Some Kinds OF Jordan Centralizers on Completely Prime Gamma Rings

Rajaa C.Shaheen

Department of Mathematics, College of Education,
University of Al-Qadisiya, Al-Qadisiya, Iraq.
Email: Rajaa_chaffat2010@yahoo.com

Abstract:-

Let M be a non-commutative 2-torsion free completely prime Γ -ring, in section two of this paper, we prove that if $T:M\to M$ be an additive mapping such that $2T(x\alpha x)=T(x)\alpha x+x\alpha T(x)$ holds for all $x\in M$, $\alpha\in\Gamma$ in this case T is left and right centralizer (i.e centralizer). In section three of this paper we prove that, if $T:M\to M$ be an additive mapping satisfying $T(x\alpha y\beta x)=T(x)$ $\alpha y\beta x$ for all $x,y\in M$, $\alpha,\beta\in\Gamma$ (resp., $T(x\alpha y\beta x)=x$ $\alpha y\beta T(x)$ for all $x,y\in M$, $\alpha,\beta\in\Gamma$) then T is a left centralizer (resp., right centralizer).

1-Introduction

Throughout this paper,M will represent non—commutative Γ -ring.in[8] Zalar proved that any left(resp.,right) Jordan centralizer on a 2-torsion free semi-prime ring is a left (resp.,right) centralizer. In [3] authors proved that any Jordan left (resp.,right) σ -centralizer on a 2-torsion free R has a commutator right (resp., left) non-zero divisor is a left (resp.,right) σ -Centralizer. in [7] Vukman proved that if R is a 2-torsion free semi-prime ring and $T:R \to R$ be an additive mapping such that 2T(x)=T(x) x+xT(x)holds for all $x \in R$.in this case T is left and right centralizer.

Let M and Γ be additive abelian groups,M is called a Γ -ring if for any $x,y,z \in M$ and α , $\beta \in \Gamma$, the following conditions are satisfied

<u>Key words</u>:- Γ -ring,prime Γ -ring,semi-prime Γ -ring,Left centralizer,Right centralizer,centralizer,Jordan centralizer.

- (1) $x \alpha y \in M$
- (2) $(x+y) \alpha z = x \alpha z + y \alpha z$

$$X(\alpha + \beta)y = x\alpha y + x\beta y$$
$$x\alpha (y+z) = x\alpha y + x\alpha z$$
$$(3)(x\alpha y) \beta z = x\alpha (y\beta z)$$

The notion of Γ -ring was introduced by Nobusawa[5] and generalized by Barnes[1], many properties of Γ -ring were obtained by many research such as [2]

 $A\Gamma$ -ring M is called a 2-torsion free if 2x=0 implies x=0 for all $x\in M$. A Γ -ring M is called prime if a $\Gamma M\Gamma$ b=0 implies a=0 or b=0 and M is called completely prime if a Γ b=0 implies a=0 or b=0($a,b\in M$), since a Γ $b\Gamma$ a Γ $b\subset a$ Γ $M\Gamma$ b then every completely prime Γ -ring is prime .A Γ -ring M is called semi-prime if a Γ $M\Gamma$ a=0 implies a=0 and M is called completely semi-prime if a Γ a=0 implies a=0 ($a\in M$).

In [6] Rajaa C.Shaheen define Jordan centralizer on Γ -ring

As follows:

<u>Definition 1.1</u>:-Let M be a Γ -ring and T:M \rightarrow M be an additive map,T is called

<u>left centralizer</u> of M ,if for any $a,b \in M$ and $\alpha \in \Gamma$, the following condition satisfies $T(a \alpha b) = T(a) \alpha b$,

<u>Right centralizer</u> of M ,if for any $a,b \in M$ and $\alpha \in \Gamma$,the following condition satisfies $T(a \alpha b) = a \alpha T(b)$,

<u>Jordan left centralizer</u> of M ,if for any $a \in M$ and $\alpha \in \Gamma$, the following condition satisfies $T(a \alpha a) = T(a) \alpha a$,

<u>Jordan Right centralizer</u> of M ,if for any $a \in M$ and $\alpha \in \Gamma$, the following condition satisfies $T(a \alpha a) = a \alpha T(a)$,

<u>Jordan centralizer</u> of M,if for any $a,b \in M$ and $\alpha \in \Gamma$, the following condition satisfies $T(a \alpha b+b \alpha a)=T(a) \alpha b+b \alpha T(a)=a \alpha T(b)+T(b) \alpha a$,

A centralizer of M is an additive mapping which is both left and right centralizer. An easy computation shows that every centralizer is also a Jordan centralizer but the converse is not true.in [6] Rajaa showed that the existence of a non-zero Jordan centralizer on a non-comutative 2-torsion free completely prime Γ -ring be centralizer. We should mentioned the reader that in this paper we shall suppose that $x \alpha y \beta z = x \beta y \alpha z$ for all $x,y,z \in M$, and for all $\alpha,\beta \in \Gamma$.

