THE SET OF BISEQUENSES OVER PRIMARY VARIANTS

By

ABU FIRAS MUHAMMAD JAWAD AL MUSAWI

Basra University / College of Education / Department of Mathematics

and

SHKUR MAHMOOD AL SALIM

Basra University / Faculty of Science / Department of Mathematics

Abstract

In this paper, at the beginning we attempted to introduce some preliminary concepts for bisequences. After that we explained The collection of primary variants T_p Where each element t_p in T_p ($p \in \mathbb{Z}$) is called primary variant, also (by definition of the set of all bisequences on finite set), we obtained the set of all bisequences primary variant $X(t_j^*) = \{t_j^*\}_{j=-\infty}^{\infty}$ and collection of all bisequences of primary variants χ and some subset of χ such as χ^0 , χ^e , χ^+ and χ^- , we consider A the collection of all abelian variants groups and P_k symmetric variants group also we introduce the homomorphism f_{χ} : Hom $\chi(B, G)$ \longrightarrow Hom $\chi(A, G)$, we introduce some of theorems and study some of their basic properties and at last we show that χ is a topological space.

Introduction

In this paper , we introduce the collection of primary variants T_p , we use the bisequences which defined in symbolic dynamic [4].

We obtained $X(t_i) = \{t_i\}_{i=-\infty}^{\infty}$ and say the set of all bisequences primary variant and denoted to the collection of the set of all bisequences primary variants by χ and we defined the sets χ^e, χ^+, χ^- which each of them is subset of χ .

We introduce some operations such as $(\bullet, \otimes, \bullet, *, \Box)$ on the finite set Σ , infinite sets T_p , χ^- and χ , also we consider A the collection of all abelian primary variants group and symmetric variant group also we introduce the homomorphism f_{χ} from the Hom $\chi(B, G)$ group in to Hom $\chi(A, G)$ group where each of Hom $\chi(B, G)$ and Hom $\chi(A, G)$ are collection of all homomorphisms from A into G and from B into G and respectively, where

A,*B*,*G* in A and f a homomorphism from group A into group B , and we introduce some of theorems and study some of their basic properties .

Finally we define a topology on the set $\boldsymbol{\chi}$

Definitions 1:

i) Let *S* be a finite set of n elements this finite set is often called the symbol set and each element in it called symbol or also called the alphabet [5] and in this case each element in it may be called letter.

ii) A doubly infinite sequence or bisequence x is a function from the set of Integers Z to alphabet or symbol set S that is each element x_i in it is a symbol or letter ([1], [4]).

Remarks 2:

i) To show zero image in doubly infinite sequence we put appoint to the left of the letter which represent the zero image that is a letter which represent zero image lies on the right of the

point [4] .

ii) the set of all doubly infinite sequences or bisequences on alphabet or symbol set S is denoted by X(S).

iii) The topology which defined on X(S) is equivalent to product topology

 $S^{\infty} = \dots S \times S \times S \times \dots$

Where the topology which defined on alphabet S is the discrete topology [1]

Examples 3:

i) Shift map σ (which defined in [1]) is a homeomorphism from X(S) into itself and it is shifting a letter x_i one position to the left that is $[\sigma(x)]_i = x_{i+1}$. If $S = \{0,1\}$ and if

 $\sigma(x) = \dots \ 0 \ 0 \ 1 \ \dots \ 0 \ 0 \ 0 \ \dots$

 $x = \dots \ 0 \ 0 \ 0 \ . \ 1 \ 0 \ 0 \ 0 \dots$

then

is a sequences above are sequences on symbol set or alphabet {0,1}.

ii) The following sequence

 $\dots \diamond \# \dagger \# \cdot \dagger \diamond \diamond \# \diamond \dots$

is a sequence on symbole set $\{\diamond, \#, \#, \}$.

iii) The following sequence

... a c d b.d a bac ...

is a sequence on alphabet $\{a, b, c, d\}$.

