S*- (o)-converges in Orlicz lattice

Falah Hasan Sarhan / University of Kufa / College of Education / Department of Mathematic / Najaf, Iraq.

Abstract:-

In this paper, we shall review some of the definitions and propositions which are needed in our work. Also we have proved that $||x_n-x||_F$ (o)-convergence to zero if and only if $F(x_n-x)$ (o)-convergence to zero.

1. Introduction:-

In this work a series of known notions, notations and facts of the theory of Boolean algebra, vector lattices [1,2,3], the integration theory for measures with values in semi-field [4,5,6,7] is cited. Suppose that R is the set of real numbers and E is a partially ordered set ($E \subseteq R$). The main results in this work is the following:

Proposition I: If $x \in X$, $||x||_F \le \hat{i}$ (F is S*- Orlicz modular) and $e = \{ ||x||_F = 1 \} = 0$, then $F(x) \le ||x||_F$ (\hat{i} is a Freudenthal unit, i.e for all $x \in X$, $x \land \hat{i} = 0$, that x = 0).

Proposition II: Suppose that $(X, \|.\|_F)$ be S^* - Orlicz Lattice, $x_n, x \in X$. Then, $\|x_n - x\|_F \xrightarrow{(o)} 0$ if and only if $F(x_n - x) \xrightarrow{(o)} 0$ ($\xrightarrow{(o)} i.e$ (o)- converges).

2. The Basic Concepts

In this section, we shall review some of the definitions and propositions which are needed in our work.

2.1. **DEFINITION** [8]

A vector space X equipped with a partial order " \leq " is called a vector lattice, if for each pair x,y in X:

- i. there is the smallest element z (denoted by $x \lor y$) for which $x \le z$ and $y \le z$.
- ii. there is the largest element w (denoted by $x \wedge y$) for which $w \leq x$ and $w \leq y$.
- iii. if $x \le y$, then $x + z \le y + z$ for all $x,y,z \in X$.
- iv. if $x \le y$ and $c \in R+$, then $c \times x \le c y$.

2.2. **DEFINITION** [8]

Suppose that X is a S^* - vector lattice. A mapping $F: X \to S^*$ (S^* The ring of all measurable functions on [0,1]) is called an S^* - Orlicz modular if:

- 1. $F(x) \ge 0$ for all $x \in X$ and F(x) = 0 if and only if x = 0.
- 2. $F(x) \le F(y)$, if $|x| \le |y|$ for all $x,y \in X$.
- 3. $F((\infty x + (\hat{1}-\infty) y) \le \infty F(x) + (\hat{1}-\infty) F(y) \text{ for all } x, y \in X, \infty \in S^* \text{ and } 0 \le \infty \le \hat{1}.$
- 4. $F(2 x) \le c F(x)$ for all $x \in X$ and c > 0 where c is constant.
- 5. F(x + y) = F(x) + F(y), if $x,y \in X$ and $x \land y = 0$ ($x \land y$ i.e x infimum of y).
- 6. F(e x) = e F(x) for all $x \in X$ and $e \in \nabla(S^*)$.

From the definition, we get that F(x)=F(|x|) and $F(\propto x) \leq \propto F(x)$ for all $x \in X$, $\infty \in S^*$ and $0 \leq \infty \leq \hat{\imath}$.

2.3. Note [8]

If $(L_M, \|.\|_{(M)})$ is an S^* -Orlicz space generated by the Orlicz function M(u) with the Δ_2 -condition (i.e the N-function M(u) satisfies the Δ_2 -condition, if there exist k>0 and $uo \geq 0$ such that $M(2u) \leq k$ M(u) for any $u \geq uo$ then $F(x)=\mu(M(|x|))$ is an S^* -Orlicz modular on L_M (μ An Lebesgue integral in $C_\infty(Q(\nabla))$ where $C_\infty(Q(\nabla))$ is a Stone compact set).

Suppose that X is an S*- Orlicz modular on a S*-vector lattice X. For all $x \in X$, we set $B(x) = \{\lambda \in \mathbf{S}_{+}^{*} : F(\lambda^{-1}x) \leq \hat{\imath}, \lambda \text{ is invertible}\}.$

If $x \in X$, $\lambda = F(x) + \hat{\imath}$, then $F(\lambda^{-1} x) \le \lambda^{-1} F(x) \le \hat{\imath}$, it means, that $B(x) \ne \emptyset$. For each $x \in X$, we set $\|x\|_F = \inf \{\lambda : \lambda \in B(x)\}$ [8].

2.4. proposition [8]

An S^* -Orlicz Lattice $(X, \|.\|_F)$ is a complete Lattice and an S^* -norm $\|.\|_F$ is order continuous.

2.5. Proposition [8]

Suppose that $\|.\|_{(M)}$ is an S^* -norm on L_M . Furthermore, it follows from $|x| \le |z|$, $x,z \in L_M$, that $\|x\|_{(M)} \le \|z\|_{(M)}$, thus $(L_M,\|.\|_{(M)})$ is a normed S^* -vector lattice.