In this paper we define some kind of Jordan centralizers on gamma ring and study the relation between its and centralizer.

2-Result

<u>Theorem 2.1</u>:- Let M be a 2-torsion free completely prime Γ -ring and let $T:M \to M$ be an additive mapping such that $2T(x \alpha \ x) = T(x)\alpha \ x + x \ \alpha \ T(x)$ holds for all $x \in M$, $\alpha \in \Gamma$. In this case T is left and right centralizer.

Proof:-Since
$$2T(x \alpha x) = T(x) \alpha x + x \alpha T(x)$$
.......(*)

Replace x by $x + y$
 $W = 2T((x+y) \alpha (x+y))$
 $= T(x+y) \alpha (x+y) + (x+y) \alpha T(x+y)$
 $= T(x) \alpha x + T(x) \alpha y + T(y) \alpha x + T(y) \alpha y + x \alpha T(x) + x \alpha T(y) + y \alpha T(x) + y \alpha T(y).$

On the other hand

 $W = 2T((x+y) \alpha (x+y))$
 $= 2T(x \alpha x + x \alpha y + y \alpha x + y \alpha y)$
 $= 2T(x \alpha x) + 2T(x \alpha y + y \alpha x) + 2T(y \alpha y)$

By comparing these two expression of W , we get

 $2T(x \alpha y + y \alpha x) = T(x) \alpha y + T(y) \alpha x + x \alpha T(y) + y \alpha T(x)$(1)

Now, replace y by $2(x \beta y + y \beta x)$
 $W = 4T(x \alpha (x \beta y + y \beta x) + 2T((x \beta y + y \beta x)) \alpha x$
 $+2x\alpha T((x \beta y + y \beta x) + 2T((x \beta y + y \beta x)) \alpha T(x)$.

 $= 2T(x) \alpha (x \beta y + y \beta x) + x \alpha T(x) \beta y + x \alpha x \beta T(y) + 2 x \alpha T(y) \beta x + x \alpha y \beta T(x) + T(x) \alpha y \beta x + T(y) \alpha x \beta x + y \alpha T(x) \beta x + 2((x \beta y + y \beta x)) \alpha T(x)$
 $= T(x) \alpha (2x \beta y + 3y \beta x) + (3x \beta y + 2y \beta x) \alpha T(x) + x \alpha T(x) \beta y + y \alpha T(x) \beta x + 2x \alpha T(y) \beta x + x \alpha x \beta T(y) + T(y) \alpha x \beta x$.

On the other hand,

 $W = 4T(x \alpha (x \beta y + y \beta x) + (x \beta y + y \beta x) \alpha x$
 $W = 4T(x \alpha (x \beta y + y \beta x) + (x \beta y + y \beta x) \alpha x$
 $W = 4T(x \alpha x \beta y + y \beta x \alpha x) + 8T(x \alpha y \beta x)$

 $= T(x) \qquad \alpha \ x \ \beta \ y + y \ \alpha \ x \ \beta \ T(x) + x \ \alpha \ T(x) \qquad \beta \ y + y \ \alpha \ T(x) \qquad \beta \ x + 2x \ \alpha \ x \ \beta \ T(y) + 2 \qquad T(y) \qquad \alpha \ x \qquad \beta \ x \\ + 8T(x \ \alpha \ y \ \beta \ x)$

By comparing these two expression of W, we get

 $8T(x \alpha y \beta x) = T(x) \alpha (x \beta y + 3y \beta x) + (3x \beta y + y \beta x) \alpha T(x) + 2x \alpha T(y) \beta x - x \alpha x \beta T(y) - T(y) \alpha x \beta x \dots (2)$

Since

 $2T(x \alpha y + y \alpha x) = T(x) \alpha y + T(y) \alpha x + x \alpha T(y) + y \alpha T(x)$

Replace y by $8x \beta y \lambda x$

 $W=16 T(x\alpha (x \beta y\lambda x) + (x \beta y\lambda x)\alpha x)$

 $=8[T(x) \ \alpha (x \beta y\lambda x)+T((x \beta y\lambda x)) \ \alpha x+x\alpha T((x \beta y\lambda x))+(x\beta y\lambda x)\alpha T(x)]$

=8 T(x) αx $\beta y \lambda x + x \alpha [T(x)] \beta (x \lambda y + 3y \lambda x) + (y \lambda x + 3x \lambda y) \beta T(x) + 2x \beta T(y) \lambda x - x \beta x \lambda T(y) - T(y) \beta x \lambda x] + [T(x)] \beta (x \lambda y + 3y \lambda x) + (y \lambda x + 3x \lambda y) \beta T(x) + 2x \beta T(y) \lambda x - x \beta x \lambda T(y) - T(y) \beta x \lambda x] \alpha x + 8x \beta y \lambda x \alpha T(x).$

