Synthesis of new Nucleoside \& Nucleotide Analogues

Muqdad Irhaeem Kadhim*, Yousif Ali Al-fatahi**
Department of chemistry, college of science, Al-Qadisiyah University*
Department of chemistry, college of science, Baghdad University**

Abstract

:- The designed multistep synthetic route to these nucleoside start with diacetone glucose (1) prepared in one step from D-glucose [Scheme.A].

Oxidation of the diacetone glucose (1) with dimethyl sulphoxide and acetic anhydride of the 3-hydroxyl group gave the corresponding ulose derivative (2).Condensation of (2) with nitromethane under PTC condition yielded the nitromethyl derivative (3), which was converted to the derivative (4). Upon treatment with nitromethane in presence of sodium ethoxide. To obtain the first type of nucleoside analogues (18), (19) , (20) and (21); isopropyiidene acetal at $-5,6$-position was removed with acetic acid followed by periodate oxidation and borohydride reduction to give the derivative (9). The 5-hydroxyl group was protected with benzoyl group using benzoyl chloride to give the 5 -benzoate derivative (8). Treatment with trifluouro acetic anhydride in the presence of acetic acid gave the 1,2 -di-O-trifloro acetylated derivative (9). When (9) was allowed to react with mercuric theophylline salt ,mercuric indole salt , silylated uracil and silylated cytosine, the four nucleoside analogues (14),(15), (16) and (17) were obtained.The free nucleoside (18),(19), (20) and (21) were obtained when (14),(15), (16) and (17) were allowed to react with sodium methoxide in methanol.The second type [Scheme. B] of nucleotide analogues was obtained from the condensation of ethylcanoacetate derivative with (2) to (give the derivative (22), followed by addition potassium cyanide in basic media gave (23).Deprotection of the isopropylidene derivative at 5,6 -position followed by periodate oxidation and borohydride reduction in situ gave the ribo derivative (25).Benzoylation of the ribo derivative (25) with benzoy1 chloride protected the 5-hvdroxyl group to give (26) [Scheme. B]. Treatment of (26) with acetic acid and trifluoro acetic anhydride gave the 1,2-di-O-trifluoro acetylated derivative (27).The condensation of (27)with the mercuric theophylline salt ,mercuric indole salt , silylated uracil and silylated cytosine yielded the nucleotide analogue (28),(29),(30) and (31) respectively .Hydrolysis under basic condition yield the free nucleotide analogue (32), (33) , (34) and (35).The synthesized derivatives were characterized by thin layer Chromatography, infrared spectroscopy ${ }^{13} \mathrm{CNMR},{ }^{1} \mathrm{HNMR}$ (nuclear magnetic resonance) .It is hoped that the new synthesized nucleoside and nucleotide analogues may possess antiviral , anticancer and antibacterial activity.

Introduction:-

Nucleosides, both of natural and synthetic origin have at least some biological activity. A much smaller, but nevertheless significant number of nucleosides are either in use as or have the potential based upon extensive biological evaluation to be employed as chemotherapeutic agents ${ }^{(1)}$. Such as potential anti-viral ${ }^{(2)}$, fungicidal, and anti cancer agents ${ }^{(3,4)}$. More recently, they have been incorporated into oligonucleotides for application in the "antisense" field, where oligonucleotides
complementary to mRNA are sought as inhibitors of gene expression.So the major purpose for the syntheses of nucleosides is, of course, the development of new compounds of chemotherapeutic interest.Chemical modifications of naturally occurring nucleosides have been of interest for over 50 years and numerous nucleoside analogues were synthesized in order to selectively interfere with DNA and RNA. These structural modifications involve either the heterocyclic ring or the sugar moiety (Fig.1) resulting in analogues that act as anti-metabolites through the induction of one of the following effects ${ }^{(5)}$:
(i) Inhibition of certain enzymes which are important for nucleic acids biosyntheses.
(ii) Incorporation of analogues metabolites into nucleic acids which later block their biosyntheses.In many cases the nucleoside is not the actual active agent, but rather the nucleoside is metabolized in cells to a mono-, di-, or triphosphate derivatives before it is able to manifest its effect.These phosphate derivatives may be active themselves, or they may be further metabolized.The inability of phosphate derivatives of nucleosides to penetrate cells in significant amounts has routinely led to the use of the nucleosides themselves as agents, thus requiring intracellular activation ${ }^{(2)}$.Nucleoside analogues show importance in several established chemotherapies (anticancer, antiviral and antibacterial) and other attractive fields like immunomodulation or regulation of gene expression which could constitute new therapeutic

Inversion, substitution or elimination of hydroxyl groups
approaches ${ }^{(6)}$.
Fig. (1) : main structure modifications susceptible to transform a natural nucleoside ($\mathrm{R}=$ H or $\mathrm{R}=\mathrm{OH})$ in to one of its analogues .

Impetus has been provided for the synthesis of branched chain nucleosides by the reports that 2^{\prime} and $3^{\prime}-C$-methyl adenosine and $3^{\prime}-C$-methyl cytidine are effective antiviral agent in mice and also that two 2-C-nitromethylhexopyranosylpurines are active against KB tumour cells. There are two main methods for preparing such nucleosides : first by synthesis of a suitable carbohydrate precursor followed by a conventional nucleoside condensation reaction, and secondly by the attack of nucleophiles on 2^{\prime} and 3-Ketonucleosides. Thus , most of the chemistry involved is standard carbohydrate chemistry
and, as such, is covered in references ${ }^{(7,8)}$.It will suffice, therefore, to give just a few examples here .

Apparatus \& Chemicals

- Melting points were recorded using GallenKamp electro-thermal melting point apparatus and were uncorrected.
- Infrared spectra were recorded on SHIMADZU FT-IR-8400s spectrophotometer, as KBr disc or thin films.
- ${ }^{1} \mathrm{H}-\mathrm{NMR}$ and ${ }^{13} \mathrm{C}-$ NMR spectra were recorded on Bruker, Ultra Shield, 300 MHZ , Switzerland, Tetramethyl silane was used as an internal reference and $\mathrm{CDC1}_{3}, \mathrm{McOD}$ or DMSO, as a solvent.
- TLC was preformed on aluminum sheets precoated with silica-gel F_{254} supplied by Merck. Column chromatography was carried out with silica gel 60 (Fluka). Spots were detected with iodine vapor.
- All chemicals used were supplied from Merck, Fluka and BDH chemicals.
- Solvents were dried according to the procedures mentioned in literatures.Solvents were removed under reduced pressure using Buchi rotary evaporator type 120 .

Material Synthesis:-

1, 2:5, 6- Di-O- isopropylidene - α-D-glucofuranose ${ }^{(9)} 1 \quad$ To an efficiently stirred suspension of anhydrous glucose ($15 \mathrm{~g}, 83.3 \mathrm{mmol}$.) in acetone (100 ml) , anhydrous pulverized zinc chloride ($12 \mathrm{~g}, 88.1 \mathrm{mmol}$) was added followed by 85% phosphoric acid (0.75 g) . This mixture was stirred at room temperature for 30 hours and the undissolved glucose (6.18 g) was filtered and washed with a little acetone. the filtrate and washing were cooled and made slightly alkaline with 40% sodium hydroxide solution, the insoluble inorganic material was removed by filtration and washed with acetone. The almost colorless filtrate and washing were concentrated and the residue was diluted with water (15 ml) and extracted three times with chloroform ($30 * 3 \mathrm{ml}$) the combined chloroform extract were washed with a little water ,dried over anhydrous sodium sulphate and the solvent was removed to give a white crystalline residue of (1) ($11.6 \mathrm{~g} \quad 91 \%$ yield based on the glucose consumed) m.p $95-101$.one crystallization from chloroform : n-hexane ($1: 10$) raised the m.p to $105-109{ }^{\circ} \mathrm{C},\left(\mathrm{R}_{\mathrm{f}}=0.84\right)$ (chloroform : ethanol) (10:1) ; FTIR (KBr disic) ($v_{\max } \mathrm{cm}^{-1}$), $3446(\mathrm{OH})$, 2875-2985 (CH)aliphatic , 1373 (C-H) bending .

