THE SET OF BISEQUENSES OVER PRIMARY VARIANTS

By

abu Firas Muhammad Jawad al Musawi

Basra University / College of Education / Department of Mathematics and

Shkur Mahmood al Salim

Basra University / Faculty of Science / Department of Mathematics

Abstract

In this paper , at the beginning we attempted to introduce some preliminary concepts for bisequences. After that we explained The collection of primary variants $\boldsymbol{T}_{\boldsymbol{p}}$ Where each element t_{p} in $T_{p}(p \in Z)$ is called primary variant, also (by definition of the set of all bisequences on finite set), we obtained the set of all bisequences primary variant $X\left(t_{j}^{*}\right)=\left\{t_{j}^{*}\right\}_{j=-\infty}^{\infty}$ and collection of all bisequences of primary variants $\boldsymbol{\chi}$ and some subset of χ such as $\chi^{\mathrm{O}}, \chi^{\mathrm{e}}, \chi^{+}$and χ^{-}, we consider \mathbf{A} the collection of all abelian variants groups and P_{k} symmetric variants group also we introduce the homomorphism $f_{\chi}: \operatorname{Hom} \chi(B, G)$ $\longrightarrow \operatorname{Hom} \chi(A, G)$, we introduce some of theorems and study some of their basic properties and at last we show that χ is a topological space .

Introduction

In this paper, we introduce the collection of primary variants T_{p}, we use the bisequences which defined in symbolic dynamic [4].

We obtained $X\left(t_{i}\right)=\left\{t_{i}\right\}_{i=-\infty}^{\infty}$ and say the set of all bisequences primary variant and denoted to the collection of the set of all bisequences primary variants by χ and we defined the sets $\chi^{\mathrm{e}}, \chi^{+}, \chi^{-}$which each of them is subset of χ.

We introduce some operations such as $(\bullet, \otimes, *, *, \square)$ on the finite set Σ, infinite sets T_{p} ,χ^{-}and χ, also we consider A the collection of all abelian primary variants group and symmetric variant group also we introduce the homomorphism f_{χ} from the $\operatorname{Hom} \chi(B, G)$ group in to $\operatorname{Hom} \chi(A, G) \operatorname{group}$ where each of $\operatorname{Hom} \chi(B, G)$ and $\operatorname{Hom} \chi(A, G)$ are collection of all homomorphisms from A into G and from B into G and respectively, where
A, B, G in A and f a homomorphism from group A into group B, and we introduce some of theorems and study some of their basic properties .

Finally we define a topology on the set χ

Definitions 1:

i) Let S be a finite set of \mathbf{n} elements this finite set is often called the symbol set and each element in it called symbol or also called the alphabet [5] and in this case each element in it may be called letter.
ii)A doubly infinite sequence or bisequence \boldsymbol{x} is a function from the set of Integers \boldsymbol{Z} to alphabet or symbol set S that is each element x_{i} in it is a symbol or letter ([1] , [4]) .

Remarks 2:
i) To show zero image in doubly infinite sequence we put appoint to the left of the letter which represent the zero image that is a letter which represent zero image lies on the right of the
point [4].
ii) the set of all doubly infinite sequences or bisequences on alphabet or symbol set S is denoted by $X(S)$.
iii) The topology which defined on $X(S)$ is equivalent to product topology

$$
S^{\infty}=\ldots S \times S \times S \times \ldots
$$

Where the topology which defined on alphabet S is the discrete topology [1] Examples 3:
i) Shift map σ (which defined in [1]) is a homeomorphism from $X(S)$ into itself and it is shifting a letter x_{i} one position to the left that is $[\sigma(x)]_{i}=x_{i+1}$.If $S=\{0,1\}$ and if
then

$$
\begin{aligned}
& x=\ldots 000.10000 \ldots \\
& \sigma(x)=\ldots 001.000001 . .
\end{aligned}
$$

is a sequences above are sequences on symbol set or alphabet $\{0,1\}$.
ii) The following sequence