2.6. proposition [9]

Suppose $x_n, x \in C_{\infty}(Q(\nabla))$, $0 \le x_n \uparrow x$, then $M(x_n) \uparrow M(x)$ ($\{x_n\}$ is increasing (decreasing) then, we write $x_n \uparrow x$, (respectively, $x_n \downarrow x$)).

2.7. proposition [8]

Let $\|.\|_{(M)}$ be an S^* -norm on L_M , then $(L_M, \|.\|_{(M)})$ is a Banach S^* -vector lattice.

3. The main result In this section, we shall prove an important propositions.

3.1. **Proposition**

If $x \in X$, $||x||_F \le \hat{i}$ and $e = \{ ||x||_F = 1 \} = 0$, then $F(x) \le ||x||_F$.

Proof: Put B(x)= $\{\lambda \in S_+ : F(\lambda^{-1}x) \le \hat{\imath} : \lambda \text{ is invertible} \}$, we have choose $\lambda_n \in B(x) : \lambda_n \downarrow ||x||_F$.

Let $\lambda_1, \lambda_2 \in B(x)$, $e = {\lambda_1 \le \lambda_2}$, then $\beta = \lambda_1 \land \lambda_2 = \lambda_1 e + \lambda_2 (\hat{\imath} - e) \in S^+$ and β is invertible. $F(\beta^{-1}x) = F(\lambda_1^{-1} e + \lambda_2^{-1} (\hat{\imath} - e)x) = e F(\lambda_1^{-1} xe) + (\hat{\imath} - e) F(\lambda_2^{-1} x(\hat{\imath} - e)) \le e + (\hat{\imath} - e) = \hat{\imath}$.

i.e $\beta \in B(x)$. Using the method of mathematical induced, we get $\bigwedge_{i=1}^{\infty} \lambda_i \in B(x)$ for any

finite subset $\{\lambda_1, \ldots, \lambda_n\} \in B(x)$.

Since S^* is of countable type, there exists a subsequence $\{\lambda_n\} \subset B(x)$ such that $\lambda_n \downarrow \inf B(x) = ||x||_F$.

Since $\beta_n = \lambda_n + 2^{-1} \epsilon \hat{\imath} \in B(x)$ ($\epsilon \in S_+$) and $\beta_n \downarrow ||x||_F + 2^{-1} \epsilon \hat{\imath}$ (by proposition 2.5.), we have $(|x|\beta_n^{-1})^{\uparrow}|x|(||x||_F + 2^{-1}\epsilon \hat{\imath})^{-1}$.

Hence by proposition (2.5) then, $F((||x||_F + 2^{-1} \epsilon \hat{\imath})^{-1}x) = \sup F(\beta_n^{-1} x) \le \hat{\imath}$ then, $||x||_F \in B(x) = \{\lambda \in S_+^* : F(\lambda^{-1} x) \le \hat{\imath}\}.$

Suppose that $\lambda \in S_+^*$, $\|x\|_F \le \lambda \le \hat{\imath}$ and $f = \{ \lambda = \|x\|_F \} = 0$, i.e (λ is invertible). Set $f_n = \{\lambda < \lambda_n \}$, $n = 1, 2, \ldots$ then $f_{n+1} \le f_n$ (it is clear that).

$$f_1 \!\!=\!\! \{\lambda \!\!<\!\! \lambda_1\},\, f_2 \!\!=\!\! \{\; \lambda \!\!<\!\! \lambda_2\},\, \ldots\,,\, f_n \!\!=\!\! \{\; \lambda \!\!<\!\! \lambda_n\},\, if\, n \!\!\neq\!\! k,\, then\,\, f_n.f_k \!\!=\!\! 0\;,\, \underset{}{\text{Sup}}\, f_n \!\!=\! \hat{\imath}\;.$$

By proposition 2.6 then, $F(x_n) \uparrow F(x)$.

 $\|x\|_F=\inf \{\lambda: \lambda \in B(x) \}$, if $\|x\|_F=1$ and $\|x\|_F=\lambda$ then $\lambda=1$, therefore $F(\lambda^{-1}x) \leq \hat{i}$ then $F(x) \leq \hat{i} \leq 1=\|x\|_F$. Hence $F(x) \leq \|x\|_F$.

3.2. Proposition

Suppose that $(X, ||.||_F)$ be S*- Orlicz Lattice, $x_n, x \in X$. Then, $||x_n-x||_F \xrightarrow{(o)} 0$ if and only if $F(x_n-x) \xrightarrow{(o)} 0$.

Proof: Suppose that $||x_n-x||_F \xrightarrow{(\sigma)} 0$.

Let $e_n = \{ \|x_n - x\| \le 1 \}$, n = 1, 2, Since $\|x_n - x\|_F \xrightarrow{(o)} 0$ then $\|x_n - x\|_F < 1 \xrightarrow{(o)} \hat{i}$, $e_n \in S^*$ and $\|e_n(x_n - x)\| = e_n \|x_n - x\|_F \le \hat{i}$ and $\{e_n \|x_n - x\| = \hat{i}\} = 0$.