Definition 4: Let $T_p = \{t_i\}_i$ (such that $i \in \mathbb{Z}$ the set of integers) we say that T_p is primary variantsset and t_k primary variants, for each integer k

$$t_{k} = \begin{cases} t_{q^{-}} k \leq 0 \\ t_{q^{+}} k \geq 0 \end{cases} \text{ where } t_{q^{-}} = \{-q, 1-q, \dots, 0\}, \ t_{q^{+}} = \{0, 1, \dots, q\} \text{ for integer } q \geq 0 \text{ and } q = |k| \end{cases}$$

Definition 5: Let • be an operation on the set T_p defined as fellow

 $t_i \bullet t_j = t_{i+j}$ for integers *i* and *j*.

Theorem 6 : (T_p, \bullet) is abelian (commutative) group

Proof :

i) See that $(t_i \bullet t_j) \bullet t_k = t_{i+j} \bullet t_k = t_{i+j+k} = t_i \bullet t_{i+j} = t_i \bullet (t_i \bullet t_k)$ and

 $(t_i \bullet t_j) = t_{i+j} = t_{j+i} = (t_i \bullet t_i)$ that is \bullet is associative and commutative.

ii) $t_0 \bullet t_i = t_i$ and $t_{-i} \bullet t_i = t_0$ so t_0 is identity of \bullet and t_{-i} is the inverse of t_i .

Definition 7: Let χ be the collection of all bisequences of primary variants, that is each element in χ is all bisequences of primary variant that is

 $\chi = \{ X(t_i) \}_{i \in \mathbb{Z}}$ we shall call χ the set of all bisequences of primary variants.

Example 8 : Let

 $x = \dots \ 0 \ 0 \ 1 \ . 2 \ 0 \ 1 \ 1 \ \dots$ $y = \dots \ 0 \ 0 \ 3 \ . 1 \ 0 \ 2 \ 1 \ \dots$

see that $x \in X(t_2)$ and $x \in X(t_3)$ and $y \in X(t_3)$ but $y \notin X(t_2)$

Definitions 9 :

- i) Let * be an operation on χ defined by $X(t_i) * X(t_j) = X(t_k)$ where $k = \min\{|i|, |j|\}$.
- ii) Let \Box be an operation on χ defined by $X(t_i) \Box X(t_j) = X(t_k)$ where $k = \max\{|i|, |j|\}$.
- iii) Let \blacklozenge be an operation on χ defined by $X(t_i) \blacklozenge X(t_j) = X(t_k)$ where $k = \min\{i, j\}$.

Definitions 10 :

i) $\chi^e = \{X(t_i); i \text{ is even}\}$ ii) $\chi^+ = \{X(t_i); i > 0 \text{ is integer}\}$ iii) $\chi^- = \{X(t_i); i < 0 \text{ is integer}\}$ Remarks 11 :

- i) Both (χ , *) and (χ , \square) are commutative semi groups
- ii) The system (χ^- , \blacklozenge) is commutative semi sub group with identity $X(t_{-1})$

iii) The system (χ^+ , \Box) is commutative semi sub group with identity $X(t_1)$

Definition 12 : Let \dagger be an operation on χ defined as fellow

$$X(t_i) \dagger X(t_j) = X(t_{i+j}) .$$

Theorem 13 : (χ, \dagger) is abelian (commutative) group

Proof: $[X(t_i) \dagger X(t_j)] \dagger X(t_k) = X(t_{i+j}) \dagger X(t_k) = X(t_{i+j+k}) = X(t_i) \dagger X(t_{j+k})$

= $X(t_i)$ † [$X(t_j)$ † $X(t_k)$] then † is associative on χ .

