S*-submodule and a vector sublattice

Falah Hassan Sarhan

University of Kufa

Department of mathematic

College of education

Nabaa mery Kasim

university of Baghdad

Department of mathematic

college of Education/Ibn-al-haithim

Abstract

<u>:-</u>

In this paper, we review here some of the ideas we have encountered S^* -submodule and a vector sub lattice. We have proved that N(y) be a complement N-function M(u) which satisfies the Δ_2 -condition, then L_N is a normal S^* -submodule and a vector sub lattice of $C_{\infty}(Q(\nabla))$.

1-Introduction:-

In this work a series of known notations, notations and facts of the theory of Boolean algebra, vector Lattice [2,8,6], the integration theory for measures with values in semi-field [2,3,4,5] is cited.

Suppose that R is the set of real numbers and E is a partially ordered set $(E \sqsubseteq R)$. The main results in this work is the following:

Proposition *I*: Let $y_n, y \in C_{\infty}(Q(\nabla))$, $0 < y_n \uparrow y$, then $N(y_n) \uparrow N(y)$.

Proposition II: If $y \in S^*$ then $N(y) \in S^*$. In particular, $S^* \subset L_N$.

Proposition III: Suppose that N(y) be a complement N-function M(u) which satisfies the Δ_2 -condition then L_N is a normal S^* -submodule and a vector sublattice of $\mathcal{C}_{\infty}(Q(\nabla))$.

2- Definitions and Basic concepts

In this section, we shall review some of the definitions and propositions which are needed in our work.

2.1. **DEFINITION** [9]

Suppose that $M: I \to R$ is defined on some interval of the real line R. A function M is called convex if $M(\frac{u_1+u_2}{2}) \leq \frac{1}{2}(M(u_1)+M(u_2))$ for all $u_1,u_2 \in I$.

A function M is called convex if the following inequality satisfies for $0 \le \propto \le 1$,

$$M(\propto u_1 + (1-\propto)u_2) \le \propto M(u_1) + (1-\propto)M(u_2)$$
, for all $u_1, u_2 \in I$,

Which is called Jenssen's sinequality [9], we can generalize the inequality for any u_1, u_2, \dots, u_n by $M(\frac{u_1+u_2+\dots+u_n}{n}) \leq \frac{1}{n}(M(u_1)+M(u_2)+\dots+M(u_n)).$

2.2. **DEFINTION** [9]

Suppose p(t) is positive, non decreasing and continuous from the right for $t \ge 0$, and satisfies the conditions:

$$p(0) = 0$$

$$p(\infty) = \lim_{t \to \infty} p(t) = \infty$$

Let us define q(s) for $s \ge 0$ as $q(s) = \sup_{p(t) \le s} t$. Note that q(s) is positive, non-decreasing and continuous from the right and satisfies q(0) = 0, $\lim_{s \to \infty} q(s) = \infty$. Also, we have $q(p(t)) \ge t$ and $p(q(s)) \ge s$ [7].

If p(t) is continuous and increasing then q(s) is equivalent to the inverse of p(t). In general q is called the right inverse to p [7]. If q is the right inverse to p, then the right inverse to q is equivalent to p.

Now, $M(u) = \int_0^{|u|} p(t)dt$, and $N(v) = \int_0^{|v|} q(s)ds$ are N-functions and one complement each other. Now, recall the Young inequality [2], $uv \le T + S = M(u) + N(v)$ where T = M(u) and S = N(v).

2.3. **DEFINITION** [9]

We say that the N-function M(u) satisfies the Δ_2 -condition, if there exist k>0 and $u_0>0$ such that $M(2u)\leq kM(u)$ for any $u\geq u_0$.

2.4. **DEFINITION** [1]

A bimodule X over S* is called a normal S*-module if:

1. $\lambda x = x\lambda$ for all $x \in X$, $\lambda \in S^*$;

- 2. For any $e \in \nabla$ (S*), $e \neq 0$, there exists $x \in X$ such that $x \in \nabla$ (S*),
- 3. For any decomposition of the identity $\{e_i\}\subset \nabla$ (S*) and for any $\{x_i\}\subset X$ such that $xe_i=x_ie_i$, for all I;
- 4. for any $x \in X$ and any sequence $\{e_n\}$ of mutually disjoint elements from ∇ (S^*) it follows from the equalities $e_n x = 0$, n = 1, 2, ..., that $(\sup_{e \in X} e_n) x = 0$.