$$
\ldots \diamond \# 广 \# \cdot 广 \diamond \diamond \# \diamond \ldots
$$

is a sequence on symbole set $\{\diamond, \#, \not \subset\}$.
iii) The following sequence
... acdb.dabac...
is a sequence on alphabet $\{a, b, c, d\}$.
Definition 4: Let $T_{p}=\left\{t_{i}\right\}_{i}$ (such that $i \in Z$ the set of integers) we say that T_{p} is primary variantsset and $\boldsymbol{t}_{\boldsymbol{k}}$ primary variants, for each integer \boldsymbol{k}
$t_{k}=\left\{\begin{array}{l}t_{q^{-}} k \leq 0 \\ t_{q^{+}} k \geq 0\end{array}\right.$ where $t_{q^{-}}=\{-\boldsymbol{q}, \mathbf{1}-\boldsymbol{q}, \ldots, \mathbf{0}\}, t_{q^{+}}=\{\mathbf{0}, \mathbf{1}, \ldots, \boldsymbol{q}\}$ for integer $q \geq 0$ and $\boldsymbol{q}=|\boldsymbol{k}|$
Definition 5: Let • be an operation on the set $\boldsymbol{T}_{\boldsymbol{p}}$ defined as fellow

$$
t_{i} \bullet t_{j}=t_{i+j} \text { for integers } i \text { and } j
$$

Theorem 6: $\left(T_{p}, \bullet\right)$ is abelian (commutative) group

Proof :

i) See that $\left(\boldsymbol{t}_{i} \bullet \boldsymbol{t}_{j}\right) \bullet \boldsymbol{t}_{\boldsymbol{k}}=\boldsymbol{t}_{\boldsymbol{i}+j} \bullet \boldsymbol{t}_{\boldsymbol{k}}=\boldsymbol{t}_{\boldsymbol{i}+j+\boldsymbol{k}}=\boldsymbol{t}_{\boldsymbol{i}} \bullet \boldsymbol{t}_{\boldsymbol{i}+j}=\boldsymbol{t}_{\boldsymbol{i}} \bullet\left(\boldsymbol{t}_{\boldsymbol{i}} \bullet \boldsymbol{t}_{\boldsymbol{k}}\right)$ and
$\left(t_{i} \bullet t_{j}\right)=t_{i+j}=t_{j+i}=\left(t_{i} \bullet t_{i}\right)$ that is \bullet is associative and commutative.
ii) $t_{0} \bullet t_{i}=t_{i}$ and $t_{-i} \bullet t_{i}=t_{0}$ so t_{0} is identity of \bullet and t_{-i} is the inverse of t_{i}.

Definition 7: Let χ be the collection of all bisequences of primary variants, that is each element in χ is all bisequences of primary variant that is
$\chi=\left\{X\left(t_{i}\right)\right\}_{i \in Z}$ we shall call χ the set of all bisequences of primary variants.
Example 8 : Let

$$
\begin{array}{lllllllll}
x=\ldots & 0 & 0 & 1 & .2 & 0 & 1 & 1 & \ldots \\
y=\ldots & 0 & 0 & 3 & .1 & 0 & 2 & 1 & \ldots
\end{array}
$$

see that $x \in X\left(t_{2}\right)$ and $x \in X\left(t_{3}\right)$ and $y \in X\left(t_{3}\right)$ but $y \notin X\left(t_{2}\right)$
Definitions 9 :
i) Let $*$ be an operation on χ defined by $X\left(t_{i}\right) * X\left(t_{j}\right)=X\left(t_{k}\right)$ where $k=\min \{|i|,|j|\}$.
ii) Let \square be an operation on χ defined by $X\left(t_{i}\right) \square X\left(t_{j}\right)=X\left(t_{k}\right)$ where $k=\max \{|i|,|j|\}$.
iii) Let \diamond be an operation on χ defined by $X\left(t_{i}\right) \diamond X\left(t_{j}\right)=X\left(t_{k}\right)$ where $k=\min \{i, j\}$.

Definitions 10 :
i) $\chi^{\mathrm{e}}=\left\{X\left(t_{i}\right) ; i\right.$ is even $\}$ ii) $\chi^{+}=\left\{X\left(t_{i}\right) ; i>0\right.$ is integer $\}$ iii) $\chi^{-}=\left\{X\left(t_{i}\right) ; i<0\right.$ is integer $\}$ Remarks 11 :
i) Both $(\chi, *)$ and ($\chi, \square)$ are commutative semi groups
ii) The system $\left(\chi^{-}, \star\right)$ is commutative semi sub group with identity $X\left(t_{-1}\right)$
iii) The system $\left(\chi^{+}, \square\right)$ is commutative semi sub group with identity $X\left(t_{1}\right)$