 $X(t_0)$ is identity of \dagger

 $X(t_{-i})$ is the inverse of $X(t_i)$, for every integer i

And it is clearly that \dagger is commutative on χ because (i+j) = (j+i)

(note that ($\chi^{e}\,,\,\dagger)$ is a subgroup of ($\chi,\,\dagger)$)

Definition 14 : Let \ddagger be an operation on χ defined as

$$X(t_i) \ddagger X(t_j) = X(t_{i+j-1}) .$$

Theorem 15 : (χ, \ddagger) is abelian (commutative) group

Proof: $[X(t_i) \ddagger X(t_j)] \ddagger X(t_k) = X(t_{i+j-1}) \ddagger X(t_k) = X(t_{i+j-1+k-1}) = X(t_{i+j+k-2})$

 $X(t_i) \ddagger [X(t_j) \ddagger X(t_k)] = X(t_i) \ddagger X(t_{j+k-1}) = X(t_{i+j+k-1-1}) = X(t_{i+j+k-2})$

Then \ddagger is associative on χ .

 $X(t_i) \ddagger X(t_1) = X(t_{i+1-1}) = X(t_i)$ so is identity of \ddagger

 $X(t_{2-i})$ is the inverse of $X(t_i)$ because for every integer i we have $X(t_{2-i}) \ddagger X(t_i) = X(t_{2-i+i-1}) = X(t_1)$ And since (i+j-1) = (j+i-1) so \ddagger is commutative on χ

Definition 16 : Let $\Sigma = \{X(S_1), X(S_2), ..., X(S_r)\}$ (r > 0 is integer) the set of all bisequences of alphabets $S_1, S_2, ..., S_r$ such that $S_1 \subset S_2 ... \subset S_r$ where S_i (i=1,...,r) is alphabet of i letter(s).

Note that the elements of *S* may be numbers, letters or symbols like *, #, ..., etc.

Also note Σ may be a subset of χ if $S_i = t_{i-1}$ (i=1,2,...,r)

Definition 17 : Let κ and η be positive integers such that $(1 \le \kappa \le r \text{ and } 1 \le \eta \le r)$ and let \otimes be an operation on the set Σ defined as fellow

$$X(S_{\kappa}) \otimes X(S_{\eta}) = X(S_{\rho})$$
 where $\rho = (\kappa + \eta - 1) \pmod{r}$.

Theorem 18 : (Σ, \otimes) is abelian (commutative) group

Proof : \otimes is associative because

$$\{X(S_{\kappa}) \otimes X(S_{\eta})\} \otimes X(S_{\eta}) = X(S_{\nu}) \otimes X(S_{\eta}) \text{ where } \nu = (\kappa + \eta - 1) \pmod{r} = \kappa \pmod{r} + \eta \pmod{r} - 1.$$

$$X(S_{\nu}) \otimes X(S_{\eta}) = X(S_{\mu}) \text{ where } \mu = (\nu + \eta - 1) \pmod{r} = \nu \pmod{r} + \eta \pmod{r} - 1.$$

 $X(S_{\kappa}) \otimes \{X(S_{\eta}) \otimes X(S_{\eta})\} = X(S_{\kappa}) \otimes X(S_{q}) \text{ where } q = (\eta + \eta' - 1) \pmod{r} = \eta \pmod{r} + \eta' \pmod{r} - 1.$

 $X(S_{\kappa}) \otimes X(S_q) = X(S_{\pi})$ where $\pi = (\kappa + q - 1) \pmod{r} = \kappa \pmod{r} + q \pmod{r} + q \pmod{r}$

but $\mu = \nu \pmod{r} + \eta \pmod{r} - 1 = \kappa \pmod{r} + \eta \pmod{r} - 1 + \eta \pmod{r} - 1$

 $=\kappa \pmod{r} + \eta \pmod{r} + \eta \pmod{r} + \eta \pmod{r} + 1 = \kappa \pmod{r} + q \pmod{r} + 1 = \pi$

It is clearly that unique sequence on $S_1(X(S_1))$ is identity of \otimes and for every integer $1 \le m \le r$ there is an integer $1 \le q \le r$ such that $(m+q) \pmod{r} = 2$. Then the inverse of $X(S_m)$ is $X(S_q)$ where q=2-m+r

 $\rho = (\kappa + \eta - 1) \pmod{r} = (\eta + \kappa - 1) \pmod{r}$ that is \otimes is commutative on Σ .