 $=8 \ T(x) \ \alpha x \ \beta \ y \ \lambda x + x \alpha \ T(x) \ \beta (x \lambda y + 3y \lambda x) \ + (x \alpha y \lambda x + 3x \alpha x \lambda y) \ \beta T(x) \ + 2x \alpha x \beta T(y) \\ \lambda x - x \alpha x \beta x \lambda \ T(y) - x \ \alpha \ T(y) \ \beta x \ \lambda x \ + T(x) \ \beta (x \ \lambda y \ \alpha x \ + 3y \ \lambda x \ \alpha x) \ + (y \ \lambda x \ + 3 x \ \lambda y) \ \beta \\ T(x) \ \alpha x + 2x \ \beta \ T(y) \ \lambda x \ \alpha x - x \ \beta x \lambda \ T(y) \ \alpha x - T(y) \ \beta x \ \lambda x \ \alpha x \ + 8x \ \beta y \ \lambda x \ \alpha \ T(x).$

Therefore we have

16 $T(x \alpha x \beta y \lambda x + x \alpha y \beta x \lambda x) = T(x) \alpha (9x \beta y \lambda x + 3y \beta x \lambda x) + (9x \alpha y \beta x + 3x \alpha x \beta y) \lambda T(x) + x \alpha T(x) \beta (x \lambda y + 3y \lambda x) + (y \lambda x + 3x \lambda y) \beta T(x) \lambda x + x \alpha x \beta T(x) \lambda x + x \alpha T(y) \lambda x \beta x - T(y) \lambda x \beta x \alpha x - x \alpha x \beta x \lambda T(y).$

On the other hand

 $W=16 T(x \alpha x \beta y \lambda x + x \alpha y \beta x \lambda x)$

 $=16 T(x \alpha (x \beta y) \lambda x) + 16T(x \alpha (y \beta x) \lambda x)$

 $=2T(x) \qquad \alpha \left(x \beta x \lambda y + 3x \beta y \lambda x\right) \qquad +2\left(x \alpha y \beta x + 3x \alpha x \beta y\right) \qquad \lambda T(x) + 4x \alpha T(y \beta x) \lambda x - 2T(x \alpha y)$ $\beta x \lambda x - 2x \alpha x \beta T(x \lambda y) \qquad +2T(x) \qquad \alpha \left(x \beta y \lambda x + 3y \beta x \lambda x\right) + 2\left(y \beta x \alpha x + 3x \alpha y \beta x\right)$ $\lambda T(x) + 4x \alpha T(y \beta x) \lambda x - 2x \alpha x \beta T(y \lambda x) - 2T(y \beta x) \alpha x \lambda x.$

 $= T(x) \qquad \lambda \left(2x \alpha x \beta y + 6y \alpha x \beta x + 8x \alpha y \beta x\right) \qquad + \left(8x \alpha y \beta x + 2y \alpha x \beta x + 6x \alpha x \beta y\right) \qquad \lambda T(x) \\ + 4x \lambda T(x \alpha y + y \alpha x) \beta x - 2x \alpha x \beta T(x \lambda y + y \lambda x) - 2T(x \alpha y + y \alpha x) \beta x \lambda x$

 $= T(x) \ \alpha \ (2x \beta x \lambda y + 6y \beta x \lambda x + 8x \beta y \lambda x) \ + (8x \alpha y \beta x + 2y \alpha x \beta x + 6x \alpha x \beta y) \ \lambda \ T(x) \ + 2x \alpha \ T(x) \ \beta y \lambda x + 2x \alpha x \beta \ T(y) \ \lambda x + 2x \alpha x \beta \ T(x) \ \lambda x + 2x \alpha x \beta \ T(x) \ \lambda x - x \alpha x \beta \ T(x) \ \lambda y - x \alpha x \beta x \lambda \ T(x) - x \alpha x \beta \ T(y) \ \lambda x - x \alpha x \beta y \lambda \ T(x) - T(x) \ \alpha y \alpha \beta x \lambda x - x \alpha \ T(y) \ \beta x \lambda x - T(y) \ \alpha x \beta x \lambda x - y \alpha \ T(x) \ \beta x \lambda x$

Therefore we have

 $W=16 T(x \alpha x \beta y \lambda x + x \alpha y \beta x \lambda x)$

 $= T(x) \alpha (2x \beta x \lambda y + 5y \beta x \lambda x + 8x \beta y \lambda x) + (2y \beta x \lambda x + 5x \beta x \lambda y + 8x \beta y \beta \lambda x)$ $\alpha T(x) + 2x \alpha T(x) \beta y \lambda x + 2x \alpha y \beta T(x) \lambda x + x \alpha x \beta T(y) \lambda x + x \alpha T(y) \beta x \lambda x - x \alpha x \beta$ $T(x) \lambda y - y \alpha T(x) \beta x \lambda x - x \alpha x \beta x \lambda T(y) - T(y) \alpha x \beta x \lambda x.$