Definition 12 : Let \dagger be an operation on χ defined as fellow

$$
X\left(t_{i}\right) \dagger X\left(t_{j}\right)=X\left(t_{i+j}\right) .
$$

Theorem $13:(\chi, \dagger)$ is abelian (commutative) group
Proof: $\left[X\left(t_{i}\right) \dagger X\left(t_{j}\right)\right] \dagger X\left(t_{k}\right)=X\left(t_{i+j}\right) \dagger X\left(t_{k}\right)=X\left(t_{i+j+k}\right)=X\left(t_{i}\right) \dagger X\left(t_{j+k}\right)$
$=X\left(t_{i}\right) \dagger\left[X\left(t_{j}\right) \dagger X\left(t_{k}\right)\right]$ then \dagger is associative on χ.
$X\left(t_{0}\right)$ is identity of \dagger
$X\left(t_{-i}\right)$ is the inverse of $X\left(t_{i}\right)$, for every integer \boldsymbol{i}
And it is clearly that \dagger is commutative on $\boldsymbol{\chi}$ because $(\boldsymbol{i}+\boldsymbol{j})=(\boldsymbol{j}+\boldsymbol{i})$ (note that $\left(\chi^{\mathbf{e}}, \dagger\right)$ is a subgroup of (χ, \dagger))

Definition 14 : Let $\bar{\ddagger}$ be an operation on χ defined as

$$
X\left(t_{i}\right) \neq X\left(t_{j}\right)=X\left(t_{i+j-1}\right) .
$$

Theorem $15:(\chi, 7)$ is abelian (commutative) group
Proof: $\left[X\left(t_{i}\right) \neq X\left(t_{j}\right)\right] \neq X\left(t_{k}\right)=X\left(t_{i+j-1}\right) \neq X\left(t_{k}\right)=X\left(t_{i+j-1+k-1}\right)=X\left(t_{i+j+k-2}\right)$
$X\left(t_{i}\right) \neq\left[X\left(t_{j}\right) \neq X\left(t_{k}\right)\right]=X\left(t_{i}\right) \neq X\left(t_{j+k-1}\right)=X\left(t_{i+j+k-1-1}\right)=X\left(t_{i+j+k-2}\right)$
Then \bar{f} is associative on χ.
$X\left(t_{i}\right) \neq X\left(t_{1}\right)=X\left(t_{i+1-1}\right)=X\left(t_{i}\right)$ so is identity of \neq
$X\left(t_{2-i}\right)$ is the inverse of $X\left(t_{i}\right)$ because for every integer i we have

$$
X\left(t_{2-i}\right) \neq X\left(t_{i}\right)=X\left(t_{2-i+i-1}\right)=X\left(t_{1}\right)
$$

And since $(\boldsymbol{i}+\boldsymbol{j}-1)=(\boldsymbol{j}+\boldsymbol{i}-1)$ so $\neq \boldsymbol{t}$ is commutative on χ
Definition 16 : Let $\Sigma=\left\{X\left(S_{1}\right), X\left(S_{2}\right), \ldots, X\left(S_{r}\right)\right\}(r>0$ is integer) the set of all bisequences of alphabets $S_{1}, S_{2}, \ldots, S_{r}$ such that $S_{1} \subset S_{2} \ldots \subset S_{r}$ where $S_{i}(i=1, \ldots, r)$ is alphabet of i letter(s).

Note that the elements of S may be numbers, letters or symbols like *, \#, ,.., etc.
Also note Σ may be a subset of $\boldsymbol{\chi}$ if $\boldsymbol{S}_{i}=\boldsymbol{t}_{\boldsymbol{i}-1}(\boldsymbol{i}=1,2, \ldots, r)$
Definition 17 : Let $\boldsymbol{\kappa}$ and $\boldsymbol{\eta}$ be positive integers such that $(1 \leq \kappa \leq r$ and $1 \leq \eta \leq r)$ and let \otimes be an operation on the set Σ defined as fellow

$$
X\left(S_{\kappa}\right) \otimes X\left(S_{\eta}\right)=X\left(S_{\rho}\right) \text { where } \rho=(\kappa+\eta-1)(\bmod r)
$$