Definition 19 : Let ψ be a function defined from T_p to χ as

$$\Psi(t_i) = X(t_i) \ .$$

Theorem 20 : ψ : $T_p \longrightarrow \chi$ is homomorphism

Proof: $\psi(t_i \bullet t_j) = \psi(t_{i+j}) = X(t_{i+j}) = X(t_i) \dagger X(t_j)$.

Definition 21 : Let φ be a function from T_p to Σ defined by

 $\varphi(t_i) = X(S_{\rho})$ where $\rho = (i) \pmod{r} + 1$.

Theorem $22: \varphi: T_p \longrightarrow \Sigma$ is homomorphism.

Proof : $\varphi(t_i \bullet t_j) = \varphi(t_{i+j}) = X(S_\rho)$ where $\rho = (i+j) \pmod{r} + 1 = (i) \pmod{r} + (j) \pmod{r} + 1$. because $(i+j) \pmod{r} = (i) \pmod{r} + (j) \pmod{r}$ Since i & j are integers.

Let $\varphi(t_i) = X(S_{\mu})$ where $\mu = (i) \pmod{r} + 1$ and let $\varphi(t_j) = X(S_{\eta})$ where $\eta = (i) \pmod{r} + 1$.

Then $\varphi(t_i) \otimes \varphi(t_j) = X(S_\mu) \otimes X(S_\eta) = X(S_\pi)$ where $\pi = (\mu + \eta) \pmod{r} - 1$

Then $\pi = \mu \pmod{r} + \eta \pmod{r} - 1 = (i) \pmod{r} + 1 + (j) \pmod{r} + 1 - 1$

 $=(i)(mod r) + (j)(mod r) + 1 = \rho$

Theorem 23 : Let $h:(T_p, \bullet) \longrightarrow (\chi^e, \dagger)$ be a map defined by $h(t_i) = X(t_{2i})$, for each integer *i* then *h* is isomorphism.

Proof : for every $t_i, t_j \in T_p$ we have

 $h(t_i \bullet t_j) = h(t_{i+j}) = X(t_2(i+j)) = X(t_2i+2j) = X(t_2i) \dagger X(t_2j) = h(t_i) \dagger h(t_j) \Rightarrow h \text{ is homomorphism.}$

If $h(t_i) = h(t_j) \Rightarrow X(t_{2i}) = X(t_{2j}) \Rightarrow t_{2i} = t_{2j} \Rightarrow t_i = t_j \Rightarrow h$ is monomorphism.

Now suppose that *i* is even integer then there exist integer *j* such that j = i/2 then $h(t_j)=X(t_i)$ therefore *h* is epimorphism.

Hence *h* is isomorphism .

Definitions 24 :

1) Let $\mathbf{A} = \{A \text{ is abelian group : either } A \text{ is a subgroup of } \chi \text{ or } A \text{ is a subgroup of } T_p \}$, we say **D** is variants group for each $\mathbf{D} \in \mathbf{A}$

2) Let A and B be any two elements in A ,we define Hom $\chi(A, B)$ be the set of all homomorphisms $f : A \longrightarrow B$

Remark 25 : The zero homomorphism $0 : A \longrightarrow B$ defined by $0(a) = \mathcal{C}_B$, for every

element $a \in A$, where \mathcal{C}_B is identity element in Group B

Definition 26 :Let $*_B$ be an operation of Group *B* and let \oplus be an operation on the set

Hom $\chi(A, B)$ defined by $(f \oplus g)(a) = f(a) *_B g(a)$ for every $a \in A$

Remark 27 : Note that $(f \oplus g)(a)$ is a function in Hom $\chi(A, B)$ and let us assume that

 $(f \oplus g)(a) = f(a) *_B g(a) = h(a)$

Theorem 28 : The system (Hom $\chi(A, B)$, \oplus) is commutative group

Proof : \oplus is associative operation since $*_B$ is associative (*B* is Group)

 $(f \oplus 0)(a) = f(a) *_B 0(a) = f(a) *_B e_B = f(a) \forall a \in A \text{ and } \forall f \in \text{Hom } \chi(A,B)$

Then zero homomorphism $0 \in \text{Hom } \chi(A, B)$ is identity element of \oplus

Let $f \in \text{Hom } \chi(A, B) \Rightarrow f(a) \in B$ since *B* is group hence it is has to contain an inverse of any non identity element in *B*. Let \overline{f} is an inverse of *f*, Then for each element $f \in \text{Hom } \chi(A, B)$ there is inverse element $\overline{f} \in \text{Hom } \chi(A, B)$ such that $(f \oplus \overline{f})(a) = e_B = \mathbf{0}(a)$.