By comparing these two expression of W, we get

 $T(x) \alpha (x \beta y \lambda x-2y \beta x \lambda x-2x \beta x \lambda y)+(x \alpha y \beta x-2x \alpha x \beta y-2y \alpha x \beta x) \lambda T(x) +x \alpha T(x)$ $\beta (x \lambda y +y \lambda x)+(x \alpha y +y \alpha x) \beta T(x) \lambda x +x \alpha x \beta T(x) \lambda y +y \alpha T(x) \beta x$ $\lambda x=0......(3)$

Replace y by $y \psi x$ in (3), we obtain

 $T(x) \alpha (x \beta y \psi x \lambda x-2 y \psi x \beta x \lambda x-2x \beta x \lambda y \psi x)+(x \alpha y \psi x \beta x-2x \alpha x \beta y \psi x -2 y \psi x \alpha x \beta x) \lambda T(x) +x \alpha T(x) \beta (x \lambda y \psi x + y \psi x \lambda x)+(x \alpha y \psi x + y \psi x \alpha x) \beta T(x) \lambda x +x \alpha x \beta T(x) \lambda y \psi x + y \psi x \alpha T(x) \beta x \lambda x=0......(4)$

From equation (3) it is easy to see that

By subtracting (5) from (4),we obtain

 $(x \beta y \psi x-2x \beta x \psi y-2y \beta x \psi x) \lambda x \alpha T(x)-(x \alpha y \beta x-2x \alpha x \beta y-2y \alpha x \beta x) \psi T(x) \lambda x+x \psi y \lambda [x, T(x)]_{\beta} \alpha x+y \psi x \lambda [x, T(x)]_{\beta} \alpha x+y \alpha [x, T(x)]_{\beta} \psi x \lambda x=0$

And so

 $x \alpha y \beta x \lambda [x, T(x)]_{\psi} + 2x \alpha x \beta y \lambda [T(x),x]_{\psi} + 2y \alpha x \beta x \lambda [T(x),x]_{\psi} + x \alpha y \beta [x, T(x)]_{\lambda}$ $\psi x + y \alpha x \beta [x, T(x)]_{\lambda} \psi x + y \alpha [x, T(x)]_{\beta} \psi x \lambda x = 0$

which reduces after collecting the first and the fourth term together to

let z be $z\Gamma c\Omega y$, we obtain

$$(a \alpha y \beta c - c \alpha y \beta a) \lambda z \Gamma c \Omega y \psi a = 0....(13)$$

From (12) it is easy to see that

$$(a \alpha y \beta c - c \alpha y \beta a) \lambda z \psi a \Omega y \Gamma c = 0....(14)$$

subtracting (13) from (14), we obtain

$$(a \alpha y \beta c - c \alpha y \beta a) \lambda z \psi (a \alpha y \beta c - c \alpha y \beta a) = 0$$

Since M is a completely prime Γ -ring, then we have

$$a \alpha y \beta c = c \alpha y \beta a \dots (15)$$

combining (9) with (15) ,we arrive at

$$a \alpha y \beta (b+c)=0$$

in other words

$$[T(x),x]_{\alpha}$$
 $\beta y \lambda [T(x),x \psi x]_{\Gamma} = 0....(16)$

From the above relation one obtains easily

$$([T(x),x]_{\alpha} \Omega x + x\Omega [T(x),x]_{\alpha}) \beta y \lambda [T(x),x \psi x]_{\Gamma} = 0$$

We have therefore

[
$$T(x), x \Omega x_{\Gamma}$$
] $\alpha \beta y \lambda [T(x), x \psi x]_{\Gamma} = 0$

And so

[
$$T(x), x \psi x$$
] $\Gamma \beta y \lambda [T(x), x \psi x] \Gamma = 0$

Since M is a completely prime gamma ring, we have

$$[T(x), x \psi x]_{\Gamma} = 0....(17)$$

Substitution x+y for x in (17) gives

$$[T(x), y \psi y]_{\Gamma} + [T(y), x \psi x]_{\Gamma} + [T(x), x \psi y + y \psi x]_{\Gamma} - [T(y), x \psi y + y \psi x]_{\Gamma} = 0.....(18)$$

Putting in the above relation -x for x

$$-[T(x), y \psi y]_{\Gamma} + [T(y), x \psi x]_{\Gamma} + [T(x), x \psi y + y \psi x]_{\Gamma} - [T(y), x \psi y + y \psi x]_{\Gamma} = 0.....(19)$$