Theorem $18:(\Sigma, \otimes)$ is abelian (commutative) group
Proof : \otimes is associative because
$\left\{X\left(S_{\boldsymbol{k}}\right) \otimes X\left(S_{\eta}\right)\right\} \otimes X\left(S_{\dot{\eta}}\right)=X\left(S_{\mathbf{v}}\right) \otimes X\left(S_{\dot{\eta}}\right)$ where $\boldsymbol{v}=(\boldsymbol{\kappa}+\boldsymbol{\eta}-1)(\bmod r)=\kappa(\bmod r)+\eta(\bmod r)-1$. $X\left(S_{v}\right) \otimes X\left(S_{\dot{\eta}}\right)=X\left(S_{\mu}\right)$ where $\mu=(v+\dot{\eta}-1)(\bmod r)=v(\bmod r)+\dot{\eta}(\bmod r)-1$ $X\left(S_{k}\right) \otimes\left\{X\left(S_{\eta}\right) \otimes X\left(S_{\dot{\eta}}\right)\right\}=X\left(S_{\kappa}\right) \otimes X\left(S_{q}\right)$ where $q=(\eta+\boldsymbol{\eta}-1)(\bmod r)=\eta(\bmod r)+\dot{\eta}(\bmod r)-1$. $X\left(S_{\kappa}\right) \otimes X\left(S_{q}\right)=X\left(S_{\pi}\right)$ where $\pi=(\kappa+q-1)(\bmod r)=\kappa(\bmod r)+q(\bmod r)-1$ but $\boldsymbol{\mu}=\boldsymbol{v}(\bmod r)+\dot{\eta}^{\prime}(\bmod r)-1=\boldsymbol{\kappa}(\bmod r)+\boldsymbol{\eta}(\bmod r)-1+\dot{\eta}^{\prime}(\bmod r)-1$ $=\boldsymbol{\kappa}(\bmod r)+\boldsymbol{\eta}(\bmod r)+\boldsymbol{\eta}(\bmod r)-1-1=\boldsymbol{\kappa}(\bmod r)+\boldsymbol{q}(\bmod r)-1=\boldsymbol{\pi}$

It is clearly that unique sequence on $S_{1}\left(X\left(S_{1}\right)\right)$ is identity of \otimes and for every integer $1 \leq m \leq r$ there is an integer $1 \leq q \leq r$ such that $(m+q)(\bmod r)=2$. Then the inverse of $X\left(S_{m}\right)$ is $X\left(S_{q}\right)$ where $q=2-m+r$
$\rho=(\boldsymbol{\kappa}+\boldsymbol{\eta}-1)(\bmod r)=(\boldsymbol{\eta}+\boldsymbol{\kappa}-1)(\bmod r)$ that is \otimes is commutative on Σ.
Definition 19 : Let ψ be a function defined from T_{p} to χ as

$$
\psi\left(t_{i}\right)=X\left(t_{i}\right) .
$$

Theorem 20: $\psi: T_{p} \longrightarrow \chi$ is homomorphism
Proof : $\psi\left(t_{i} \bullet t_{j}\right)=\psi\left(t_{i+j}\right)=X\left(t_{i+j}\right)=X\left(t_{i}\right) \dagger X\left(t_{j}\right)$.
Definition 21 : Let φ be a function from T_{p} to Σ defined by

$$
\varphi\left(t_{i}\right)=X\left(S_{\rho}\right) \text { where } \rho=(i)(\bmod r)+1 .
$$

Theorem $22: \varphi: T_{p} \longrightarrow \Sigma$ is homomorphism .
Proof : $\varphi\left(t_{i} \bullet t_{j}\right)=\varphi\left(t_{i+j}\right)=X\left(S_{\rho}\right)$ where $\rho=(i+j)(\bmod r)+1=(i)(\bmod r)+(j)(\bmod r)+1$. because $(\boldsymbol{i}+\boldsymbol{j})(\bmod r)=(\boldsymbol{i})(\bmod r)+(\boldsymbol{j})(\bmod r)$ Since $\boldsymbol{i} \& j$ are integers.

Let $\varphi\left(t_{i}\right)=X\left(S_{\mu}\right)$ where $\mu=(i)(\bmod r)+1$ and let $\varphi\left(t_{j}\right)=X\left(S_{\eta}\right)$ where $\eta=(i)(\bmod r)+1$.