By definition of A *B* is commutative group \Rightarrow

 $(f \oplus g)(a) = f(a) *_B g(a) = g(a) *_B f(a) = (g \oplus f)(a)$ that is \oplus is commutative.

Example 29 : Let h_1 and h_2 be two homomorphisms from (T_p, \bullet) to (χ^e, \dagger) defined by

$$h_1(t_i) = X(t_{2i})$$
 and $h_2(t_i) = X(t_{4i}) \forall t_i \in T_p$.

 $(h_1 \oplus h_2)(t_i) = h_1(t_i) \oplus h_2(t_i) = X(t_{2i}) \dagger X(t_{4i}) = X(t_{6i}) = h(t_i) = (h_2 \oplus h_1)(t_i)$, then we have

- i. $h:(T_p, \bullet) \longrightarrow (\chi^e, \dagger)$ defined by $h(t_i) = X(t_{6i}), \forall t_i \in T_p$ and hence $h \in \text{Hom } \chi(T_p, \chi^e)$.
- ii. The zero homomorphism $0:(T_p, \bullet) \longrightarrow (\chi^e, \dagger)$ defined by $0(t_i) = X(t_0), \forall t_i \in T_p$.
- iii. $h_1:(T_p,\bullet)\longrightarrow(\chi^e,\dagger)$ and $h_2:(T_p,\bullet)\longrightarrow(\chi^e,\dagger)$ are two homomorphisms and they are

iv. inverse of h_1 and h_2 respectively where $h_1(t_i) = X(t_{2i})$ and $h_2(t_i) = X(t_{4i})$, $\forall t_i \in T_p$.

Lemma 30 : If $f \in \text{Hom } \chi(A, B)$ and G is an other abelian group then f induces a homomorphism f_{χ} : Hom $\chi(B, G) \longrightarrow \text{Hom } \chi(A, G)$ which is given by

$$f_{\chi}(g) = g \circ f \quad \forall g \in \operatorname{Hom} \chi(B, G)$$

Proof :Let $g: B \longrightarrow G$ and $h: B \longrightarrow G$ be two homomorphisms in Hom $\chi(B, G)$ we have $f_{\chi}(g \oplus h) = (g \oplus h) \circ f = (g \oplus h)(f) = g(f) *_B h(f) = (g \circ f) *_B (h \circ f) = f_{\chi}(g) *_B f_{\chi}(h) = f_{\chi}(g) \oplus f_{\chi}(h)$.

Remarks 31 :

i. If $f: A \longrightarrow B$, $g: B \longrightarrow G$ and $h: B \longrightarrow C$ then we have

 f_{χ} : Hom $\chi(B, G) \longrightarrow$ Hom $\chi(A, G)$ and h_{χ} : Hom $\chi(C, G) \longrightarrow$ Hom $\chi(B, G)$.

ii. $f_{\chi} \circ h_{\chi} = (h \circ f)_{\chi} \text{ and} (f_1)_{\chi} \circ (f_2)_{\chi} \circ \ldots \circ (f_n)_{\chi} = (f_n \circ f_{n-1} \circ \ldots \circ f_3 \circ f_2 \circ f_1)_{\chi}.$ Lemma 32 : If $f \in \text{Hom } \chi(A, B), g \in \text{Hom } \chi(B, C)$ and $G \in A$ with $h \circ f = 1_A$, where $h \in \text{Hom } \chi(B, A) \Rightarrow f_{\chi} \circ h_{\chi} = 1_{\text{Hom } \chi(A, G)}.$