2.5. Note [10]

Suppose that ∇ is an arbitrary σ -complete Boolean algebra, m is a strictly positive measure on ∇ with values in S^* (m is strictly positive, m(e)=0 for all $e\in \nabla$, that e=0). In this case ∇ is of a countable type, hence the Boolean algebra ∇ is complete. Let $C_\infty(Q(\nabla))$ be a complete vector lattice of all continuous functions on the stone compactum $Q(\nabla)$, which can take the values $\pm\infty$ on nowhere dense sets from $Q(\nabla)$. We denote by the $L_1(m)$ the set of all integrable by the measure m elements from $C_\infty(Q(\nabla))$, and by μ the integral constructed by the measure m.

The set $L_N(\nabla, m) = L_N = \{y \in C_\infty(Q(\nabla)): N(y) \in L_1(m)\}$ is called S^* -orlicz class.

2.6. Proposition [2]

Suppose that L_N is a convex set .In addition, if $x \in L_N$, $y \in C_\infty(Q(\nabla))$,

 $|y| \le |x|$, then $y \in L_N$.

2.7. Proposition [2]

If a N-function N(u) satisfies the Δ_2 -condition, then L_N is a linear space.

3- The Maine results

In this section, we shall prove an important propositions related to the \mathcal{S}^* -sub module and a vector sublattice .

3.1. Proposition:

Let
$$y_n, y \in C_{\infty}(Q(\nabla)), 0 < y_n \uparrow y \text{ then } N(y_n) \uparrow N(y).$$

Proof:

Since $N(y_n) \leq N(x_{n+1}) \leq N(y)$, there exists in $C_{\infty}(Q(\nabla))$ an element :

$$y = \sup_{n \ge 1} N(y_n) \le N(y).$$

The function $N^{-1}(u)$ is continuous, positive and monotonically increasing for u>0. So $N^{-1}(N(y_n)) \leq N^{-1}(y)$. From this we get $x = \sup_{x \in X} \chi_n \leq N^{-1}(y)$.

Hence
$$N(y) \le N(N^{-1}(y)) = y$$
. there for $N(y) = y = \sup_{n \ge 1} N(y_n)$. i.e. $N(y_n) \uparrow N(y)$.

3.2. Proposition:

If $y \in S^*$, then $N(y) \in S^*$. In particular, $S^* \subset L_N$.

Proof:

Choose for $y \in S^*$ a sequences of simple elements

$$y_n = \sum_{i=1}^{k(n)} \lambda_i e_i \in S^*, e_i, e_j = 0, i \neq j, \lambda_i > 0.$$

Such as $y_n \uparrow |y|$, then by proposition (3.1)

$$N(y) = N(|y|) = \sup_{n \ge 1} N(y_n) = \sup_{i=1}^{k(n)} N(\lambda_i) e_i.$$

Since $(\sum_{i=1}^{k(n)} N(\lambda_i) e_i) \in S^*$ and S^* is a regular sub-lattice in $C_{\infty}(Q(\nabla))$, we have $N(y) \in S^* \subset L_1(N)$ In particular $y \subset L_N$

3.3. Proposition:

Suppose that N(y) be a complement N-function M(u) which satisfies the Δ_2 -condition, then L_N is a normal S^* -submodule and a vector sublattice of $C_\infty(Q(\nabla))$.

Proof:

It follows from proposition (2.6) and (2.7) that L_N is a vector sublattice of $C_{\infty}(Q(\nabla))$ and $x + y \in L_N$ from any $x, y \in L_N$. Let $\alpha \in S^*$, $x \in L_N$.

We show that $\alpha x \in L_N$ since N(u) satisfies the Δ_2 -condition, then there exists $u_o > 0$ such that for any number $l \geq 1$ the inequality $N(lu) \leq k(l)$. N(u).

Takes place for every $u \ge u_0$ and some number k(l) > 0.

Let
$$e = \{|x| \leq u_o\}, g = \hat{1} - e \text{ clearly } N(\propto x) = N(\propto xe) + N(\propto xg).$$

since $|\propto xe| \leq u_0 \propto$ then, by proposition (2.6)

We have $0 \le N(\propto xe) \le N(u_o \propto) \in L_1(N)$. i. e. $N(\propto xe) \in L_1(N)$.