Then $\varphi\left(t_{i}\right) \otimes \varphi\left(t_{j}\right)=X\left(S_{\mu}\right) \otimes X\left(S_{\eta}\right)=X\left(S_{\pi}\right)$ where $\pi=(\mu+\eta)(\bmod r)-1$
Then $\pi=\mu(\bmod r)+\eta(\bmod r)-1=(i)(\bmod r)+1+(j)(\bmod r)+1-1$
$=(\boldsymbol{i})(\bmod r)+(\boldsymbol{j})(\bmod r)+1=\rho$
Theorem 23: Let $\boldsymbol{h}:\left(T_{p}, \bullet\right) \longrightarrow\left(\chi^{\mathrm{e}}, \dagger\right)$ be a map defined by $h\left(t_{i}\right)=X\left(t_{2 i}\right)$, for each integer \boldsymbol{i} then h is isomorphism .

Proof : for every $\boldsymbol{t}_{i}, t_{j} \in T_{p}$ we have
$h\left(t_{i} \bullet t_{j}\right)=h\left(t_{i+j}\right)=X\left(t_{2}(i+j)\right)=X\left(t_{2 i+2 j}\right)=X\left(t_{2}\right) \dagger X\left(t_{2 j}\right)=h\left(t_{i}\right) \dagger \boldsymbol{h}\left(t_{j}\right) \Rightarrow \boldsymbol{h}$ is homomorphism.
If $h\left(t_{i}\right)=h\left(t_{j}\right) \Rightarrow X\left(t_{2} i\right)=X\left(t_{2}\right) \Rightarrow t_{2} i^{\prime}=\boldsymbol{t}_{\mathbf{2}} \Rightarrow \boldsymbol{t}_{i}=\boldsymbol{t}_{j} \Rightarrow \boldsymbol{h}$ is monomorphism.
Now suppose that i is even integer then there exist integer j such that $j=i / 2$ then $\boldsymbol{h}\left(t_{j}\right)=X\left(t_{i}\right)$ therefore \boldsymbol{h} is epimorphism.

Hence \boldsymbol{h} is isomorphism .
Definitions 24 :

1) Let $\mathrm{A}=\left\{\boldsymbol{A}\right.$ is abelian group : either A is a subgroup of χ or A is a subgroup of $\left.T_{p}\right\}$, we say D is variants group for each $D \in A$
2) Let A and B be any two elements in A,we define $\operatorname{Hom} \chi(A, B)$ be the set of all homomorphisms $f: A \longrightarrow B$

Remark 25 : The zero homomorphism $0: A \longrightarrow B$ defined by $0(a)=\boldsymbol{C}_{B}$, for every element $a \in A$, where \boldsymbol{e}_{B} is identity element in Group B

Definition 26 :Let $*_{B}$ be an operation of Group B and let \oplus be an operation on the set
$\operatorname{Hom} \chi(A, B)$ defined by $(f \oplus g)(a)=f(a) *_{B} g(a)$ for every $a \in A$
Remark 27 : Note that $(f \oplus g)(a)$ is a function in $\operatorname{Hom} \chi(A, B)$ and let us assume that $(f \oplus g)(a)=f(a) *_{B} g(a)=h(a)$
Theorem 28 : The system $(\operatorname{Hom} \chi(A, B), \oplus)$ is commutative group
Proof : \oplus is associative operation since $*_{B}$ is associative (B is Group)
$(f \oplus 0)(a)=f(a) *_{B} 0(a)=f(a) *_{B} e_{B}=f(a) \forall a \in A$ and $\forall f \in \operatorname{Hom} \chi(A, B)$
Then zero homomorphism $0 \in \operatorname{Hom} \chi(A, B)$ is identity element of \oplus
Let $f \in \operatorname{Hom} \chi(A, B) \Rightarrow f(a) \in B$ since B is group hence it is has to contain an inverse of any non identity element in B. Let \bar{f} is an inverse of f, Then for each element $f \in \operatorname{Hom} \chi(A, B)$ there is inverse element $\bar{f} \in \operatorname{Hom} \chi(A, B)$ such that $\quad(f \oplus \bar{f})(a)=e_{B}=0(a)$.

