasi-Dedekind , thus there exists a nonzero R-

M/NM_H M M

Mg (—, _) so there exists R-
U/N "N U

homomorphism f ;%

—)I\I\T But Hom, (

homomorphism g :IL\JA——>M such that zog =f .

M
u

-

4

- M
M > — >
N 0

It

g =0 (since f #0), thus HomR(x—,M )=0, U is pure . Hence M is not a purely quasi-

Dedekind R-module which is a contradiction . Therefore I\’\/:— must to be a purely quasi-Dedekind
R-module . [

Remark 2.13. Let M be an R-moduleand N <M . If M /N isa purely quasi-Dedekind R-module
then not necessary that M is a quasi-Dedekind R-module; For example: Consider Z-module Z

N = (5) <Z,.Then Ze/(é) =Z, is a purely quasi-Dedekind as Z-module, but Z  is not a purely
quasi-Dedekind as Z-module (see Rem.and.Ex 2.3 (1), (2)) .

The following example shows the direct sum of purely quasi-Dedekind modules is not necessary
that a purely quasi-Dedekind module .

Example 2.14. Each of Z,, Z3 as Z-module is purely quasi-Dedekind (see Rem.and.Ex 2.3(1)), but
Z,®Z,=Z, isnotapurely quasi-Dedekind as Z-module .

Now, we gives a condition under which the direct sum of purely quasi-Dedekind modules is also
purely quasi-Dedekind in the next proposition .
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Proposition 2.15. Let M and N be a purely quasi-Dedekind R-modules with ann;M +ann,N =R
then M @N is a purely quasi-Dedekind R-module .

Proof. Assume that K is a pure submodule of M @N . And since ann;M +ann;N =R then by
same way of the proof of [1, Prop 4.2, Ch.1] K =K, ®K,, where K; <M and K, <N .But

K,<® K and K, <® K then by [21] K1 , K are pure in K, but K is pure in M @N by hypothesis,
then Ky is pure in M and Kz is pure in N; to show this : Assume that there exists be an ideal I of R such
that IK, =K, nIM and (IK, #K, "IN or IK, =K, "IN ) then

IK =1 (K,;®K,)=IK,®IK, #(K,nIM)®(K,NIN)=(K,®K,)nI (M ©&N)
=K NI (M @N )which is a contradiction . So Hom, (M /K,;,M)=0 and Hom, (N /K,,N)=0,
since M and N is purely quasi-Dedekind . On the other hand we have Hom,(M @N /K,M ®&N )=

Hom,(M &N /K, ®K,,M &N ) < Hom, (M /K,;,M)~Hom, (N /K,,N )=0. Hence
M @N is a purely quasi-Dedekind R-module . [

Recall that an R-module M is scalar if, for all f € End, (M) then there exists r € R such that
f (x)=mx forall x eM [18, P.8].

In the following proposition we shall study the endomorphism ring of purely quasi-
Dedekind module .

Proposition 2.16. Let M be a scalar R-module with ann,M is a prime ideal of R, then End, (M)
is a purely quasi-Dedekind ring .

Proof. Since M be a scalar R-module, then by [15, Lemma 6.2, P.80] End, (M ) =R /ann M ,
But annyM is a prime, so End, (M) is an integral domain. Hence by (Rem.and.Ex 2.3(3))
End, (M) is a purely quasi-Dedekind ring . [

Corollary 2.17. If M is a scalar and prime R-module, then End, (M )is a purely quasi-Dedekind
ring .

Proof. It is clearly, since M is prime implies ann; M is a prime ideal, so the result is obtained by
(Prop 2.16) . [

Proposition 2.18. Let M be a scalar faithful R-module . End, (M )is a purely quasi-Dedekind
ring if and only if R is a purely quasi-Dedekind ring .
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Proof. Suppose that M is a scalar R-module, so End, (M )=R/ann,M by [15,Lemma 6.2, P.80] ,
but M is a faithful, thus R /ann,M =R, so End, (M) =R . Hence we have on the result . []

Corollary 2.19. Let M be a finitely generated multiplication faithful R-module . End, (M )is a purely
quasi-Dedekind ring if and only if R is a purely quasi-Dedekind ring .