AL-Qadisiya Journal For Science Vol . 17 No. 1 Year 2012
 Muqdad Irhaeem / Yousif Ali ISSN-1997-4290

1,2:5,6-Di-O-isopropylidene- α-D-ribo-hexofuranose-3-ulose ${ }^{(10)} 2$

1, 2:5, 6 - Di- O- isopropylidene - α-D-glucofuranose (1) (5 g) was dissolved in a mixture of dimethyl sulphoxide (25 mL) and acetic anhydride (15 mL) in stoppered conical flask. After stirring for 24 hours at room temperature, TLC (chloroform -ether 10:1) showed that the reaction mixture consist mainly of the required product with trace of side products.the reaction mixture then diluted with ice water (100 mL) and the resultant yellow syrup was washed with ice water ($3 * 30 \mathrm{~mL}$) followed by extraction with chloroform ($3 * 20 \mathrm{~mL}$).

The combined chloroform extracts were dried over anhydrous sodium sulphate and the solvent was removed to afford a syrup residue of the 3-keto derivative (2) (3 g , 60.2%)as syrup . $\mathrm{R}_{\mathrm{f}}(0.67)$; FTIR (film) ($v_{\text {max }} \mathrm{cm}^{-1}$) 2935-2987 (C-H)aliphatic ,1749 ($\mathrm{C}=\mathrm{O}$).

- 1,2:5,6 -Di-O-isopropylidene-3-C-nitromethyl- α-D-allo- furanose (3) ${ }^{(11)}$

1,2:5,6 -Di-O-isopropylidene- α-D-ribo-hexofuranose-3-ulose (2) (6 g ,23.3 mmol) was dissolved in benzene (60 mL) and treated with nitomethane ($10 \mathrm{~mL}, 190 \mathrm{mmol}$) for 24 h with constant stirring at room temperature in the presense of 0.2 M sodium hydroxide (10 ml) and tetrabutyl ammonium bromide ($0.6 \mathrm{~g}, 1.9 \mathrm{mmol}$) TLC (benzene : ethyl acetate ,10:1) showed that the reaction was complete .

The aqueous phase was separated and extracted twice with benzene
$(10 \mathrm{ml})$. The combined organic layers were dried over anhydrous sodium sulphate and the solvent was removed to afford asyrup product (3) of ($5.1 \mathrm{~g}, 70 \%$) $\mathrm{R}_{\mathrm{f}}(0.57$) ;FTIR (film) ($v_{\text {max }} \mathrm{cm}^{-1}$) 1560 and 1380 (N-O)3300-3450 (O-H).

- 3-deoxy -1,2:5,6-Di-O-isopropylidene-3-C-nitromethyl- α-D-allofuranose (4) ${ }^{(11)}$

To a solution of (3) ($5 \mathrm{~g}, 15.5 \mathrm{mmol})$ in dimethyl sulphoxide $(25 \mathrm{~mL})$ was added $(12.5 \mathrm{ml})$ acetic anhydride and the mixture was stirred for 24 h at 20 . TLC (n -hexane : ethyl acetate , $8: 4$) showed that the reaction was complete. After the addition of iced water (100 mL) , asyrup residue was separated. The aqueous Layer was decanted and remaining syrup was washed with ($3^{*} 100 \mathrm{~mL}$). The combined chloroform extracts were dried over anhydrous sodium sulphate and the solvent was removed to give the 3nitromethylene derivative (4) as a syrup ($4.3 \mathrm{~g}, 90.9 \%$) ; $\left(\mathrm{R}_{\mathrm{f}}=0.55\right.$) FTIR (film) ($v_{\text {max }}$ cm^{-1}) 1551 and $1380(\mathrm{~N}-\mathrm{O}), 1675$ ($\mathrm{C}=\mathrm{C}$)

- 3-C-cyano-3-deoxy-1,2:5,6-di-O-isopropylidene-3- C-nitromethyl- α-Dglucohexofuranose (5) ${ }^{(12)}$

A mixture of $(4)(3 \mathrm{~g})$ and potassium cyanide $(1 \mathrm{~g})$ was stirred in benzene ($70 \mathrm{ml}) \& 0.2 \mathrm{M}$ sodium hydroxide (7 ml), in the presence of tetrabutylammonium bromide (0.3 g), for 3 h at room temperature.

TLC (Benzene : ethyl acetate ,10:1) showed that the reaction was complete. the aqueous phase was then separated and extracted twice with benzene (10 ml).

AL-Qadisiya Journal For Science Vol . 17 No. 1 Year 2012
 Muqdad Irhaeem / Yousif Ali ISSN-1997-4290

The combined benzene layers were dried (magnesium sulfate) and evaporated to afford a syrup which crystallized from 2-propanol-petroleum ether to afford (5) (2.2 g , 73%) ,FTIR (film) ($v_{\text {max }} \mathrm{cm}^{-1}$) 1555 and 1380 ($\mathrm{N}-\mathrm{O}$), 2105 weak ($\mathrm{C} \equiv \mathrm{N}$), 2935-2987 (C-H) aliphatic.
3-C-cyano-3-deoxy-1,2-O-isopropylidene-3-C-nitromethyl- α-D-glucohexofuranose (6)
Compound 5 ($2.5 \mathrm{~g}, 9.5 \mathrm{mmol}$) was dissolved in (60%) acetic acid (30 ml) and stirred for 48 hours at room temperature . TLC (chloroform : ether, 10:1) showed that the reaction was complete. the solution was evaporated under reduced pressure and the resulting residue was coevaporated with toluene to give crystals of $6(1.9 \mathrm{~g}, 91 \%)$
recrystallization from methanol : petroleum ether (1:1), FTIR (film) ($v_{\text {max }} \mathrm{cm}^{-1}$) 1596 \& 1373 ($\mathrm{N}-\mathrm{O}$), $2207(\mathrm{C} \equiv \mathrm{N}) .3463$ (O-H) .

- 3-C-cyano-3-deoxy-1,2-O-isopropylidene-3- C-nitromethyl- α-D-ribofuranose (7)

To a well - stirred solution of $6(1.8 \mathrm{~g}, 6.2 \mathrm{mmol})$ in ethanol (40 ml) was added a saturated solution of sodium hydrogen carbonate (2 ml) followed by a solution of sodium metaperidate ($1.32 \mathrm{~g}, 6.2 \mathrm{mmol}$) in 70 ml water .the resuting reaction maxture was stirred for 3 hours after which the excess sodium metaperiodate was destroyed by adding few drops of ethylene glycol. TLC (chloroform : ether, 10:1)

The resulting aldehydo sugar was immedatly reduced with sodium borohydride (0.12 $\mathrm{g})$. after the reaction mixture was kept with stirring for 4 hours, acetone (0.5 ml) was added and the mixture was further stirred for 30 minutes . the solid residue was removed by filtration and the filtrate was extracted with methylene chloride ($4^{*} 100 \mathrm{ml}$) dried over anhydrous sodium sulphate and the solvent was removed to a syrup (7) (1.39 g ,76.8 \%) (Rf =0.44),FTIR (film) ($v_{\max } \mathrm{cm}^{-1}$) $1540(\mathrm{~N}-\mathrm{O}), 2100(\mathrm{C}=\mathrm{N}), 3500$ (O-H) .
5-O-benzoyl-3-C-cyano-3-deoxy-1,2-O-isopropylidene-3-C-nitromethyl- α-Dribofuranose (8)

To ice cooled solution of $107(2.12 \mathrm{~g}, 8.2 \mathrm{mmol})$ in anhydrous pyridine (6.7 ml , 8.3 mmol) was added ($0.96 \mathrm{~mL}, 8.3 \mathrm{mmol}$) of benzoyl chloride . after the reaction was kept at room temperature for 24 h , a mixture of ice and water was added . the resuting syrup was extracted with petroleum ether (b.p 40-60) (4*100mL), then dried with anhydrous sodium sulphate, filtered and concentrated under reduced pressure .Traces of pyridine were removed by coevaporation with dry toluene ($3^{*} 10 \mathrm{~mL}$). The benzoate derivative (8) was obtained as a syrup ($1.6 \mathrm{~g}, 50 \%$).) TLC (Benzene : ethyl acetate ,10:1) ($\mathrm{Rf}=0.67$) IR (film) ($v_{\max } \mathrm{cm}^{-1}$) $2244(\mathrm{C} \equiv \mathrm{N}), 1595$ ($\mathrm{N}-\mathrm{O}$) , $1695(\mathrm{C}=\mathrm{O})$ benzoate.