Put
$$g_n = \{n-1 \le |\infty| < n\}$$
, $n = 1,2,\ldots$ it is clear that $g_n \in S^*$,

$$g_n \in S^*$$
, $g_n.g_k = 0$, $n \neq k$, and $\sup_{n > 1} g_n = \hat{1}$.

We have then
$$0 \le \mu(N(\alpha x g g_n)) = \mu(N(|\alpha|, |x|, g, g_n))$$
 $\le \mu(N(ng_n g|x|)) = g_n \mu(N(n|x|g)) \le k(n)g_n \mu(N(x)).$

The elements $k(n)g_n\mu(N(x))$ are mutually disjoint in S^* . Hence the element

$$Z = \sup(k(n) \underset{n \ge 1}{\underset{n \ge 1}{=}} g\mu(N(x)) \text{ exists in } S^*.$$

In addition, $\mu(\sum_{n=1}^k N(\propto xgg_n)) \leq \sum_{n=1}^k k(n)g_n \, \mu(N(x)) \leq Z$ for all k=1,2,... We get from Levi's theorem that

$$N(\alpha xg) = \sup_{n \ge 1} (g_n N(\alpha xg)) = \sup_{k \ge 1} \sum_{n=1}^k g_n N(\alpha xg) = (\sup_{k \ge 1} \sum_{n=1}^k N(\alpha xg \ g_n)) \in \underline{L}_1(N).$$

There fore $N(\propto x) = N(\propto xe) + N(\propto xg) \in L_1(N)$.

Let $\{x_i\} \subset L_N$ and let x be an element of $C_{\infty}(Q(\nabla))$ such that $xe_i = x_ie_i$. Then $|x|e_i = |x_i|e_i$ and $|x| = \sup_{n \geq 1} \sum_{i=1}^n |x_i|e_i$.

By proposition (3.1), we have

$$N(x) = N(|x|) = \sup_{n \ge 1} N(\sum_{i=1}^{n} |\chi_i| e_i) = \sup_{n \ge 1} \sum_{i=1}^{n} N(|\chi_i| e_i).$$

Beside
$$\mu(\sum_{i=1}^{n} N(|\chi_i| e_i)) = \sum_{i=1}^{n} e_i \mu(N(|\chi_i| e_i)).$$

The elements $e_i\mu(N(|x_i|e_i))$ are mutually disjoint in S^* , so the element $a=\sup_{n\geq 1}\mu(\sum_{i=1}^n N(|x_i|e_i))$ exists in S^* . It follows from Levi´s theorem for the integral $\mu(x)$ that $N(x)\in L_1(N)$. Thus, L_N is a normal S^* -module.

References:

- [1] A. Battor (2002): "Orlicz space for measurable function". Lecture notes.
- [2] A. Roberts and D. Varberg (1973): "Covex functions". New York.
- [3] B.Z.Vulih(1961):"Introduction to the theory of partially ordered set ". Mosscow,p.407.
- [4] C.D. Aliprantis and K.C. Boorder(1994):"Infinite Dimensional Analysis "A.Hitchhiless Guide, Springer-Verlag.
- [5] H.H. Schaefer(1974): "Banach Lattices and positive operators" Springer-Verlag.
- [6] L.L.Dornhoff (1978):" Applied Modern Algebra". New York, London, p. 265.
- [7] M.A. Krasnoselkii and B.Ya. Rutitskii (1968): "Convex function and Orlicz space". Moscow. (Russian).
- [8] M. Stone (1937); Applications of the theory of Boolean ring to general topology // Trans. Amer. Math. Soc. –V. 41. –p. 375-481.
- [9] N. M. Abass (2006): "On the Orlicz space". MS.C thesis. Kufa Univ.

الجزئية والموديول الجزئي S^*

فلاح حسن سرحان نبا ميري قاسم جامعة الكوفة جامعة الكوفة كلية التربية للبنات كلية التربية ابن الهيثم

الخلاصة: ـ

في هذا البحث نستعرض بعض المفاهيم التي تواجهنا في موديول جزئي- *S وحزم المتجه الجزئي. فاننا سنبر هن اذا هذا كانت N(y) هي دالة مكملة لـ دالة- N(u) التي تحقق شرط - Δ_2 فان Δ_2 فان جزئي- S^* المعياري وحزم المتجه الجزئي لـ $C_\infty(Q(\nabla))$.