And by comparing (18) with (19) $[T(x), x \psi y + y \psi x]_{\Gamma} + [T(y), x \psi x]_{\Gamma} = 0....(20)$ Putting in the above relation $2(x\alpha y+y\alpha x)$ for y $[T(x), x \psi 2(x\alpha y+y\alpha x)+2(x\alpha y+y\alpha x)\psi x]_{\Gamma} + [T(2(x\alpha y+y\alpha x)), x \psi x]_{\Gamma} = 0$ $0=2[T(x),x \psi x\alpha y+y\alpha x\psi x+2x\alpha y\psi x]_{\Gamma}+[T(x)\alpha y+x\alpha T(y)+T(y)\alpha x+y\alpha T(x),x \psi x]_{\Gamma}$ And we obtain according to (7) and (17) $2x\alpha x \psi [T(x),y] \Gamma + 2[T(x),y] \Gamma \psi x\alpha x + 4[T(x),x\alpha y\psi x] \Gamma + T(x) \alpha [y,x\psi x] \Gamma + x\alpha$ $[T(y),x\psi x]_{\Gamma} + [T(y),x\alpha x]_{\Gamma} \psi x + [y,x\alpha x]_{\Gamma} \psi T(x) = 0....(21)$ By replacing y by x, we get $2x \alpha x \quad \psi \quad [T(x),x] \quad {}_{\Gamma} + 2[T(x),x] \quad {}_{\Gamma} \psi x \alpha x + 4[T(x),x \alpha x \psi x] \quad {}_{\Gamma} + T(x) \quad \alpha \quad [x,x \psi x] \quad {}_{\Gamma} + x \alpha x + 4[T(x),x \alpha x \psi x] \quad {}_{\Gamma} + T(x) \quad \alpha \quad [x,x \psi x] \quad {}_{\Gamma} + x \alpha x + 4[T(x),x \alpha x \psi x] \quad {}_{\Gamma} + T(x) \quad \alpha \quad [x,x \psi x] \quad {}_{\Gamma} + x \alpha x + 4[T(x),x \alpha x \psi x] \quad {}_{\Gamma} + T(x) \quad \alpha \quad [x,x \psi x] \quad {}_{\Gamma} + x \alpha x + 4[T(x),x \alpha x \psi x] \quad {}_{\Gamma} + T(x) \quad {}_{\Gamma}$ $[T(x),x\psi x]_{\Gamma}+[T(x),x\alpha x]_{\Gamma}\psi x+[x,x\alpha x]_{\Gamma}\psi T(x)=0......(22)$ *By* (17), *we get* $2x \alpha x \psi [T(x),x] + 2[T(x),x] \psi x \alpha x + 4[T(x),x \alpha x \psi x] = 0$ So $x \alpha x \psi [T(x),x] + [T(x),x] + \psi x \alpha x + 2[T(x),x \alpha x \psi x] = 0$ $x \alpha x \psi [T(x),x] + [T(x),x] \psi x \alpha x + 2x \alpha [T(x),x\psi x] + 2[T(x),x] \alpha x \psi x = 0$ $x \alpha x \psi [T(x),x] + 3[T(x),x] \psi x \alpha x + 2x \alpha [T(x),x\psi x] = 0$ by (17), we get $x \alpha x \psi [T(x),x] +3[T(x),x] \psi x \alpha x=0$ since $[T(x), x \alpha x]_{\Gamma} = 0$ (see 17) then $[T(x),x]_{\Gamma} \alpha x + x \alpha [T(x),x]_{\Gamma} = 0$ one can replace in the above relation $x \alpha x \psi [T(x),x]_{\Gamma} by [T(x),x]_{\Gamma} \alpha x \psi x$

which gives

$$4[T(x),x] \Gamma \alpha x \psi x=0$$

Since M is 2-torsion free

$$[T(x),x]_{\Gamma} \alpha x \psi x = 0.....(23)$$

And

$$x \alpha x \psi [T(x),x]_{\Gamma} = 0 \dots (24)$$

and we have also

$$x\alpha [T(x),x]_{\Gamma} \psi x=0.....(25)$$

because of (20), one can replace in (21)

$$[T(y), x \alpha x]$$
 by $-[T(x), x \alpha y + y \alpha x]$ which gives

 $2x\alpha x\psi \left[T(x),y\right]_{\Gamma} + 2\left[T(x),y\right]_{\Gamma} \alpha x\psi x + 4\left[T(x),x\alpha y\psi x\right]_{\Gamma} + T(x)\alpha \left[y,x\psi x\right]_{\Gamma} + \left[y,x\alpha x\right]_{\Gamma} \psi T(x) - x\alpha \left[T(x),x\psi y + y\psi x\right]_{\Gamma} - \left[T(x),x\alpha y + y\alpha x\right]_{\Gamma} \psi x = 0$