1,2-Di-O-trifluoroacetyl-5-O-benzoyl-3-C-cyano-3-deoxy-3-C-nitromethyl- α-Dribofuranose (9)

A solution of (8) ($1.06 \mathrm{~g}, 2.75 \mathrm{mmol}$) and 99% trifluoroacetic acid ($6 \mathrm{~mL}, 0.16$ mol) was stirred at room temperature .TLC (petroleum ether - diethyl ether 9:1) showed that deacetalation completed after 25 minutes .the reaction mixture was then netralized with solid hydrogen carbonate and extracted with methylene chloride ($2 * 50$ mL). the combined extracts were dried over anhydrous sodium sulphate and the solvent was removed to give a syrup ($0.71 \mathrm{~g}, 72 \%$).this syrup was immediately treated with acetic anhydride (3 mL) in pyridine (7 mL) with stirring for 18 h at which time the acetalation was completed (TLC) .
To the reaction mixture iced water (100 mL) was added with stirring and the resulting syrup was extracted with chloroform ($4 * 100 \mathrm{~mL}$) . the combaned chloroform extracts
were dried over anhydrous sodium sulphate and the solvent was removed to give (9) as asyrup ($1.343 \mathrm{~g}, 90 \%$)FTIR (film) ($v_{\max } \mathrm{cm}^{-1}$) 1556 ($\mathrm{N}-\mathrm{O}$), 1751 (C=O) ester , 1699 (benzoate) .
2,4 - Bis (tri methyl silyl) Uracil 10 to a mixture of uracil ($1 \mathrm{~g}, 8.9 \mathrm{mmol}$) ,ammonium sulphate (60 mg) and 1,1,1,3,3,3-hexamethyldisilazane HMDS (40 mL) was refluxed over night, a clear solution was obtained ,cooled to room temperature and the solvent removed under reduced pressure by co distillation with xylene ($2 * 20 \mathrm{~mL}$) to give silated uracil as white powder ($1.3 \mathrm{~g}, 61 \%$) m.p $330^{\circ} \mathrm{C}$. This method was also
used to prepare the reagent $2,4-$ Bis (tri methyl silyl) cytosine (11) using cytosine under the same conditions

$\underline{2,4}$ - Bis (tri methyl silyl) cytosine 11

This compound was prepared under similar conditions for uracil (10) to give (1.6 g , $64 . \%$ yield) m.p $317^{\circ} \mathrm{C}$.

Bis (theophylline $-7-\mathrm{yl}$) mercury 12
To a solution of theophylline hydrate ($2.5 \mathrm{~g}, 4.5 \mathrm{mmol}$) in hot water (25 mL) was added sodium hydroxide (1 g) .To the vigorously stirred solution was added a hot solution of mercuric chloride (1.75 g) in ethanol (25 mL), causing an immediate separation of white precipitate .the colorless suspension was cooled and the product was filtered off and washed with distilled water until the filterate become neutral to give (2.7 , 60%) m.p $374{ }^{\circ} \mathrm{C}$. The salt was stored in vacuum desecator over calcium chloride .

Bis (Indole-1-yl) mercury (II) 13

This compound was prepared under similar conditions for (12)to give ($2.2 \mathrm{~g}, 59.55$ $\%$ yield) with respect ($1 \mathrm{~g}, 8.53 \mathrm{mmol}$) of indole , as a fine white solid m.p $305^{\circ} \mathrm{C}$.

1 (2' ${ }^{\prime}$-O-tri fluoroacetyl-5 ${ }^{\prime}$-O-benzoyl-3 ${ }^{\prime}$ - - -cyano- 3^{\prime}-deoxy- 3^{\prime} - - -nitromethyl- α-Dribofuranosyl) uracil 14
 To a mixture of $9(0.6 \mathrm{gm}, 0.78 \mathrm{mmol})$ and silylated uracil ($0.2 \mathrm{gm}, 1 \mathrm{mmol}$) in

 anhydrous 1,2 -dichloromethane (10 ml) was added anhydrous stannic chloride $(0.08 \mathrm{ml})$ and a few pellets of molecular sieve 4A. The reaction mixture was stirred at $25^{\circ} \mathrm{C}$ for 15 hours at, which time, TLC (Benzene: ethylacetate, 10:1) showed that the reaction was complete. The reaction mixture was poured into excess sodium bicarbonate solution and extracted with methylene chloride ($3 \times 20 \mathrm{ml}$). The organic layer was dried over anhydrous magnesium sulphate and the solvent was removed to give 14 ($0.45 \mathrm{~g}, 62$ $\%$ yield). The product was purified on a silica gel column using (chloroform: acetone $10: 1$) as eluent. Two different fractions were isolated, the first one (0.1 gm) and the second (0.01 gm) as syrup. $\mathrm{R}_{\mathrm{f}}(0.5)$, FTIR (film) $\left(v_{\max } \mathrm{cm}^{-1}\right), 1700-1710$ (CO), $1320\left(\mathrm{C}_{\left.-\mathrm{N}_{\text {tert }}\right),} 2100(\mathrm{C} \equiv \mathrm{N})\right.$. ribofuranosyl) cytosine 15

To a mixture of $109(0.53 \mathrm{gm}, 0.78 \mathrm{mmol})$ and silylated cytosine ($0.12 \mathrm{gm}, 1$ mmol) in anhydrous 1,2-dichloromethane (10 ml)was added anhydrous stannic chloride $(0.08 \mathrm{~m} 1)$ and a few pellets of molecular sieve 4 A . The reaction mixture was stirred at $23^{\circ} \mathrm{C}$ for 15 hours at, which time, TLC (Benzene: ethylacetate, $10: 1)$ showed that the reaction was complete. The reaction mixture was poured into excess sodium bicarbonate solution and extracted with methylene chloride ($3 \times 20 \mathrm{ml}$). The organic layer was dried over anhydrous magnesium sulphate and the solvent was removed to give (15) ($0.43 \mathrm{~g}, 61 \%$ yield). The product was purified on a silica gel column
using Chloroform : acetone 10:1) as eluent. Two different fractions were isolated, the first one (0.2 gm) and the second (0.01 gm) as syrup. $\mathrm{R}_{\mathrm{f}}(0.5)$, IR (film)
($v{ }_{\text {max }} \mathrm{cm}^{-1}$ 1700-1720 (CO); $1310\left(\mathrm{C}-\mathrm{N}_{\text {tert }}\right)$
7(2'-O-trifluoroacetyl-5'-O-benzoyl-3'-C-cyano-3'-deoxy-3'-C-nitromethyl- α-Dribofuranosyl) theophyline16

The theophylline mercury salt ($0.35 \mathrm{gm}, 0.62 \mathrm{mmol}$), was finely powdered, suspended in $(20 \mathrm{ml})$ sodium-dried xylene and the solvent was partially distilled of to
remove traces of water when the temperature of the mixture was raised to $137^{\circ} \mathrm{C}$, the residual suspension was allowed to cool (below $50^{\circ} \mathrm{C}$). The acetylated sugar (113) $(0.35 \mathrm{gm})$ in xylene (20 ml) was then refluxed with stirring for 10 hours TLC(Benzene: ethyl acetate, 10:1) showed that the reaction was complete.The traces of theophylline salt was filtrated from the hot xylene suspension and washed with dichloromethane (20 ml). The organic layer was washed with 20% aqueous potassium iodide $(2 \times 10 \mathrm{ml})$ to remove the remaining traces of the mercury salt washed with water ($2 \times 10 \mathrm{ml}$.) dried over anhydrous magnesium sulphate and the solvent was removed to give after silica gel column chromatography (Benzene: ethyl acetate: acetone, 9:1:1) as eluent the acetylated nucleoside $16(0.22-\mathrm{gm}, 52 \%$ yield) as a syrup. Rf (0.72); FTIR. (film) (vax $_{\text {max }} \mathrm{cm}^{-1}$), $1720(\mathrm{C}=\mathrm{O}), 2246(\mathrm{CN}) ; 1565\left(\mathrm{NO}_{2}\right), 1310\left(\mathrm{C}-\mathrm{N}_{\text {tert }}\right), 1695(\mathrm{C}=\mathrm{O}$ benzoate).

1 (2'-O-trifluoroacetyl-5'-O-benzoyl-3'-C-cyano- 3^{\prime}-deoxy- 3^{\prime} - C-nitromethyl- α-Dribofuranosyl) indole (17)
Following the same procedure for the preparation of compound (16) the benzoylated $\operatorname{sugar}(109)(0.45,1.08 \mathrm{mmol})$ was stirred under reflux in xylene with indole mercury (II) salt ($0.48 \mathrm{~g}, 1.109 \mathrm{mmol}$) for 10 hr to give (17) as syrup ($0.251 \mathrm{~g}, 51.3 \%$) Rf, 0.31 (Benzene: ethyl acetate, 10:1); FTIR (film) cm ${ }^{-1}$, 1560, $1380\left(\mathrm{NO}_{2}\right), 2100$ ($\mathrm{C} \equiv \mathrm{N}$), 1620 ($\mathrm{C}=\mathrm{C}$), 1370 ($\mathrm{C}-\mathrm{N}_{\text {tert }}$).

