The Composition Operator $\,C_{\phi_\beta}\,$ Induced by The Function $\,\varphi_\beta\,$

By Aqeel Mohammed Hussain Department of Mathematics College of Education

University of Qadisyia

Abstract

Let U denote the unit ball in the complex plane, the Hardy space H^2 is the set of functions $f(z) = \sum_{n=0}^{\infty} f^{n}(n) z^{n}$ holomorphic on U such that $\sum_{n=0}^{\infty} |f^{n}(n)|^{2} < \infty$ with $f^{n}(n)$ denotes then the Taylor coefficient

of f.

Let ψ be a holomorphic self-map of U, the composition operator C_{ψ} induced by ψ is defined on H^2 by the equation

$$C_{\psi}f = f \circ \psi \quad (f \in H^2)$$

We have studied the composition operator induced by the automorphism ϕ_{β} and discussed the adjoint of the composition of the symbol ϕ_{β} . We have look also at some known properties on composition operators and tried to see the analogue properties in order to show how the results are changed by changing the function ψ in U.

In order to make the work accessible to the reader, we have included some known results with the details of the proofs for some cases and proofs for the properties .

Introduction

This search consists of two sections . In section one ,we are going to the automorphism ϕ_{β} and properties of ϕ_{β} , and also discuss the interior and exterior fixed points of ϕ_{β} and also discuss ϕ_{β} is rotation a round the origin and ϕ_{β} is elliptic and ϕ_{β} is a linear fractional transformation .

In section two, we are going to the Composition Operator $C_{\phi_{\beta}}$ induced by the symbol ϕ_{β} and properties of $C_{\phi_{\beta}}$, and also discuss the adjoint of Composition Operator $C_{\phi_{\beta}}$ induced by the symbol ϕ_{β} and also discuss $C_{\phi_{\beta}}$ is an invertible operator and $C_{\phi_{\beta}}$ is normal operator and define eigenvalue of $C_{\phi_{\beta}}$

Section One

Definition(1.1) : [4]

Let $U = \{z \in C : |z| \prec 1\}$ is called unit ball in complex C and $\partial U = \{z \in C : |z| = 1\}$ is called boundary of U

Example(1.2):

For $\beta \in U$, define $\phi_{\beta}(z) = \frac{z}{2 + \overline{\beta} z}$ $(z \in U)$. Since the denominator equal zero only at $z = \frac{-2}{\overline{\beta}}$, the

function ϕ_{β} is holomorphic on the ball $\{|z| \prec \frac{2}{|\beta|}\}$. Since $\beta \in U$, then this ball contains U. Hence ϕ_{β}

take U into U and holomorphic on U .

Definition(1.3) : [10]

Let $\psi: U \to U$ and holomorphic on U. We say that ψ is called conformal automorphism or automorphism of U if and only if ψ is injective and surjective.

Proposition (1.4):

for $\beta \in U$, φ_{β} is conformal automorphism or automorphism of U.

Proof:

Since
$$\phi_{\beta}(z) = \frac{z}{2 + \overline{\beta} z} (z, \beta \in U)$$

Suppose $\phi_{\beta}(z_1) = \phi_{\beta}(z_2)$ that is $\frac{z_1}{2 + \overline{\beta} z_1} = \frac{z_2}{2 + \overline{\beta} z_2}$, therefore $\overline{\beta} z_1 z_2 + 2z_1 = \overline{\beta} z_1 z_2 + 2z_2$, hence

 $z_1 = z_2$. Thus ϕ_{β} is injective.

Let
$$y = \phi_{\beta}(z)$$
, that is $y = \frac{z}{2 + \overline{\beta}z}$, therefore $\overline{\beta} z y + 2y = z$, then $z - \overline{\beta} z y = 2y$, hence

$$z = \frac{2y}{1 - \overline{\beta}y} , \quad \varphi_{\beta}(z) = \varphi_{\beta}\left(\frac{2y}{1 - \overline{\beta}y}\right) = \frac{\frac{2y}{1 - \overline{\beta}y}}{2 + \frac{2\overline{\beta}y}{1 - \overline{\beta}y}} = \frac{\frac{2y}{1 - \overline{\beta}y}}{\frac{2 - 2\overline{\beta}y + 2\overline{\beta}y}{1 - \overline{\beta}y}} = y, \text{ for every } y \in U \text{ there exists}$$

 $z \in U$ such that $\varphi_\beta(z) = y$. Thus φ_β is surjective . Hence φ_β is automorphism .

Definition(1.5) : [10]

A point $p \in C$ is a fixed point for the function ψ , if $\psi(p) = p$.

Proposition (1.6):

For $\beta \in U$, then 0, $\frac{-1}{\overline{\beta}}$ are fixed points for ϕ_{β} .