And so

 $2x\alpha x\psi \left[T(x),y\right]_{\Gamma} + 2\left[T(x),y\right]_{\Gamma} \alpha x\psi x + 4\left[T(x),x\right]_{\Gamma} \alpha y\psi x + 4x\alpha \left[T(x),y\right]_{\Gamma} \qquad \psi x + 4x\alpha y\psi \left[T(x),x\right]_{\Gamma} + T(x) \qquad \alpha \left[y,x\psi x\right] + \left[y,x\alpha x\right] \qquad \psi T(x) - x\alpha \left[T(x),x\right]_{\Gamma} \qquad \psi y - x\alpha x\psi \left[T(x),y\right]_{\Gamma} - x\alpha \left[T(x),y\right]_{\Gamma} \qquad \psi x - x\alpha y\psi \left[T(x),x\right]_{\Gamma} - \left[T(x),x\right]_{\Gamma} \qquad \alpha y\psi x - x\alpha \left[T(x),y\right]_{\Gamma} \qquad \psi x - \left[T(x),y\right]_{\Gamma} \qquad \alpha x\psi x - y\alpha \left[T(x),x\right]_{\Gamma} \qquad \psi x - \theta$

We have therefore

by replacing y by y βx , we get

$$x \alpha x \psi [T(x), y \beta x]_{\Gamma} + [T(x), y \beta x]_{\Gamma} \alpha x \psi x + 3[T(x), x]_{\Gamma} \alpha y \beta x \psi x +$$

$$2x\alpha [T(x), y\beta x]_{\Gamma} \psi x + 3x\alpha y\beta x \psi [T(x),x]_{\Gamma} + T(x) \alpha [y\beta x,x\psi x]_{\Gamma}$$

$$+[y\beta x, x\alpha x] \Gamma \psi T(x)-x\alpha [T(x),x] \psi y\beta x-y\beta x\alpha [T(x),x] \psi x=0$$

And
$$x \alpha x \psi [T(x), y]_{\Gamma} \beta x + x \alpha x \psi y \beta [T(x), x]_{\Gamma} + [T(x), y]_{\Gamma} \alpha x \psi x \beta x +$$

```
y \alpha [T(x),x]_{\Gamma} \psi x \beta x + 3[T(x),x]_{\Gamma} \alpha y \psi x \beta x + 3x \alpha y \beta x \psi [T(x),x]_{\Gamma}
+2x\alpha [T(x),y]_{\Gamma} \psi x \beta x + 2x\alpha y \beta [T(x),x]_{\Gamma} \psi x + T(x) \alpha [y,x\psi x]_{\Gamma} \beta x
+[y,x\alpha x] \varphi x \beta T(x)-x\alpha [T(x),x] \beta y \psi x-y\alpha x\beta [T(x),x] \psi x=0
which reduces because of (23) and (25) to
x \alpha x \psi [T(x),
                                                     y]_{\Gamma} \beta x + x \alpha x \psi y \beta [T(x),x]_{\Gamma} + [T(x),y]_{\Gamma} \alpha x \psi x \beta x + 3[T(x),x]_{\Gamma}
\alpha y \psi x \beta x + 3x \alpha y \beta x \psi [T(x),x]_{\Gamma} + 2x \alpha [T(x),y]_{\Gamma} \psi x \beta x + 2x \alpha y \beta [T(x),x]_{\Gamma}
\psi x + T(x) \alpha [y, x \psi x]_{\Gamma} \beta x + [y, x \alpha x]_{\Gamma} \psi x \beta T(x) - x \alpha [T(x), x]_{\Gamma} \beta y \psi x = 0......(27)
we should mentioned the reader that, if a=0 then a \alpha x=0 \ \forall x \in M, \alpha \in \Gamma then the equation
(26)becomes
x \alpha x \psi [T(x), y]_{\Gamma} \beta x + [T(x), y]_{\Gamma} \alpha x \psi x \beta x + 3[T(x), x]_{\Gamma} \alpha y \psi x \beta x + 2x \alpha [T(x), y]_{\Gamma} \psi x \beta x
+3x\alpha y\psi [T(x),x]_{\Gamma} \beta x + T(x) \alpha [y,x\psi x]_{\Gamma} \beta x + [y,x\alpha x]_{\Gamma} \psi T(x) \beta x - x\alpha [T(x),x]_{\Gamma} \psi y \beta x
=0....(28)
subtracting (28) from (27), we obtain
x \alpha x \psi y \beta [T(x),x]_{\Gamma} + 3x \alpha y \psi [x,[T(x),x]_{\beta}]_{\Gamma} + 2x \alpha y \beta [T(x),x]_{\Gamma} \psi x
+[y,x\alpha x] \varphi [x, T(x)] \beta = 0
which reduces because of (24) to
x \alpha x \psi y \beta [T(x),x]_{\Gamma} + 3x \alpha y \psi x \beta [T(x),x]_{\Gamma} - 3x \alpha y \beta [T(x),x]_{\Gamma} \psi x + 2 x \alpha y \psi [T(x),x]_{\Gamma} \beta x
+y\alpha x\psi x\beta [x, T(x)] - x\alpha x\psi y\beta [x, T(x)] = 0
SO
2x\alpha x\psi y\beta [T(x),x]_{\Gamma} + 3x\alpha y\psi x\beta [T(x),x]_{\Gamma} - x\alpha y\beta [T(x),x]_{\Gamma} \psi x=0
Replacing in the above relation
-[T(x),x]_{\Gamma} \beta x by x\beta[T(x),x]_{\Gamma}, we obtain
2x\alpha x\psi y\beta [T(x),x]_{\Gamma} + 4x\alpha y\psi x\beta [T(x),x]_{\Gamma} = 0
Since M is 2-torsion free, then
x \alpha x \psi y \beta [T(x),x]_{\Gamma} + 2x \alpha y \psi x \beta [T(x),x]_{\Gamma} = 0
```