7(3'- C-cyano-3'-deoxy- 3^{\prime} - C-nitromethyl- α-D-ribofuranosyl) theophyline (18)
To a solution of (16) ($0.1 \mathrm{~g}, 0.15 \mathrm{mmol}$) and $(0.5 \mathrm{gm}, 0.1 \mathrm{mmol})$ of sodium methoxide in methanol $(10 \mathrm{ml})$ was refluxed for 1 hour with stirring. The solvent was removed under reduced pressure to give a syrup ($0.05 \mathrm{gm}, 70 \%$ yield) .This syrup was purified by column and eluted with a mixture of (chloroform: methanol, 10:1) chromatography to give a syrup (18) ($0.045 \mathrm{~g}, 67 \%$ yield). Rf (0.58),FTIR (film) (cm^{-1}), $3450(\mathrm{O}-\mathrm{H}) ; 1708(\mathrm{C}=\mathrm{O}), 1529,1382\left(\mathrm{NO}_{2}\right), 2144(\mathrm{C} \equiv \mathrm{N}) .{ }^{1} \mathrm{HNMR}(\mathrm{MeOD}) \delta($ ppm) : 3.587 ($\mathrm{br} \mathrm{s}, \mathrm{OH}$) , $3.72-3.84\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}_{5}^{\dot{5}}\right), 3.75\left(\mathrm{~s}, \mathrm{CH}_{2} \mathrm{NO}_{2}\right), 5.31(\mathrm{~d}$, $\left.\mathrm{H}^{\dot{\delta}}{ }_{2}\right), 5.28\left(\mathrm{dd}, \mathrm{H}_{4}\right.$) , $5.32\left(\mathrm{~d}, \mathrm{H}_{1}{ }_{1}\right), 1.55\left(6 \mathrm{H}, \mathrm{s}, \mathrm{N}-\mathrm{CH}_{3}\right), 8.1(1 \mathrm{H}, \mathrm{s}, \mathrm{H} 8$ $)^{13} \mathrm{C}-\mathrm{NMR}(\mathrm{MeOD}) \delta(\mathrm{ppm}): 91.11\left(\mathrm{C}^{\delta}{ }_{1}\right), 67.58\left(\mathrm{C}^{\circ}{ }_{5}\right), 73.54\left(\mathrm{C}^{\delta}{ }_{3}\right), 80.36$, $81.12\left(\mathrm{C}^{\circ}{ }_{2}, \mathrm{C}_{4}\right), 122.7\left(\mathrm{C}_{3}^{\circ}-\mathrm{C} \equiv \mathrm{N}\right), 71.66\left(\mathrm{CH}_{2} \mathrm{NO}_{2}\right), 35.6,38.3\left(2 \mathrm{~N}^{2} \mathrm{CH}_{3}\right), 166$, 175 ($\mathrm{C}=\mathrm{O}$) , 135.2-159.5 ($\mathrm{C}_{4}, \mathrm{C}_{5}$ and C_{8})
1(3'-C-cyano-3'-deoxy-3'- C-nitromethyl- α-D-ribo furanosyl) indole (21)
This compound was prepared under the similar condition as for (18) to afford (21) as a syrup . $(0.081 \mathrm{~g}, 52 \%) \mathrm{R}_{\mathrm{f}}, 0.45$ (Chloroform : methanol 10:1) ; FTIR (film) cm^{-} ${ }^{1}, 3400(\mathrm{O}-\mathrm{H}), 2100(\mathrm{C} \equiv \mathrm{N}), 1620(\mathrm{C}=\mathrm{C}), 1570\left(\mathrm{NO}_{2}\right) 1370\left(\mathrm{C}-\mathrm{N}_{\text {tert }}\right) ;{ }^{1} \mathrm{HNMR}($ $\mathrm{MeOD}) \delta(\mathrm{ppm}): 3.45(\mathrm{br} \mathrm{s}, \mathrm{OH}), 3.72-3.87\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}_{5}^{\dot{5}}\right), 3.82\left(\mathrm{~s}, \mathrm{CH}_{2} \mathrm{NO}_{2}\right.$), $4.66\left(\mathrm{~d}, \mathrm{H}^{\dot{\delta}}{ }_{2}\right), 4.93\left(\mathrm{dd}^{2} \mathrm{H}_{4}\right), 5.89\left(\mathrm{~d}, \mathrm{H}^{\circ}{ }_{1}\right), 6.3\left(1 \mathrm{H}, \mathrm{d}, \mathrm{H}_{2}\right), 6.7(1 \mathrm{H}, \mathrm{d}$, $\left.\mathrm{H}_{3}\right), 7.4-7.5\left(4 \mathrm{H}, \mathrm{H}_{4}, \mathrm{H}_{5}, \mathrm{H}_{6}\right.$ and H_{7} (aromatic)) ${ }^{13} \mathrm{C}-\mathrm{NMR}(\mathrm{MeOD}) \delta(\mathrm{ppm})$: $\left.89.88\left(\mathrm{C}_{1}{ }_{1}\right), 66.95\left(\mathrm{C}_{5}^{\delta}\right), 72.67\left(\mathrm{C}_{3}{ }_{3}\right), 80.22,81.35\left(\mathrm{C}_{2}{ }_{2}, \mathrm{C}_{4}\right)_{4}\right), 123\left(\mathrm{C}^{\delta}{ }_{3}-\mathrm{C} \equiv \mathrm{N}\right)$, $71.33\left(\mathrm{CH}_{2} \mathrm{NO}_{2}\right), 76.36(\mathrm{C}-\mathrm{N}), 127-148$ (C-aromatic) 2-19 1(3'-C-cyano-3'-deoxy-3'-C-nitromethyl- α-D-ribofuran- osyl) uracil (19)

This compound was prepared under the similar condition as for (18) to afford (19) as a syrup .($0.023 \mathrm{~g}, 48 \%$) $\mathrm{R}_{\mathrm{f}}, 0.77$ (Chloroform : methanol 10:1) ; FTIR (film) $\left(\mathrm{cm}^{-1}\right), 3400(\mathrm{OH}) ; 1748(\mathrm{C}=\mathrm{O}) .2125(\mathrm{C} \equiv \mathrm{N}) .{ }^{1} \mathrm{HNMR}(\mathrm{MeOD}) \delta(\mathrm{ppm}): 3.42($ br s, OH$), 3.78-3.86\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}_{5}^{\circ}\right), 3.88\left(\mathrm{~s}, \mathrm{CH}_{2} \mathrm{NO}_{2}\right), 4.55\left(\mathrm{~d}, \mathrm{H}^{\circ}{ }_{2}\right), 4.89($ $\left.\mathrm{dd}, \mathrm{H}_{4}^{\dot{\delta}}\right), 5.83\left(\mathrm{~d}, \mathrm{H}_{1}\right)^{2}, 6.45\left(1 \mathrm{H}, \mathrm{d}, \mathrm{H}_{2}\right), 6.7\left(1 \mathrm{H}, \mathrm{d}, \mathrm{H}_{3}\right), 10.52(\mathrm{br} \mathrm{s}, \mathrm{NH})$. ${ }^{13} \mathrm{C}-\mathrm{NMR}(\mathrm{MeOD}) \delta(\mathrm{ppm}): 89.5\left(\mathrm{C}^{\dot{\delta}}{ }_{1}\right), 67.33\left(\mathrm{C}_{5}^{\dot{\delta}}\right), 72.41\left(\mathrm{C}^{\delta}{ }_{3}\right), 80.45,81.76$
$\left(\mathrm{C}^{\delta}{ }_{2}, \mathrm{C}_{4}\right), 122.1\left(\mathrm{C}^{\delta}{ }_{3}-\mathrm{C} \equiv \mathrm{N}\right), 70.30\left(\mathrm{CH}_{2} \mathrm{NO}_{2}\right), 165,179(\mathrm{C}=\mathrm{O}), 134-157\left(\mathrm{C}_{2}\right.$ and C_{4})
1(3'-C-cyano-3'-deoxy-3'-C-nitromethyl- α-D-ribofuran osyl) cytosine (20)
This compound was prepared under the similar condition as for (18) to afford ($20)$ as a syrup. ($0.027 \mathrm{~g}, 49 \%)(\mathrm{Rf}=0.73)($ Chloroform : methanol 10:1); FTIR (film) ($v_{\text {max }} \mathrm{cm}^{-1}$) $1581(\mathrm{~N}-\mathrm{O}), 1748(\mathrm{C}=\mathrm{O}), 3317-3433(\mathrm{OH} \& \mathrm{NH}) 2126(\mathrm{C} \equiv \mathrm{N})$.
${ }^{1}$ HNMR (MeOD) $\delta(\mathrm{ppm}): 3.46(\mathrm{br} \mathrm{s}, \mathrm{OH}), 3.75-3.88\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}_{5}^{\circ}\right), 3.83$ $\left.\left(\mathrm{s}, \mathrm{CH}_{2} \mathrm{NO}_{2}\right), 4.52\left(\mathrm{~d}, \mathrm{H}^{\circ}\right)_{2}\right), 4.88\left(\mathrm{dd}, \mathrm{H}_{4}\right), 5.87\left(\mathrm{~d}, \mathrm{H}_{1}\right), 6.1\left(1 \mathrm{H}, \mathrm{d}, \mathrm{H}_{2}\right)$, $6.2\left(1 \mathrm{H}, \mathrm{d}, \mathrm{H}_{3}\right), 10.23(\mathrm{brs}, \mathrm{NH})$
${ }^{13} \mathrm{C}-\mathrm{NMR}(\mathrm{MeOD}) \delta(\mathrm{ppm}): 87.88\left(\mathrm{C}^{\circ} 1\right), 68.25\left(\mathrm{C}_{5}^{\circ}\right), 72.85\left(\mathrm{C}_{3}\right)$),80.32, $81.65\left(\mathrm{C}^{\delta}{ }_{2}, \mathrm{C}_{4}\right), 121.4\left(\mathrm{C}^{\circ}{ }_{3}-\mathrm{C} \equiv \mathrm{N}\right), 70.62\left(\mathrm{CH}_{2} \mathrm{NO}_{2}\right), 173.25(\mathrm{C}=\mathrm{O}), 135.3-158.6$ (C_{2} and C_{4}