By proposition (3.1), we have $F(e_n(x_n-x)) \le e_n \|x_n-x\|_F \le \|x_n-x\|_F$, hence $e_n F(x_n-x) = F(e_n(x_n-x)) \xrightarrow{(\sigma)} 0$, Furthermore $(\hat{\imath} - e_n) \le (\hat{\imath} - e_n) \|x_n-x\|_F \le \|x_n-x\|_F$, i.e. $(\hat{\imath} - e_n) \xrightarrow{(\sigma)} 0$.

Put $f_n = \sup_{i>n} (\hat{\imath} - e_i)$. Then we have $(\hat{\imath} - e_n) \le f_n$, $f_n \downarrow 0$ and $(\hat{\imath} - e_n) F((x_n - x)) \le f_n F(x_n - x)$.

Since the (o)- convergence in S^* is equivalent to the convergence almost everywhere with respect to Lebesgue measure [10], then it follows from $f_n \downarrow 0$ that $f_n F(x_n - x) \xrightarrow{(o)} o$, hence $(\hat{i} - e_n) F((x_n - x)) \xrightarrow{(o)} 0$, therefore

 $F((x_n-x)) = e_n F(x_n-x) + (\hat{\imath} - e_n) F((x_n-x)) \xrightarrow{(\sigma)} 0. \text{ Hence } F(x_n-x) \xrightarrow{(\sigma)} 0.$

Suppose that $F(x_n-x) \xrightarrow{(o)} 0$.

By proposition (2.3), we get $F(2^{i}(x_n-x)) \xrightarrow{(o)} 0$. $(1 \le i \le n)$.

From the previous assertion, the element $\lambda = F(x) + \hat{\imath} \in B(x)$. Hence $||x||_F \le F(x) + \hat{\imath}$ for all $x \in X$. Since $F(2y) \le kF(y)$ for any $y \in C_{\infty}(Q(\nabla))$, then $F(2^i(x_n-x)) \le k^iF(x_n-x)$ for all $i=1,2,\ldots$, From which, we get $F(2^i(x_n-x)) \xrightarrow{(o)} 0$ as $n \to \infty$ from any fixed i.

Thus, using Young's inquality, notice that, for any $y \in L_N$ with $F(y) \le \hat{\imath}$, the inequality $|2^i(x_n-x)y| \le F(2^i(x_n-x)) + \hat{\imath}$, take place.

Hence $\|2^i(x_n-x)\|_F \le F(2^i(x_n-x)) + \hat{\imath}$, and $\|x_n-x\|_F \le 2^{-1}F(2^i(x_n-x)) + 2^{-1}\hat{\imath}$. From this, we get (o)- $\overline{\text{Lim}} \|x_n-x\|_F = \bigwedge_{k=1}^\infty \bigvee_{n\ge k} \|x_n-x\|_F \le 2^{-1}\hat{\imath}$, for any $i=1,2,\ldots$

This means that (o)- $\overline{Lim} \|\mathbf{x}_n - \mathbf{x}\|_F = 0$, i.e. $\|\mathbf{x}_n - \mathbf{x}\|_F \xrightarrow{(o)} 0$.

References:-

- [1] A. Battor (1991): "Orlicz space associated with S*-valued measure and their measurable decompositions ". Ph.D. Dissertation. Tashkent State University.
- [2] A. Battor (2002): "Orlicz space for measurable function". Lecture notes.
- [3] L.L. Dornhoff (1978): "Applied Modern Algebra". New York, London, -p. 265.
- [4] B.Z. Vulih (1961); Introduction to the theory of partially ordered set. Moscow, 407
- [5] C.D. Aliprantis & K.C. Border (1994), Infinite Dimensional Analysis: A. Hitchhiles's Guide, Springer-Verlag.
- [6] H.H. Schaefer (1974): Banach Lattices and positive operators, Springer–Verlag.
- [7] J. Borwein and V. weff: "Convex function on Banach space Note containing.
- [8] A. Battor, F. Hasan (2008): "On The Orlicz Lattice and Modular". MS.C thesis, University of Kufa.
- [9] S.L. Gubta an N. Rani (1970): "Fundamental real analysis". Delhi.
- [10] M.V. Podoroznyi (1981); Banach modules over rings of measurable functions // In book: Applied mathematics and mechanics. Proc. Tashkent Univ. –N. 670. –p. 41-43.

فلاح حسن سرحان جامعة الكوفة / كلية التربية للبنات / قسم الرياضيات / النجف الأشرف العراق.

الخلاصة: -في هذا البحث نستعرض بعض التعاريف والمبرهنات التي نحتاجها في عملنا. كذلك سنبرهن بان أن تا أن كان حمد على تقليب تقاري (10) الم الصفر