Proof : Let $\rho \in \chi(A, G)$. We have

 $f_{\chi} \circ h_{\chi}(\rho) = f_{\chi}(\rho \circ h) = (\rho \circ h) \circ f = \rho \circ (h \circ f) = \rho \circ \mathbf{1}_{A} = \mathbf{1}_{\operatorname{Hom}\chi(A,G)}.$

Theorem 33 : If $f \in \text{Hom } \chi(A, B)$, $g \in \text{Hom } \chi(B, C)$ and $G \in A$ with $h \circ f = 1_A$ where $h \in \text{Hom } \chi(B, A)$. Then

- 1) f_{χ} is an epimorphism
- 2) if $g : B \longrightarrow C$ epimorphism $\Rightarrow g_{\chi}$ monomorphism.

Proof:

1) From Lemma(32) we have $f_{\chi} \circ h_{\chi} = 1_{\text{Hom }\chi(A,G)}$.

But $1_{\text{Hom}\chi(A,G)}$ is an isomorphism therefore f_{χ} is an epimorphism.

2) We must prove that Ker $g_{\chi} = \{0\}$ (0 is zero homomorphism).

Let $\delta \in \operatorname{Ker} g_{\chi}$ we have $g_{\chi}(\delta) = 0 \Longrightarrow \delta \circ g = 0$.

Since $g : B \longrightarrow C$ is an epimorphism, then for every $c \in C$ there exists $b \in B$ such that g(b) = c, since $\delta \circ g = 0$ (0 is zero homomorphism) then $\delta \circ g(b) = 0$ (b) = $e_g \implies \delta(g(b)) = e_G \Rightarrow \delta(c) = e_G$, $\forall c \in C \Rightarrow \delta$ is zero homomorphism. This is show g_{χ} is monomorphism.

Definition 34 : A bijective mapping $f: t_k \longrightarrow t_k$ have the property that the set $\{a: f(a) \neq a \text{ for some } a \in t_k\}$ is finite, is called a permutation of t_k .

Remark 35 : The order of t_k denoted by $|t_k|$ is called the degree of the permutations of t_k .

Theorem 36 : The set of all the permutations of t_k ,

 $P_k = \{f: t_k \longrightarrow t_k : f \text{ is bijective and } f(a) \neq a \text{ for some } a \in t_k \} \text{ is a permutation group under composition}$ **Proof**:

Proof :

- 1) Composition functions is an associative operation .
- 2) The identity map I = e is identity element for composition .
- 3) For each $f: t_k \longrightarrow t_k$, we have for every $j \in t_k$ there exists $i \in t_k$ such that f(j) = i we could be defined inverse of f in P_k by $f^{-1}(i) = j$ for each $i \in t_k$ so there exists inverse of f

 $f^{-1}: t_k \longrightarrow t_k$ for composition.

Remarks 37 :

1) (P_k , \circ) is called symmetric variants group.

2)
$$|t_k| = \begin{cases} k+1 & k \ge 0\\ 1-k & k < 0 \end{cases}$$

3)
$$|P_k| = \begin{cases} k!+1 & k \ge 0\\ 1+(-k)! & k < 0 \end{cases}$$

4)
$$|P_k| = |P_l| \Rightarrow k = l \text{ or } k = -l$$

Theorem 38 : The two symmetric groups (P_k, \circ) and (P_l, \circ) are isomorphic if and only if they have the same degree .

Proof:

Suppose (P_k, \circ) isomorphic to (P_l, \circ) and $|P_k| = m$, $|P_l| = n$ then we have isomorphism $h: P_l \longrightarrow P_k$ and $P_k = \{f_i: i=1,2,...,m\}, P_l = \{g_i: i=1,2,...,n\}, h$ is epimorphism and monomorphism then h send each element in group P_l to exactly one element in group P_k therefore P_k and P_l have the same number of elements thus $|P_k| = |P_l|$

Now suppose $|P_k| = m = |P_l|$, that is $P_k = \{f_i : i=1,2,...,m\}$ and $P_l = \{g_i : i=1,2,...,m\}$ contains *m* elements, so we can define isomorphism from the group (P_k, \circ) to the group (P_l, \circ) by $h(f_i) = g_i \quad \forall i=1, 2, ..., m$, we have *h* is one to one homomorphism from the group (P_l, \circ) on to the group $(P_k, \circ) \Rightarrow (P_k, \circ)$ and (P_l, \circ) are isomorphic.