3-C-[cyano(ethoxycarbonyl)methylene] -3-deoxy-1,2:5,6-di-O-isopropylidene- α-Dglucohexofuranose ${ }^{(12)}(22)$

Compound (2) (7 g) , dissolved in benzene (100 mL) was treated with ethyl cyanoacetate (3.1 mL) for 12 h with constant stirring at room temperature , in the presense of 0.2 M sodium hydroxide (12 mL) and tetrabutyl ammonium bromide (0.7 g) .The aqoues layer was extracted three times with benzene (10 mL). The combined benzene layers were dried (magnesium sulfate) and evaporated to afford a brown syrup the syrup was passed through a short column of silica gel with $20: 1(\mathrm{~V}: \mathrm{V})$ benzene - ethyl acetate as eluent .The solvent was removed under reduced pressure to afford (22) as a syrup that crystallized ($8.2 \mathrm{~g}, 82 \%$) .a sample was recrystallized from 2-propanol-hexane to afford white needles , m.p $90-91^{\circ} \mathrm{C}$, TLC (Benzene : ethyl acetate ,10:1) ($\mathrm{Rf}=0.7$) FTIR (film) ($\left.v_{\max } \mathrm{cm}^{-1}\right) 1720(\mathrm{C}=\mathrm{O}), 1640(\mathrm{C}=\mathrm{C})$.

3-C-cyano-3-C-[cyano(ethoxycarbonyl)methyl]-3-deoxy-1,2:5,6-di-O-isopropylidene- α -D-glucohexofuranose ${ }^{(12)}(23)$

A solution of (23) (2.5 g) in benzene (10 mL)was treated with potassium cyanide (1 g) for 2 h with stirring at room temperature , in the presense of 0.2 M sodium hydroxide (2 mL) and tetrabutylammonium hydrogen sulfate (0.05 g) TLC (benzene : ethyl acetate $, 10: 1)$ showed that the reaction was complete .

The aqueous layer was extracted twice with benzene (5 mL) , and the combaned organic layers were dried (magnesium sulfate) and evaporated to a syrup .

Fractionation of the syrup by column chromatography with 20:1 (V/V) benzene ethyl acetate as the eluent afforded a trace amount of 3-C-cyano-1,2:5,6-di-O-isopropylidene- α-D-glucofuranose , and a less-polar component that crystallized . Recrytallization of the less polar component from 2-propanol-hexane afford (23) as white crystals ($1.75 \mathrm{~g}, 65 \%$) m.p $92-93{ }^{\circ} \mathrm{C}$, FTIR (film) $\left(v_{\max } \mathrm{cm}^{-1}\right) 1750(\mathrm{C}=\mathrm{O}) 2210$ weak (CN).

3-C-cyano-3-C-[cyano(ethoxycarbonyl)methyl]-3-deoxy-1,2-O-isopropylidene- α-Dglucohexofuranose (24)

This compound was prepared under the similar condition as for (6) to afford (24) as a syrup . ($2.1 \mathrm{~g}, 90 \%$) ($\mathrm{R}_{\mathrm{f}}=0.27$) (Chloroform: methanol 10:1)FTIR (film) ($v_{\max }$ cm^{-1}) $2100(\mathrm{CN}), 1710(\mathrm{C}=\mathrm{O}) 3400(\mathrm{O}-\mathrm{H})$.

3-C-cyano-3-C-[cyano(ethoxycarbonyl)methyl]-3-deoxy-1,2-O-isopropylidene- α-Dribofuranose (25)

This compound was prepared under the similar condition as for (7) to afford (25) as syrup . ($1.35 \mathrm{~g}, 76 \%)\left(\mathrm{R}_{\mathrm{f}}=0.27\right)$ (Chloroform: methanol 10:1) FTIR (film) $\left(v_{\max } \mathrm{cm}^{-1}\right) 1748(\mathrm{C}=\mathrm{O}), 3470(\mathrm{O}-\mathrm{H})$.

5-O-benzoyl-3-C-cyano-3-C-[cyano(ethoxycarbonyl) methyl]-3-deoxy-1,2-Oisopropylidene - α-D-ribofuranose (26)
This compound was prepared under the similar condition as for (8) to afford (26) as a syrup . ($0.45 \mathrm{~g}, 50 \%$) Rf, 0.75 (Chloroform : methanol 10:1) FTIR (film) ($v_{\max } \mathrm{cm}^{-1}$) $1700(\mathrm{C}=\mathrm{O})$, $2100(\mathrm{CN})$.

1,2-Ditrifluoro-O-acetyl-5-O-benzoyl-3-C-cyano-3-C-[cyano(ethoxycarbonyl)methyl]-3-deoxy-1,2-O-isopropylidene - α-D-ribofuranose (27)

This compound was prepared under the similar condition as for (9) to afford (27) as syrup . ($0.6 \mathrm{~g}, 86 \%$) ($\mathrm{R}_{\mathrm{f}}=0.58$) (Chloroform : methanol 10:1) FTIR(film) ($v_{\text {max }} \mathrm{cm}^{-1}$) $1700(\mathrm{C}=\mathrm{O}), 2215(\mathrm{C}=\mathrm{N})$.

7 (2'-O-trifluoro acetyl-5'-O-benzoyl-3'-C-cyano-3'-C-[cyano(ethoxycarbonyl)methyl]-3'-deoxy- α-D-ribofuranosyl) theophylline (28)

This compound was prepared under the similar condition as for (16) to afford (28) as syrup. ($0.027 \mathrm{~g}, 52 \%$) $\mathrm{R}_{\mathrm{f}}=0.72$ (Chloroform : methanol 10:1) FTIR (film) ($v_{\max } \mathrm{cm}^{-1}$) $1740(\mathrm{C}=\mathrm{O}), 1323\left(\mathrm{C}-\mathrm{N}_{\text {tert }}\right)$.