Proof. Since M is a finitely generated multiplication R-module, then by [16, The.3.2] M is scalar
R-module; that is M is a scalar faithful R-module, thus by (Prop 2.18) the result is obtained . [

Recall that an R-module M is called quasi-prime if ann,N is a prime ideal of R for each

0N <M [2,def1.2.1] .

Proposition 2.20. Let M be a quasi-injective scalar and quasi-prime R-module then End, (N ) is
a purely quasi-Dedekind ring forall 0N <M .

Proof. Assume that 0N <M . Since M is a quasi-injective scalar R-module, then by [18, Prop
1.1.16] N is a scalar R-module, thus End, (N ) =R/ann,N by [15, Lemma 6.2, P.80].But M is a

quasi-prime R-module, so ann; N is a prime ideal of R; thatis End, (N ) =R /ann,N is an integral
domain. Hence by (Rem.and.Ex 2.3(3)) End. (N )is a purely quasi-Dedekind ring. [

We end this section by the following two corollaries .

Corollary 2.21. If M is an injective scalar and quasi-prime R-module then End, (N ) is a purely
quasi-Dedekind ring forall 0N <M .

Proof. Obvious . [I

Corollary 2.22. Let M be a quasi-injective scalar R-module and let 0N <M be a faithful R-
module. Then End, (N )is a purely quasi-Dedekind ring if and only if R is a purely quasi-Dedekind

ring .
Proof. Follows by [18, Prop 1.1.16] and (Prop 2.18). [l
3. Purely Prime Modules

Recall that an R-module M is called prime if, ann,M =ann,N for all nonzero submodule N
of M [8] . In this section we see that if M is purely quasi-Dedekind then ann,M =ann,N for all

nonzero pure submodule N of M (Prop 3.2). This leads us to introduce many of important statement
to this concept with other concepts in this section . We start this section with the following definition

Definition 3.1. An R-module M is said to be purely prime if, ann,M =ann;N for all nonzero
pure submodule N of M .
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It is clear that every prime module is a purely prime module, but the converse need not be in
general; for example: Z, as Z-module is purely prime . In fact Z, has no proper nonzero pure

submodule as Z-module, but it is not prime as Z-module, since (2)<Z,, ann, (2)=2Z #4Z =ann, (Z,)-
Proposition 3.2. Every purely quasi-Dedekind module is a purely prime module .

Proof. Follows by (Rem.and.Ex 2.3(7)) . [!

Proposition 3.3. Let M be an R-module. Then M is a purely prime R-module if and only if M is

a purely prime R -module, where R =R /ann M .

Proof. =) Suppose that N is a nonzero pure R -submodule of M . It is easy to see that N is

a nonzero pure R-submodule of M. Let | be an ideal of R, so it is also ideal of R, thus

IN =N nIM hence N is a pure R-submodule of M, so that ann,M =ann_ N . Now, it is clear that
an-M cann_N , beside let r +ann_M eann_N then rN=0;thatis r eann;N =ann M ,

hence r +ann-M eann_M , therefore ann,M =ann;N .

<) The proof is similarly . [

Proposition 3.4. Let M be a uniform regular R-module. Then the following statements are
equivalent :

1) M isa prime R-module .

2) M is a purely prime R-module .

3) M is a purely quasi-Dedekind R-module .

4) M is a quasi-Dedekind R-module .

Proof.
@D < (2): Clear .
(3) = (2): Follows by (Prop 3.2) .