because of (17), (23), (24) and (25) the relation (6) reduce to

$$x \alpha x \psi y \beta [T(x),x]_{\Gamma} = 0$$

which gives together with the above relation

$$x \alpha y \psi x \beta [T(x), x]_{\Gamma} = 0$$

whence it follows

$$[T(x),x]_{\Gamma}$$
 $\beta x \alpha y \psi x \beta [T(x),x]_{\Gamma} = 0$

Then

$$x\beta [T(x),x]_{\Gamma} \alpha y\psi x\beta [T(x),x]_{\Gamma} = 0$$

$$x\beta [T(x),x]_{\Gamma} = 0....(29)$$

of course we have ,also

$$[T(x),x]_{\Gamma} \beta x=0....(30)$$

From (29) one obtains [see the proof of (20)]

$$y\beta [T(x),x]_{\Gamma} + x\beta [T(x),y]_{\Gamma} + x\beta [T(y),x]_{\Gamma} = 0$$

and it is easy to see that

$$[T(x),x]_{\Gamma} \alpha y \beta [T(x),x]_{\Gamma} + [T(x),x]_{\Gamma} \alpha x \beta [T(x),y]_{\Gamma} + [T(x),x]_{\Gamma} \alpha x \beta [T(y),x]_{\Gamma} = 0$$

$$By (30)$$

$$[T(x),x]_{\Gamma} \alpha y \beta [T(x),x]_{\Gamma} = 0....(31)$$

Whence it follows

$$[T(x),x]_{\Gamma} = 0 \text{ for all } \Gamma \in \Gamma \dots (32)$$

And so by combining (32) with (*)

$$T(x \alpha x) = T(x) \alpha x \text{ for all } x \in M, \alpha \in \Gamma.$$

And also $T(x \alpha x) = x \alpha T(x)$ for all $x \in M$, $\alpha \in \Gamma$.

Which means that T is Jordan left centralizer and also Jordan right centralizers

And so by [6, theorem 1.4 and theorem 1.5], we get T is both left centralizer and also right centralizers. Then the proof of theorem is complete.

3-On Jordan Triple centralizers on completely prime gamma ring

In this section we shall defined Jordan triple left (resp.,right centralizer) on gamma ring and study the relation between it and left(right)- centralizer.

<u>Definition 3.1:</u>- An additive mapping $T:M \rightarrow M$ is called Jordan triple left (resp., right) centralizer on Γ -ringM if it satisfy

 $T(x \alpha y \beta x) = T(x) \alpha y \beta x (resp., T(x \alpha y \beta x) = x \alpha y \beta T(x))$ for all $x, y \in M$ and $\alpha, \beta \in \Gamma$.

It is easy to see that every left (resp., right) centralizer be a Jordan triple left (resp., right) centralizer but the converse is not true in this section we study this problem.

<u>Theorem 3.2</u>:- Let M be a 2-torsion free completely prime Γ -ring, if $T:M \to M$ be an additive mapping satisfying

 $T(x \alpha y \beta x) = T(x) \alpha y \beta x$ for all $x, y \in M$, $\alpha, \beta \in \Gamma$. then T is a left centralizer.

<u>Proof</u>: Since $T(x \alpha y \beta x) = T(x) \alpha y \beta x \dots (33)$

Replace x by x+z

 $T(x \alpha y \beta z + z \alpha y \beta x) = T(x) \alpha y \beta z + T(z) \alpha y \beta x \dots (34)$

Replace z by $x \lambda x$ in (34), we get

 $T(x \alpha y \beta (x \lambda x) + (x \lambda x) \alpha y \beta x) = T(x) \alpha y \beta (x \lambda x) + T(x \lambda x) \alpha$

 $y\beta x...$ (35)

replace y by $x \lambda y + y \lambda x$ in (33) and use (34), to get

 $T(x \alpha (x \lambda y + y \lambda x) \beta x) = T(x) \alpha (x \lambda y + y \lambda x) \beta x$