1 2'-O-trifluoro acetyl-5'-O-benzoyl-3'-C-cyano-3'- $\quad C \quad$ -[cyano(ethoxycarbonyl)methyll-3'-deoxy- α-D-ribofuranosyl) indole (29)

This compound was prepared under the similar condition as for (17) to afford (29) as a syrup. ($0.27 \mathrm{~g}, 52 \%)\left(\mathrm{R}_{\mathrm{f}}, 0.72\right)$ (Chloroform : methanol 10:1) FTIR (film) ($v_{\max }$ cm^{-1}) $1700(\mathrm{C}=\mathrm{O}), 1300\left(\mathrm{C}-\mathrm{N}_{\text {tert }}\right)$.
1(2'-O-trifloroacetyl-5'-O-benzoyl-3'-C-cyano-3'-C -[cyano (carboxyl) methyl] -3'-deoxy- α-D-ribofuranosyl) trimethyl silyl Uracil (30)

This compound was prepared under the similar condition as for (14) to afford (30) as a syrup . ($0.21 \mathrm{~g}, 50 \%$) Rf, 0.55)(Chloroform : methanol 10:1) ; FTIR (film) (v max $\left.\mathrm{cm}^{-1}\right) 1745(\mathrm{C}=\mathrm{O}), 2215(\mathrm{C}=\mathrm{N})$.
1(2'-O-acetyl-5'-O-benzoyl-3'-C-cyano-3'-C-[cyano (carboxyl) methyl] -3'-deoxy- α-Dribofuranosyl)N-trimethyl silyl cytosine (31)

This compound was prepared under the similar condition as for (15) to afford (31) as a syrup. $\left(0.21 \mathrm{~g}, 50 \%\right.$) Rf, 0.55 (Chloroform : methanol 10:1) ; FTIR (film) ($v_{\text {max }}$ $\left.\mathrm{cm}^{-1}\right) 1700(\mathrm{C}=\mathrm{O}), 2240(\mathrm{C} \equiv \mathrm{N})$.
7(3'-C-cyano-3'- C-[cyano(carboxyl)methyll-3'-deoxy- α-D- ribofuranosyl) theophylline (32)

This compound was prepared under the similar condition as for (18) to afford (32) as a syrup. ($0.055 \mathrm{~g}, 66 \%$) $\mathrm{R}_{\mathrm{f}}, 0.36$ (Chloroform : methanol 10:1) ; FTIR (film) cm^{-1},
$3500(\mathrm{O}-\mathrm{H}), 1750(\mathrm{C}=\mathrm{O}), 2100(\mathrm{C} \equiv \mathrm{N}), 1620(\mathrm{C}=\mathrm{C}), 2600(\mathrm{COOH}) 1370$ ($\mathrm{C}_{\mathrm{N} \text { tert }}$); ${ }^{1} \mathrm{HNMR}(\mathrm{MeOD}) \delta(\mathrm{ppm}): 3.43(\mathrm{br} \mathrm{s}, \mathrm{OH}), 3.76-3.85\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}_{5}{ }_{5}\right)$ $,, 4.53\left(\mathrm{~d}, \mathrm{H}_{2}{ }_{2}\right), 4.92\left(\mathrm{dd}, \mathrm{H}_{4}{ }_{4}\right), 5.85\left(\mathrm{~d}, \mathrm{H}^{\dot{\delta}}{ }_{1}\right), 3.28(1 \mathrm{H}, \mathrm{s}, \mathrm{CNCHCO})$ $1.03\left(6 \mathrm{H}, \mathrm{s}, \mathrm{N}^{2} \mathrm{CH}_{3}\right), 8.5(1 \mathrm{H}, \mathrm{s}, \mathrm{H} 8), 10.55(1 \mathrm{H}, \mathrm{s}, \mathrm{COOH}){ }^{13} \mathrm{C}-\mathrm{NMR}$ (MeOD) $\delta(\mathrm{ppm}): 87.52\left(\mathrm{C}_{1}^{\circ}\right), 67.65\left(\mathrm{C}_{5}^{\circ}\right), 73.32\left(\mathrm{C}_{3}{ }_{3}\right), 80.25,81.29$
$\left(\mathrm{C}^{\circ}{ }_{2}, \mathrm{C}_{4}\right.$) , $122.2\left(\mathrm{C}_{3}{ }_{3}-\mathrm{C} \equiv \mathrm{N}\right), 117(\mathrm{CH}-\mathrm{C} \equiv \mathrm{N}), 182(\mathrm{COOH}), 35.5,38.2(2 \mathrm{~N}-$ $\left.\mathrm{CH}_{3}\right), 169,177(\mathrm{C}=\mathrm{O}), 135.1-158.4\left(\mathrm{C}_{4}, \mathrm{C}_{5}\right.$ and C_{8})

1(3' ${ }^{\prime}$ C-cyano- 3^{\prime} - - -[cyano(carboxyl)methyll-3' ${ }^{\prime}$-deoxy- α-D-ribofuranosyl) indole (33)

This compound was prepared under the similar condition as for (21) to afford (33) as a syrup. ($0.028 \mathrm{~g}, 45 \%$) $\mathrm{R}_{\mathrm{f}}, 0.45$ (Chloroform : methanol 10:1) ; FTIR (film) cm^{-1}, $3500(\mathrm{O}-\mathrm{H}), 1750(\mathrm{C}=\mathrm{O}), 2100(\mathrm{C} \equiv \mathrm{N}), 1620(\mathrm{C}=\mathrm{C}), 2600(\mathrm{COOH}) 1370$ ($\mathrm{C}-\mathrm{N}_{\text {tert }}$) ; ${ }^{1} \mathrm{HNMR}(\mathrm{MeOD}) \delta(\mathrm{ppm}): 3.46(\mathrm{br} \mathrm{s}, \mathrm{OH}), 3.71-3.78\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}_{5}{ }_{5}\right)$, , $4.56\left(\mathrm{~d}, \mathrm{H}_{2}{ }_{2}\right), 4.82\left(\mathrm{dd}, \mathrm{H}_{4}{ }_{4}\right), 5.93\left(\mathrm{~d}, \mathrm{H}_{1}{ }_{1}\right), 3.25$ ($1 \mathrm{H}, \mathrm{s}, \mathrm{CNCHCO}), 10.46(1 \mathrm{H}, \mathrm{s}, \mathrm{COOH}), 6.2\left(1 \mathrm{H}, \mathrm{d}, \mathrm{H}_{2}\right), 6.8\left(1 \mathrm{H}, \mathrm{d}, \mathrm{H}_{3}\right)$, 7.35-7.55 ($4 \mathrm{H}, \mathrm{H}_{4}, \mathrm{H}_{5}, \mathrm{H}_{6}$ and H_{7} (aromatic)) . ${ }^{13} \mathrm{C}-\mathrm{NMR}(\mathrm{MeOD}) \delta(\mathrm{ppm})$: $92.83\left(\mathrm{C}_{1}^{\circ}\right), 65.85\left(\mathrm{C}_{5}^{\circ}\right), 72.25\left(\mathrm{C}_{3}{ }_{3}\right), 81.30,82.46\left(\mathrm{C}_{2}^{\circ}, \mathrm{C}_{4}\right), 124.2\left(\mathrm{C}^{\circ}{ }_{3}-\mathrm{C} \equiv \mathrm{N}\right)$, 119.67 ($\mathrm{CH}-\mathrm{C} \equiv \mathrm{N}$), 186 (COOH), 73.2 (C-N), 110-143 (C-aromatic)

1 (3^{\prime} - C-cyano-3' $-C$ - [cyano(carboxyl)methyl] -3'-deoxy- α-D- ribofuranosyl) uracil (34)

This compound was prepared under the similar condition as for (19) to afford (34) as a syrup . ($0.035 \mathrm{~g}, 63 \%$) $\mathrm{R}_{\mathrm{f}}, 0.61$ (Chloroform : methanol 10:1); FTIR (film) cm^{-1}, 3500 (O-H), $1750(\mathrm{C}=\mathrm{O}), 2100(\mathrm{C} \equiv \mathrm{N}), 1620(\mathrm{C}=\mathrm{C}), 2600(\mathrm{COOH}) 1370\left(\mathrm{C}-\mathrm{N}_{\text {tert }}\right.$); ${ }^{1} \mathrm{HNMR}$ (MeOD) $\delta(\mathrm{ppm}): 3.46$ ($\mathrm{br} \mathrm{s}, \mathrm{OH}$), 3.77-3.91 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}_{5}{ }_{5}$), , 4.55 $\left(\mathrm{d}, \mathrm{H}^{\circ}\right.$) , $4.82\left(\mathrm{dd}, \mathrm{H}^{\circ} 4\right), 5.82\left(\mathrm{~d}, \mathrm{H}^{\circ}{ }_{1}\right), 3.31(1 \mathrm{H}, \mathrm{s}, \mathrm{CNCHCO}), 11.53(1 \mathrm{H}$,s , COOH) , 10.53 (br s ,NH) , $6.4\left(1 \mathrm{H}, \mathrm{d}, \mathrm{H}_{2}\right), 6.6\left(1 \mathrm{H}, \mathrm{d}, \mathrm{H}_{3}\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}$ (MeOD) $\delta(\mathrm{ppm}): 88.25\left(\mathrm{C}_{1}{ }_{1}\right), 66.87\left(\mathrm{C}_{5}^{\circ}\right), 72.48\left(\mathrm{C}_{3}{ }_{3}\right), 82.25,83.29$ $\left(\mathrm{C}^{\delta}{ }_{2}, \mathrm{C}_{4}\right), 121.3\left(\mathrm{C}_{3}{ }_{3}-\mathrm{C} \equiv \mathrm{N}\right), 187(\mathrm{COOH}), 165,178.5(\mathrm{C}=\mathrm{O}), 135.1-158.4$ $\left(\mathrm{C}_{2}\right.$ and C_{4}).