(2) <= (3): Suppose that M is purely prime, and since M is regular , so M is prime; that is M is
prime uniform, thus by [14, The 3.11, P.37] M is quasi-Dedekind and hence M is purely quasi-

Dedekind .
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(3) < (4) : Follows by (Rem.and.Ex 2.3(5)) . [

Corollary 3.5. Let M be a multiplication uniform regular R-module. Then
De@eR@e@ =0 <=0)=(7)

1) M isa prime R-module .

2) M is a purely prime R-module .

3) M isa purely quasi-Dedekind R-module .

4) M is a quasi-Dedekind R-module .

5) End, (M) is an integral domain .
6) End, (M) is a quasi-Dedekind ring .
7) End, (M) is a purely quasi-Dedekind ring .
Proof.
@D <= (2) = (3) < (4): Follows by (Prop 3.4) .
(4) < (5) : Follows by [11, Prop 2.1.27] .
(5) < (6) : Follows by [11, Rem.and.Ex 1.1.2(7)]
(6)=(7):Clear. [
Recall that an R-module M is monoform if for each N <M and for each f e Hom, (N ,M ),
f =0 implies Kerf =0 [22] .

Remark 3.6. Every monoform module is a purely quasi-Dedekind module and hence it is a purely
prime module .

The converse of above remark is not true in general; for example : Consider Z-module Z ®Z
then it is known that is purely prime, since it is prime. ButZ @ Z is not monoform as Z-module.
Proposition 3.7. Let M be a uniform regular ring. Then the following statements are equivalent :
1) R is amonoform ring .

2) R isan integral domain .

3) R is aquasi-Dedekind ring .
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4) R is a purely quasi-Dedekind ring .

5) R isa purely prime ring .

6) R isaprime ring.

Proof.

@ < (2) < (3): Follows by [11, Coro 2.3.20] .
(3) <= (4): Clear.

(4) = (5) : Clear.

(5) = (4) : Assume that R is purely prime , and since R is regular, then R is prime. But R is
uniform, so by [14, The 3.11, P.37] R is quasi-Dedekind, hence R is a purely quasi-Dedekind ring .

(5) < (6): Clear. [

Proposition 3.8. Let M be an R-module. If M is embedded in each of its nonzero pure
submodule then M is a purely prime R-module .

Proof. Suppose that N is a nonzero pure submodule of M . It is known thatann,M < ann;N .

On the other hand, let r eann,N then rN = 0. But M is embedded in N (by hypothesis), so there
exists amonomorphism f :M ——N ,thus f (M )=rf (M) <N =0 implies M =0 (sincef is
monomorphism), so r eanny;M and ann,M =ann.N . Hence M is a purely prime

R-module . [

Corollary 3.9. Let M be a uniform regular R-module such that M is embedded in each of its nonzero
pure submodule then M is a quasi-Dedekind R-module and hence it is a purely quasi-Dedekind R-
module .

Proof. Follows by (Prop 3.8) and (Prop 3.4) . [

Recall that an R-module M is said to be weak cancellation if, for any two ideals A , B of R with
AM = BM implies that A +ann;M =B +ann;M . And recall that an R-module M is cancellation

if M is weak cancellation and faithful [6] .
Mijbass A.S. in [13, P.62 , P.63] introduce the following two results :

Theorem 3.10. Let M be an R-module and let N be a pure in M with ann,N =ann,M . IfNis a
weak cancellation R-module then M is a weak cancellation R-module .

Corollary 3.11. Let M be an R-module and let N be a pure in M with ann;N =ann .M . If N is
a cancellation R-module then M is a cancellation R-module .
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We end this section by the following two corollaries .

Corollary 3.12. Let M be a purely prime R-module and let N be a pure in M. If N is a weak
cancellation R-module then M is a weak cancellation R-module .

Proof. Follows by (Th 3.10) . [I

Corollary 3.13. Let M be a purely prime R-module and let N be a pure in M. If N is a cancellation
R-module then M is a cancellation R-module .

Proof. Follows by (Coro 3.11) . [
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