By definition of $A B$ is commutative group \Rightarrow
$(f \oplus g)(a)=f(a) *_{B} g(a)=g(a) *_{B} f(a)=(g \oplus f)(a)$ that is \oplus is commutative .
Example 29 : Let \boldsymbol{h}_{1} and $\boldsymbol{h}_{\mathbf{2}}$ be two homomorphisms from $\left(\boldsymbol{T}_{p}, \bullet\right)$ to $\left(\chi^{\mathrm{e}}, \dagger\right)$ defined by $h_{1}\left(t_{i}\right)=X\left(t_{2}\right)$ and $h_{2}\left(t_{i}\right)=X\left(t_{t_{i}}\right) \forall t_{i} \in T_{p}$.
$\left(h_{1} \oplus h_{2}\right)\left(t_{i}\right)=h_{1}\left(t_{i}\right) \oplus h_{2}\left(t_{i}\right)=X\left(t_{2}\right) \dagger X\left(t_{4}\right)=X\left(t_{6}\right)=h\left(t_{i}\right)=\left(h_{2} \oplus h_{1}\right)\left(t_{i}\right)$, then we have
i. $\quad h:\left(T_{p}, \bullet\right) \longrightarrow\left(\chi^{\mathrm{e}}, \dagger\right)$ defined by $h\left(t_{i}\right)=X\left(t_{6}\right), \forall t_{i} \in T_{p}$ and hence $h \in \operatorname{Hom} \chi\left(T_{p}, \chi^{\mathrm{e}}\right)$.
ii. The zero homomorphism $0:\left(T_{p}, \bullet\right) \longrightarrow\left(\chi^{\mathrm{e}}, \dagger\right)$ defined by $0\left(t_{i}\right)=X\left(t_{0}\right), \forall t_{i} \in T_{p}$.
iii. $\quad \bar{h}_{1}:\left(T_{p}, \bullet\right) \longrightarrow\left(\chi^{\mathrm{e}}, \dagger\right)$ and $\bar{h}_{2}:\left(T_{p}, \bullet\right) \longrightarrow\left(\chi^{\mathrm{e}}, \dagger\right)$ are two homomorphisms and they are
iv. inverse of h_{1} and h_{2} respectively where $h_{1}\left(t_{i}\right)=X\left(t_{-2}\right)$ and $h_{2}\left(t_{i}\right)=X\left(t_{-4}\right), \forall t_{i} \in T_{p}$.

Lemma 30 : If $f \in \operatorname{Hom} \chi(A, B)$ and G is an other abelian group then f induces a homomorphism f_{χ} :
$\operatorname{Hom} \chi(B, G) \longrightarrow \operatorname{Hom} \chi(A, G)$ which is given by
$f_{\chi}(g)=g \circ f \forall g \in \operatorname{Hom} \chi(B, G)$
Proof $:$ Let $g: B \longrightarrow G$ and $h: B \longrightarrow G$ be two homomorphisms in Hom $\chi(B, G)$ we have $f_{\chi}(g \oplus h)=(g \oplus$ $h) \circ f=(g \oplus h)(f)=g(f) *_{B} h(f)=(g \circ f) *_{B}(h \circ f)=f_{\chi}(g) *_{B} f_{\chi}(h)=f_{\chi}(g) \oplus f_{\chi}(h)$.

Remarks 31 :
i. If $f: A \longrightarrow B, g: B \longrightarrow G$ and $h: B \longrightarrow C$ then we have
$f_{\chi}: \operatorname{Hom} \chi(B, G) \longrightarrow \operatorname{Hom} \chi(A, G)$ and $h_{\chi}: \operatorname{Hom} \chi(C, G) \longrightarrow \operatorname{Hom} \chi(B, G)$.
ii. $\quad f_{\chi} \circ h_{\chi}=(h \circ f)_{\chi}$ and $\left(f_{1}\right)_{\chi} \circ\left(f_{2}\right)_{\chi} \circ \ldots \circ\left(f_{n}\right)_{\chi}=\left(f_{n} \circ f_{n-1} \circ \ldots \circ f_{3} \circ f_{2} \circ f_{1}\right)_{\chi}$.

Lemma 32: If $f \in \operatorname{Hom} \chi(A, B), g \in \operatorname{Hom} \chi(B, C)$ and $G \in A$ with $h \circ f=1_{A}$, where $h \in \operatorname{Hom} \chi(B, A)$ $\Rightarrow f_{\chi} \circ h_{\chi}=1_{\mathrm{Hom} \chi(A, G)}$.
Proof : Let $\rho \in \chi(A, G)$. We have
$f_{\chi} \circ h_{\chi}(\rho)=f_{\chi}(\rho \circ h)=(\rho \circ h) \circ f=\rho \circ(h \circ f)=\rho \circ \mathbf{1}_{A}=1_{H o m}^{\chi(A, G)}$.
Theorem 33: If $f \in \operatorname{Hom} \chi(A, B), g \in \operatorname{Hom} \chi(B, C)$ and $G \in A$ with $h \circ f=1_{A}$ where $h \in \operatorname{Hom} \chi(B$, A). Then

1) f_{χ} is an epimorphism
2) if $g: B \longrightarrow C$ epimorphism $\Rightarrow g_{\chi}$ monomorphism .