1($3^{\prime}-C$-cyano- 3^{\prime} - C-[cyano(carboxyl)methyl] - 3^{\prime}-deoxy- α-D-ribofuranosyl) cytosine 35
This compound was prepared under the similar condition as for (20) to afford (35) as a syrup ($0.026 \mathrm{~g}, 50.1 \%$) $\mathrm{R}_{\mathrm{f}}, 0.54$ (Chloroform : methanol 10:1) . FTIR (film) $\mathrm{cm}^{-1}, 3373(\mathrm{O}-\mathrm{H}), 1700(\mathrm{C}=\mathrm{O}), 2148(\mathrm{C} \equiv \mathrm{N}), 1602(\mathrm{C}=\mathrm{C}), 2600(\mathrm{COOH}) 1384$ ($\mathrm{C}-\mathrm{N}_{\text {tert }}$); ${ }^{1} \mathrm{HNMR}(\mathrm{MeOD}) \delta(\mathrm{ppm}): 3.42(\mathrm{br} \mathrm{s}, \mathrm{OH}), 3.72-3.79\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}_{5}^{\circ}{ }_{5}\right)$, , $4.45\left(\mathrm{~d}, \mathrm{H}^{\circ}{ }_{2}\right), 4.85\left(\mathrm{dd}, \mathrm{H}^{\delta} 4\right), 5.93\left(\mathrm{~d}, \mathrm{H}^{\circ}{ }_{1}\right), 3.48(1 \mathrm{H}, \mathrm{s}, \mathrm{CNCHCO}$),10.48 ($1 \mathrm{H}, \mathrm{s}, \mathrm{COOH}$), 11.25 (br s , NH) ${ }^{13} \mathrm{C}-\mathrm{NMR}(\mathrm{MeOD}) \delta(\mathrm{ppm}): 91.41$ $\left(\mathrm{C}_{1}^{\circ}\right), 69.55\left(\mathrm{C}_{5}^{\circ}\right), 73.20\left(\mathrm{C}_{3}\right)^{\circ}, 80.56,81.24\left(\mathrm{C}_{2}^{\circ}, \mathrm{C}_{4}\right), 121.8\left(\mathrm{C}_{3}{ }_{3} \mathrm{C} \equiv \mathrm{N}\right), 183.5$ $(\mathrm{COOH}), 167,178(\mathrm{C}=\mathrm{O}), 127-135\left(\mathrm{C}_{2}\right.$ and $\left.\mathrm{C}_{4}\right)$

Results \& Discussion

The characteristic absorption bands of the prepared compounds are shown in (Table 31) The appearance of the hydroxyl group absorption band at $>3400 \mathrm{~cm}^{-1}$ was utilized to confirm the structure of diacetone glucose (1) while the absence of this band indicates the formation of the 3-keto derivative (2) which also showed the carbonyl absorption band at $1749 \mathrm{~cm}^{-1}$. In the spectrum of (3) $1560 \mathrm{~cm}^{-1}, 1380 \mathrm{~cm}^{-1}$ and $3400 \mathrm{~cm}^{-1}$ bands were attributed to the formation of the 3-C-nitromethyl allofuranose derivative (3). The nitromethylene derivative(4) structure was confirmed by the appearance of $\mathrm{C}=\mathrm{C}$ stretching at $1674 \mathrm{~cm}^{-1}$. The absence of the $1674 \mathrm{~cm}^{-1}$ band indicated that the Michael type addition to (4) had resulted in 3-C-nitromethyl derivative (5). The hydroxyl group
absorption band $3450 \mathrm{~cm}^{-1}$ indicated the complete hydrolysis of 5,6-isopropylidene group which gave the diol ($6 \& 24$).

Similar absorption band was shown for the 5-OH derivative (7 \& 25).The abscense of the $3450 \mathrm{~cm}^{-1}$ band was attributed to the formation of the 5 -benzoate derivative
(108\&126) which gave an absorption band at , $3100 \mathrm{~cm}^{-1}$ for aromatic C-H , at $1710 \mathrm{~cm}^{-}$ ${ }^{1}$ for carbonyl group and at $1590 \mathrm{~cm}^{-1}$ for $\mathrm{C}=\mathrm{C}$ ring stretching . the 1,2-diacetate derivative (9 \& 27) showed aromatic and aliphatic C-H stretching the region 3100-2850 cm^{-1} and two absorption bands at $1700-1750 \mathrm{~cm}^{-1}$ for the carbonyl group at $\mathrm{C}-1, \mathrm{C}-2$, and C-5 (the two acetate and benzoate group).The FTIR spectra of the nucleoside (16 \&28) are shown in respectively. In comparison with the FTIR spectrum of modified carbohydrate moiety ($9 \& 27$) , the theophylline nucleoside ($16 \& 28$) showed weak band for the C-H streaching at 2850-2950 cm^{-1} because of the absence of one acetate group at $\mathrm{C}-1$, while the uracil nucleoside ($14 \& 30$) showed in addition to the mentioned weak band at 2850-2950 cm^{-1}, the appearance of the NH stretching band at $3350 \mathrm{~cm}^{-1}$ which was attributed to the free NH group of the uracil .the FTIR spectrum showed that hydrolysis was complete since the stretching band at $3200-3400$ for (O-H \& N-H) group for free nucleoside .

The structure of some of th prepared compounds were confirmed by ${ }^{1}$ HNMR as shown in table (1). It was obvious that the anomeric proton $\mathrm{H}-1$ appeared as a doublet in the region 85.32-5.93.

The ${ }^{1}$ HNMR spectrum of (18) demonstrated the $\mathrm{H}-4$ as a doublet at $\delta 5.28, \mathrm{H}-5$ at δ 3.72-3.84 and at $\delta 5.32, \mathrm{H}-2$.

The signal at $\delta 3.45-3.52$ was attributed to the proton of the hydroxyl group in, H-4 and $2 \mathrm{H}-5$ proton appeared as multiplets in the region $\delta 4.93-5.3$. The signal at $\delta 7.4-7.5$ was attributed to the aromatic proton in (21). The signal at $\delta 3.82$ was attributed to proton of $\mathrm{CH}_{2} \mathrm{NO}_{2}$.

The ${ }^{1} \mathrm{HNMR}$ spectrum of (34) showed the demonstrated the $\mathrm{H}-4$ as a doublet at δ $4.82, \mathrm{H}-5$ at $\delta 3.77-3.91$ and at $\delta 4.55, \mathrm{H}-2$. The signal at $\delta 3.42$ in was attributed to the proton of the hydroxyl group in (35), $\mathrm{H}-4$ and $2 \mathrm{H}-5$ proton appeared as multiplets in the region $\delta 3.72-4.85$. The signal at $\delta 11.25$ was attributed to the amino proton. The signal at $\delta 3.84$ was attributed to proton of CNCHCO .

The structure of some of the prepared compounds were also determined by ${ }^{13} \mathrm{C}$ NMR Spectroscopy (Table2) . For example The ${ }^{13} \mathrm{C}$ NMR spectrum of (21) showed the presense of signals for $\mathrm{C}-1, \mathrm{C}-2, \mathrm{C}-3, \mathrm{C}-4, \mathrm{C}-5$, aromatic carbon , carbon cynaide and $\mathrm{CH}_{2} \mathrm{NO}_{2}$ in the expected chemical shift ${ }^{(15)}$.