Definition 39 : Let t_q^- and t_q^+ for positive integer q be the sets which defined in Definition 4 we shall denote to the collection of all the sets t_q^- by symbol A_q^- that is

$$A_{q^{-}} = \{t_{q^{-}}\}_{q=0,1,2,3,\dots}$$
 and $A_{q^{+}} = \{t_{q^{+}}\}_{q=0,1,2,3,\dots}$

Remarks 40 :

1)The intersections of any two sets in A_{q} is one of them that is if for positive integers q and r

 $t_{q^-}, t_{r^-} \in A_{q^-} \Longrightarrow t_{q^-} \cap t_{r^-} = t_{k^-} \text{ such that } k=\min\{q, r\} \text{ so as intersection of any two elements in } A_{q^+} \text{ is one of them that is also for } t_{q^+}, t_{r^+} \in A_{q^+} \Longrightarrow t_{q^+} \cap t_{r^+} = t_{k^+}, k=\min\{q, r\}.$

2) The union of any two sets in A_{q^-} is one of them that is if for positive integers q and r

 $t_{q^-}, t_{r^-} \in A_{q^-} \Longrightarrow t_{q^-} \cup t_{r^-} = t_{k^-}$ such that $k = \max\{q, r\}$ so as union of any two elements

in A_{q^+} is one of them that is also for $t_{q^+}, t_{r^+} \in A_{q^+} \Longrightarrow t_{q^+} \cup t_{r^+} = t_{k^+}$.

3) The intersections of a set in A_{q^-} with another set in A_{q^+} is t_0 and the union of a set in A_{q^-} with another set in A_{q^+} is the set $B_q = \{-q, 1-q, ..., 0, 1, ..., r\}$ for positive integers q and r

 $\begin{array}{ll} \text{Definition 41: } \chi_{B_{q}} = \{X(B_{q})\}_{q} = \{X(\{-q, 1-q, ..., 0, 1, ..., q+k\})\}_{q} \text{ for } q \in z^{+} \text{ and } k \in z^{+} \\ \text{Remark 42: If } \chi_{A_{q^{-}}} = \{X(t_{q^{-}})\}_{q=0,1,2.3,...} \text{ and } \chi_{A_{q^{+}}} = \{X(t_{q^{+}})\}_{q=0,1,2.3,...} \\ \text{Hence } \chi_{A_{q^{-}}} = \chi^{-} \qquad \text{and} \qquad \chi_{A_{q^{+}}} = \chi^{+} \\ \end{array}$

Definition 43: The set $\tau_{\chi} = \{\phi, \chi, \chi^{-}, \chi^{+}, \chi_{B_{d}}\}$ is topology on χ

We represented a subset of χ from $X(t_n)$ to $X(t_n)$ in The figure bellow

References

[1] MIKE BOYLE, JEROME BUZZI, AND RICARDO GOMEZ Almost isomorphism for countable state Markov shifts J. f⁻ur Ang. und Reine Math., 2004.

[2] Michael Brin and Garret Stuck *Introduction to dynamical systems* Cambridge University Press, 2003

[3] Daved M. Burton Introduction to Modern Abstract Algebra Addison-Wesley, 1967.

[4] D.Lind and B.Marcus An Introduction to Symbolic Dynamics and Coding Cambridge University Press, (1995).

[5] ABU FIRAS M. AL MUSAWI ON AUTOMORPHISMS ON SYMBOLIC FLOW MSC. THESIS COLLEGE OF EDUCATION-DEPARTMENT OF MATHEMATICS AL-MUSTANSIRIYA UNIVERSITY(2001).