 $T(x \alpha x \lambda y \beta x + x \alpha y \lambda x \beta x) = T(x) \alpha x \lambda y \beta x + T(x) \alpha y \lambda x \beta x \dots (36)$

By comparing (35) and (36), we get

 $(T(x \lambda x) - T(x) \lambda x) \beta y \alpha x = 0$

Suppose that

 $A(x) = T(x \lambda x) - T(x) \lambda x$

Then

$$A(x) \beta y \alpha x = 0....(37)$$

Replace y by $x \alpha z \lambda A(x)$

$$A(x) \beta x \alpha z \lambda A(x) \alpha x=0$$

$$A(x) \alpha x \beta z \lambda A(x) \alpha x=0$$

Since M is a completely prime Γ -ring,then

Now replace x *by* x+y

$$A(x+y) \alpha (x+y)=0$$

$$A(x+y) \alpha x + A(x+y) \alpha y=0....(39)$$

Now we compute

$$A(x+y) = (T(x \alpha y+y \alpha x)-T(x) \alpha y-T(y) \alpha x)+(T(x\alpha x)-T(x) \alpha x)$$

$$+(T(y \alpha y)-T(y) \alpha y)$$

$$A(x+y)=B(x,y)+A(x)+A(y)$$
.....(40)

Where
$$B(x,y) = T(x \alpha y + y \alpha x) - T(x) \alpha y - T(y) \alpha x$$

Thus in view of (39) and (40) implies that

$$A(x) \alpha x + A(y) \alpha x + B(x,y) \alpha x + A(x) \alpha y + A(y) \alpha y + B(x,y) \alpha y = 0$$

Then by using (38), we have

$$A(x) \alpha y + A(y) \alpha x + B(x,y) \alpha x + B(x,y) \alpha y = 0....(41)$$

Again replace x by -x, in (41), to get

$$A(x) \alpha y - A(y) \alpha x + B(x,y) \alpha x + B(x,y) \alpha y = 0$$

$$A(x) \alpha y + B(x,y) \alpha x - A(y) \alpha x + B(x,y) \alpha y = 0$$

$$2(A(x) \alpha y + B(x,y) \alpha x) = 0....(42)$$

Since M is 2-torsion free, then

Since (if x=0 then $x \alpha y=0$)

$$A(x) \alpha y \lambda A(x) + B(x,y) \alpha x \lambda A(x) = 0....(44)$$

From equation (37), we get

$$x \alpha A(x) \lambda z \beta x \alpha A(x) = 0....(45)$$

Since M is prime Γ *-ring,then*

$$x \alpha A(x)=0.....(46)$$

by (46), the equation (44) becomes

$$A(x) \alpha y \lambda A(x) = 0$$

Since M is a completely prime Γ *-ring, then*

A(x)=0 and so

 $T(x \alpha x) = T(x) \alpha x \text{ for all } x, y \in M, \text{ for all } \alpha \in \Gamma.$

i.e T is Jordan left centralizers

and so by [6], theorm 1.4], we get the result.

<u>Theorem 3.3</u>:- Let M be a 2-torsion free completely prime Γ -ring, if $T:M \to M$ be an additive map satisfies $T(x \alpha y \beta x) = x \alpha y \beta T(x)$ for all $x, y \in M$, $\alpha, \beta \in \Gamma$, then T is a right centralizer.

<u>Proof</u>:- by the same technique of the above theorem and by using [6, Theorem 1.5] we get the result.

<u>References</u>

[1]W.E.Barnes(1966)"On the Γ -ring of Nabusawa", Pacific J.Math., 18,411-422.

[2]Y.Ceven(2002), "Jordan left derivations on completely prime Gamma rings", Fenbilimleri dergisicilit 23 say 12.

[3] W.Cortes and C.Haetinger(2009)"On Lie ideals and left Jordan σ - centralizers of 2-torsion free rings", Math. J.Okayama Univ. 51,111-119.

[4] I.N.Herstien(1969) "Topics in ring theory", University of Chicago press.

[5]N.Nabusawa(1964)"On a generalization of the ring theory",

",Osaka J.Math.,1.

[6] Rajaa C.Shaheen,(2007)"On centralizers on some gamma ring"Journal Al-Qadisiya for pure science. Vol. 12, No. 2.

[7] J.Vukman(1999)"An identity related to centralizers in semi-prime rings", Comment. Math. Univ. Carolinae, 40,3,447-456.

[8] B.Zalar(1991)"On centralizers of semi-prime rings" Comment .Math .univ.Carolinae, 32,609-614.

بعض انواع تطبيقات جوردان المركزية على الحلقات الاولية من نوع كاما

رجاء جفات شاهين قسم الرياضيات /كلية التربية/جامعة القادسية

الخلاصة: ـ

قدمنا في هذا البحث دراسة حول بعض انواع التطبيقات المركزية على الحلقات الاولية من نوع كاما.