GLUCOSE
$\xrightarrow[\mathrm{H}_{3} \mathrm{PO}_{4}]{\text { Acetone }, \mathrm{ZnCl}_{2}}$

Scheme A

Scheme B

Table (1) ${ }^{1}$ HNMR chemical shift data in δ values) for final nucleosides and nucleotides

Comp.	H-1	H-2	H-4	H-5	$\mathrm{CH}_{2} \mathrm{NO}_{2}$	COOH	Others
18	5.32	5.31	5.28	3.72-3.84	3.75	-------	$1.55\left(6 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{3}\right.$ of theophylline)
19	5.83	4.55	4.89	3.78-3.68	3.88	-------	10.52 (brs , NH of uracil)
20	5.87	4.52	4.88	3.75-3.88	3.83	-------	10.23 (brs , NH) of cytosine
21	5.89	4.66	4.93	3.72-3.87	3.82	-------	7.4-7.5 (aromatic proton of indole)
32	5.83	4.53	4.92	3.76-3.85	-------	10.55	1.03 ($6 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{3}$ of theophylline)
33	5.93	4.56	4.82	3.71-3.78	-------	10.46	7.35-7.55 (aromatic proton of indole)
34	5.82	4.55	4.82	3.77-3.91	-------	11.53	10.53 (brs , NH of uracil)
35	5.93	4.45	4.85	3.72-3.79	-------	10.48	10.25 (brs , NH) of cytosine

Comp.	$\mathrm{C}^{\prime}-1$	$\mathrm{C}^{\prime}-2$	$\mathrm{C}^{\prime}-3$	$\mathrm{C}^{\prime}-4$	$\mathrm{C}^{\prime}-5$	$\mathrm{C} \equiv \mathrm{N}$	$\mathrm{CH}_{2} \mathrm{NO}$	Others
18	91.11	80.36	73.54	81.12	67.58	122.7	71.66	$135.2-159.2$ aromatic carbon of theophyllin
19	89.88	80.45	81.76	81.76	67.33	122.1	70.30	$134-157 \mathrm{C}_{2} \& \mathrm{C}_{4}$ of uracil
20	89.50	80.32	72.85	81.65	68.25	121.4	70.62	$135.3-158.6 \quad \mathrm{C}_{2} \& \mathrm{C}_{4}$ of cytosine
21	87.88	80.22	72.67	81.35	66.95	123.9	71.33	$127-148 \quad \mathrm{C}$-aromatic indole
32	87.52	80.26	73.32	81.29	67.65	122.3	-----	169,177 carbonyl of theophylline
33	92.83	81.31	72.25	82.46	65.85	124.5	------	186 carboxylic carbon , 110-143 aromatic i
34	88.25	82.25	72.48	83.29	66.87	121.3	------	$135.1-158 \quad \mathrm{C}_{2} \& \mathrm{C}_{4}$ of uracil
35	91.41	80.56	72.00	81.24	69.55	121.8	------	$127-135 \quad \mathrm{C}_{2} \& \mathrm{C}_{4}$ of cytosine

AL-Qadisiya Journal For Science Vol . 17 No. 1 Year 2012
 Muqdad Irhaeem / Yousif Ali ISSN-1997-4290

References:-

1- Kennedy , J. F.;"Carbohydrate Chemistry", Birmingham; 1988 ,134-135.
2-Robins, R. K.; Revankar, G. R.; In Antiviral drug development. (Declerq, E, and Walker, R. K., Eds.). Plenum, New York,1988.
3- Robins, R. K.; Kini, G. D.; In Chemistry of antitumour agents, Blackie and sons, UK 1990.
4- MacCoss,M.;Robins,M.J.K.,In Chemistry of antitumour agents, Blackie and sons 1990 .
5-Perigand,C.;Gosselin, G.;Imbach J. L., Nucleosides and Nucleotides 1992, 11, 903.
6- Wilman, D.E.; "The chemistry of antitumour Agents", Chapman and Hall, New Yourk; 1990; page 261,299.
7- Afarinkia.,K.;Bearpark,M.J.;Ndibwami,A.;J.Org.Chem.2003.68.7158-7166.
8- Ashry,E.;Abdul-Gani,M.M.; Nucleosides, Nucleotides\& Nucleic acid,2004,23,567-580.
9- Gen, W.L.; Myers , G.S.; and G.A.Grant , J.Chem.Soc 1951, 2569.
10- Butterworth , R.F.; and Hanessian, S.; selected method of oxida -tion in carbohydrate chemistry , Synthesis 1971, 70-88.
11- Albercht,H.P.; Moffatt , Tetrahedron Lett, 1970,1063.
12- Ali, Y.; Vyas , D.M .; Nabinger, R .C .; and Szarek, W. A.;Synthesis of gem-di-C-substituted derivatives of carbohydrates by way of Nucleophilic-addition reactions of aldohexofuranoid 3-C-methylene derivatives, Carbohydr.Res , 1982, 104, 183-193.

13- Silverstein, R.M.; Bassler, G.C.; Morrill, T.C., "Spectrometric Identification of Organic Compounds", John Wiley \& Sons, Inc., U.S.A., 2007.

تحضير ممـاثلات نيوكليوسيد و نيوكليوتيد جديدة مقداد ارحيم كاظم جامعة القادسية /كلية العلوم يوسف علي الفتاحي جامعة بغداد/كلية العلوم

(الخلاصة
كانت (طبيعية او محضرة) فعالية بايلوجية و مضـادة للسرطان و الفايروسات والبكتيريا .
يتضمن البحث تحضبر نو عين من المركبات الجديدة :
النـو ع الاول : ممــاثلات نيو كليوســايد تحنــوي علــى تفـر ع [3'-دايوكســي-(-C-'3-سـيانو -3'[النترومثيل)
النوع الثاني : ممـاثلات نيوكليوتايـد تحتوي علـى تفر ع [3'-دايوكسـي-(-C-'3-سيانو(كاربوكسـي) مثبل-3'- سيانو (
للحصول على هذه المماثثلات تطلب وضـع اسـتر اتيجية تسـهل الوصـول للهدف ، و قد اختيرت
المادة الاولية 6,5:2,1-ثنائي-O- ايزووبروبيلدين 1 - 1 الهيدروكسيل حرة في موقع ذرة الكـاربون -3 الوحيدة غير المحميـة . عنـد اكسدة (1) بثنـائي مثيـل

سلفوكسبد وانهدربد الخليك تكون المشتق الكيتوني (2) .
لنكوين النوع الاول من المماثلات مخطط تم اضـافة نبتروميثـان للمشـتق (2) فتكون المشتق
 اجل الحصول على مشتق سكر الرايبوز الخماسـي الذي يمثل الجزء الـي الـكـري في النيو كليوسبد تـم از احة مجمو عة الحماية (الابزوبروبليدين) في الموقع 6,5 باستخدام حـامض الخليك يتبعهـا عمليـة اكسدة واختز ال نحصل على المشتق (7) .ان حماية مجمو عة الهيلرووكسبل في الموقع -5 باستخدام
 المشتق (8) الذي يتحول الـى المشـنق (9) بالتفاعل مـع حـامض الخليك وثلاثـي فلوريد حـامض
 (6السيلايل لليور اسـلِ و مشـتق السيلايل سايتوسين الـى ممــثلات نيوكليوسـابد (17 (14) و (15) و

ان تنـخين هذه المشـتقات كل على حدة مـع ميثوكسبي الصـوديوم في الميثـانول تحت مكثف
اعطى المشتق (18) و(19) و(20) و(21) . حصل على النوع الثناني (مماثلات النيوكليو تايد من معاملة المشنق (2) مع سيانو اسيتات الاثيـل او لا حيث تكـون (22) تبـع ذلـك اضــافة سـبانيد البوتاسـيوم فـي وسـط قاعدي ليعطـي المشـتق (23) وباز الة مجمو عة الحمايـة في الموقع -6,5 باستخدام حـامض الخليك يتبعهـا عمليـة اكسـدة و اختز ال لهذا الموقع فيتكون المشنق (25) ـ ان تفاعل كلوريـد البنزويل مـع المشـتق (25) يؤدي الـى حمايـة
 الاستيل (27) بمعملته مع حامض الخلبك وثلاثي فلورو انهدريد الخليك . ان تكاثف المشنق (27) مع ملح الزئبق للثيو فلين والاندول و مشتق السبلابل لليور اسبل و مشثتق السيلايل سايتوسين اعطى مماثّل النيو كليوتايـ (28 (33) و (39) و(30) و(30) و(31) علىى النوالي وقد تم الحصول على مماثل النيوكليوتابد الحر (32) و (33) و(34) و(35) من التحليل القاعدي الكحولي للمشتق لمماتل النيوكليوتابد . تم تشخيص المركبات المحضرة بو اسطة الطرق الطيفية : الاشعة تحت الحمر اء والرنين النووي المغناطيسي للبروتون و نظير الكاربون -13 وكروماتو غر افيا الطبقة الرقيقة ـ ان الهدف من تحضـير ممـاثلات النيو كليوسـبد و النيو كليوتايـد المتفر عــة هـو احتماليـة ان تمتلـك خـو اص مضـادادات السرطان و المضـادات الحيوية و الفيروسات .