Proof :

1) From Lemma(32) we have $f_{\chi} \circ h_{\chi}=1_{\operatorname{Hom} \chi(A, G)}$.

But $1_{\text {Hom }}^{\chi(A, G)}$ is an isomorphism therefore f_{χ} is an epimorphism.
2) We must prove that $\operatorname{Ker} g_{\chi}=\{0\}$ (0 is zero homomorphism) .

Let $\delta \in \operatorname{Ker} g_{\chi}$ we have $g_{\chi}(\delta)=0 \Rightarrow \delta \circ g=0$.
Since $g: B \longrightarrow C$ is an epimorphism, then for every $c \in C$ there exists $b \in B$ such that $g(b)=c$, since $\delta \circ g=0\left(0\right.$ is zero homomorphism) then $\delta \circ g(b)=0(b)=e_{g} \quad \Rightarrow \delta(g(b))=e_{G} \Rightarrow \delta(c)=e_{G}, \forall$ $c \in C \Rightarrow \delta$ is zero homomorphism. This is show g_{χ} is monomorphism .

Definition 34 : A bijective mapping $f: t_{k} \longrightarrow t_{k}$ have the property that the set a for some $\left.a \in t_{k}\right\}$ is finite, is called a permutation of $\boldsymbol{t}_{\boldsymbol{k}}$.

Remark 35 : The order of t_{k} denoted by $\left|t_{k}\right|$ is called the degree of the permutations of t_{k}.
Theorem 36 : The set of all the permutations of $\boldsymbol{t}_{\boldsymbol{k}}$,
$P_{k}=\left\{f: t_{k} \longrightarrow t_{k}: f\right.$ is bijective and $f(a) \neq a$ for some $\left.a \in t_{k}\right\}$ is a permutation group under composition
Proof :

1) Composition functions is an associative operation .
2) The identity map $I=e$ is identity element for composition .
3) For each $f: t_{k} \longrightarrow t_{k}$, we have for every $j \in t_{k}$ there exists $i \in t_{k}$ such that $f(j)=i$ we could be defined inverse of f in P_{k} by $f^{-1}(i)=j$ for each $i \in t_{k}$ so there exists inverse of f
$f^{-1}: t_{k} \longrightarrow t_{k}$ for composition .

Remarks 37 :

1) ($\left.P_{k}, \circ\right)$ is called symmetric variants group .
2) $\left|t_{k}\right|= \begin{cases}k+1 & k \geq 0 \\ 1-k & k<0\end{cases}$
3) $\left|\boldsymbol{P}_{k}\right|= \begin{cases}k!+1 & k \geq 0 \\ 1+(-k)! & k<0\end{cases}$
4) $\left|P_{k}\right|=\left|P_{l}\right| \Rightarrow k=l$ or $k=-l$

Theorem 38 : The two symmetric groups $\left(P_{k}, \circ\right)$ and $\left(P_{l}, \circ\right)$ are isomorphic if and only if they have the same degree .

Proof :

$\operatorname{Suppose}\left(P_{k}, \circ\right)$ isomorphic to $\left(P_{l}, \circ\right)$ and $\left|P_{k}\right|=m,\left|P_{l}\right|=n$ then we have isomorphism $h: P_{l} \longrightarrow P_{k}$ and $P_{k}=\left\{f_{i}^{\prime}: i=1,2, \ldots, m\right\}, P_{l}=\left\{g_{i}: i=1,2, \ldots, n\right\}, h$ is epimorphism and monomorphism then h send each element in group P_{l} to exactly one element in group P_{k} therefore P_{k} and P_{l} have the same number of elements thus $\left|P_{k}\right|=\left|P_{l}\right|$

Now suppose $\left|P_{k}\right|=m=\left|P_{l}\right|$, that is $P_{k}=\left\{f_{i}^{-}: i=1,2, \ldots, m\right\}$ and $P_{l}=\left\{g_{i}: i=1,2, \ldots, m\right\}$ contains m elements, so we can define isomorphism from the group $\left(P_{k}, \circ\right)$ to the group $\left(P_{l}, \circ\right)$ by $h\left(f_{i}\right)=g_{i} \forall i=1,2, \ldots, m$, we have h is one to one homomorphism from the $\operatorname{group}\left(P_{l}, \circ\right)$ on to the $\operatorname{group}\left(P_{k}, \circ\right) \Rightarrow\left(P_{k}, \circ\right)$ and $\left(P_{l}, \circ\right)$ are isomorphic .

Definition 39 : Let $t_{q^{-}}$and $t_{q^{+}}$for positive integer \boldsymbol{q} be the sets which defined in Definition 4 we shall denote to the collection of all the sets $t_{q^{-}}$by symbol $A_{q^{-}}$that is

$$
A_{q^{-}}=\left\{t_{q^{-}}\right\}_{q=0,1,2.3, \ldots} \text { and } A_{q^{+}}=\left\{t_{q^{+}}\right\}_{q=0,1,2.3, \ldots}
$$

Remarks 40 :
1)The intersections of any two sets in $A_{q^{-}}$is one of them that is if for positive integers q and r
$t_{q^{-}}, t_{r^{-}} \in A_{q^{-}} \Rightarrow t_{q^{-}} \cap t_{r^{-}}=t_{k^{-}}$such that $k=\min \{q, r\}$ so as intersection of any two elements in $A_{q^{+}}$is one of them that is also for $t_{q^{+}}, t_{r^{+}} \in A_{q^{+}} \Rightarrow t_{q^{+}} \cap t_{r^{+}}=t_{k^{+}}, k=\min \{q, r\}$.
2) The union of any two sets in $A_{q^{-}}$is one of them that is if for positive integers q and r
$t_{q^{-}}, t_{r^{-}} \in A_{q^{-}} \Rightarrow t_{q^{-}} \cup t_{r^{-}}=t_{k^{-}}$such that $k=\max \{q, r\}$ so as union of any two elements
in $A_{q^{+}}$is one of them that is also for $t_{q^{+}}, t_{r^{+}} \in A_{q^{+}} \Rightarrow t_{q^{+}} \cup t_{r^{+}}=t_{k^{+}}$.
3) The intersections of a set in $A_{q^{-}}$with another set in $A_{q^{+}}$is \boldsymbol{t}_{0} and the union of a set in $A_{q^{-}}$with another set in $A_{q^{+}}$is the set $B_{q}=\{-q, 1-q, \ldots, 0,1, \ldots r\}$ for positive integers q and r

Definition 41: $\chi_{B_{q}}=\left\{X\left(B_{q}\right)\right\}_{q}=\{X(\{-q, 1-q, \ldots, 0,1, \ldots q+k\})\}_{q}$ for $q \in z^{+}$and $k \in z$.
Remark 42: If $\quad \chi_{A_{q^{-}}}=\left\{X\left(t_{q^{-}}\right)\right\}_{q=0,1,2.3, \ldots .}$ and $\chi_{A_{q^{+}}}=\left\{X\left(t_{q^{+}}\right)\right\}_{q=0,1,2.3, \ldots}$

$$
\text { Hence } \quad \chi_{A_{q^{-}}}=\chi^{-} \quad \text { and } \quad \chi_{A_{q^{+}}}=\chi^{+}
$$

Definition 43: The set $\tau_{\chi}=\left\{\phi, \chi, \chi^{-}, \chi^{+}, \chi_{B_{q}}\right\}$ is topology on χ
We represented a subset of χ from $X\left(t_{-n}\right)$ to $X\left(t_{n}\right)$ in The figure bellow

References

[1] MIKE BOYLE, JEROME BUZZI, AND RICARDO GOMEZ Almost isomorphism for countable state Markov shifts J. f'ur Ang. und Reine Math., 2004.
[2] Michael Brin and Garret Stuck Introduction to dynamical systems Cambridge University Press, 2003
[3]Daved M. Burton Introduction to Modern Abstract Algebra Addison-Wesley,1967.
[4] D.Lind and B.Marcus An Introduction to Symbolic Dynamics and Coding Cambridge University Press, (1995).
[5] Abu Firas M. al Musawi on automorphisms on symbolic flow MSc.thesis College of Education-Department of Mathematics Al-Mustansiriya University (2001) .