Proof :

Let $\phi_{\beta}(z) = z$ that is $\frac{z}{2 + \overline{\beta}z} = z$, therefore $\overline{\beta} z^2 + z = 0$. Hence ϕ_{β} has two fixed points

 $z_1 = 0$, $z_2 = \frac{-1}{\overline{\beta}}$

Definition(1.7): [4]

Let $\psi : U \rightarrow U$ and holomorphic on U that fixed point r, then:

- 1) r is interior fixed point for ψ if $r \in U$
- 2) r is exterior fixed point ψ if $r \notin U$

Proposition (1.8):

Then 0 is interior fixed point and $\frac{-1}{\overline{\beta}}$ is exterior fixed point for ϕ_{β} .

Proof :

Since ϕ_{β} has two fixed points $z_1 = 0$, $z_2 = \frac{-1}{\overline{\beta}}$, $|z_1| = |0| = 0 \prec 1$. Thus z_1 is interior fixed point

Since $\beta \in U$, then $|\beta| \prec 1$, therefore $\left|\frac{-1}{\beta}\right| = \left|\frac{1}{\beta}\right| = \frac{1}{|\beta|} \succ 1$, hence $|z_2| = \left|\frac{-1}{\beta}\right| \succ 1$. Thus z_2 is exterior fixed point

<u>Remark(1.9)</u> :

For
$$\beta \in U, \phi_{\beta}^{-1}(z) = \frac{2z}{1 - \overline{\beta}z}$$

Remark(1.10) :

for
$$\beta \in U$$
, then $\phi_{\beta}'(0) = \frac{1}{2}$, $\phi_{\beta}'(\beta) = \frac{2}{\left(2 + |\beta|^2\right)^2}$.

Definition(1.11) : [11]

Let $\psi: U \to U$ and holomorphic on U. We say that ψ is a rotation round the origin if there exists $\sigma \in \partial U$ such that $\psi(z) = \sigma z \ (z \in U)$

Proposition (1.12):

 $\phi_{\beta}(z)$ is not a rotation a round the origin

Proof:

Since $\phi_{\beta}(z) = \frac{z}{2 + \overline{\beta}z} \neq \sigma z$, then $\phi_{\beta}(z)$ is not a rotation a round the origin.

Theorem (1.13) : [11]

Let $\psi: U \to U$ and holomorphic on U, then ψ is elliptic if and only if ψ is automorphism that has an interior fixed point.

Proposition (1.14):

For $\beta \in U$, ϕ_{β} is elliptic

Proof :

From (1-4), ϕ_{β} is automorphism, and from (1-8) ϕ_{β} has an interior fixed Point, hence ϕ_{β} is elliptic.

Definition(1.15): [10]

A linear fractional transformation is a mapping of the form $\tau(z) = \frac{az+b}{cz+d}$, where a, b, c, and d are complex numbers and $\tau(z) = \frac{az+b}{cz+d}$ we sometime denote it by $\tau_A(z)$ where A is the non-singular 2×2 complex matrix $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$.

Proposition (1.16) :

 φ_{β} is a linear fractional transformation .

Proof :

Since $\phi_{\beta}(z) = \frac{z}{2 + \overline{\beta}z} = \frac{az + b}{cz + d}$ such that a = 1, b = 0, $c = \overline{\beta}$, d = 2 and a, b, c, and d are complex numbers and $\mathbf{A} = \begin{bmatrix} 1 & 0 \\ \overline{\beta} & 2 \end{bmatrix}$, hence by (1.15) ϕ_{β} is a linear fractional transformation.

Section Two

Definition(2.1): [4]

Let U denote the unit ball in the complex plane, the Hard space H^2 is the set of functions

 $f(z) = \sum_{n=0}^{\infty} f^{n}(n) z^{n}$ holomorphic on U such that $\sum_{n=0}^{\infty} |f^{n}(n)|^{2} \prec \infty$ with $f^{n}(n)$ denotes then the

Taylor coefficient of f.

Remark (2.2): [1]

We can define an inner product of the Hardy space functions as follows:

$$f(z) = \sum_{n=0}^{\infty} f^{\wedge}(n) z^{n} \text{ and } g(z) = \sum_{n=0}^{\infty} g(n) z^{n} \text{ , then inner product of } f \text{ and } g \text{ is:}$$
$$\langle f, g \rangle = \sum_{n=0}^{\infty} f^{\wedge}(n) \overline{g^{\wedge}(z)}$$

Example (2.3) :[10]

Let $\alpha \in U$ and $k_{\alpha}(z) = \frac{1}{1 - \alpha z}$ $(z \in U)$. Since $\alpha \in U$ then $|\alpha| \prec 1$, hence the geometric series $\sum_{n=0}^{\infty} |\alpha|^{2n} \text{ is convergent and thus } k_{\alpha} \in H^2 \text{ and } k_{\alpha}(z) = \alpha z^n.$

Definition(2.4) : [4]

Let $\psi: U \to U$ and holomorphic on U, the composition operator C_{ψ} induced by ψ is defined on H² by the equation $C_{\psi} f = f \circ \psi (f \in H^2)$

Definition(2.5) : [2]

Let T be a bounded operator on a Hilbert space H, then the norm of an operator T is defined by $||T|| = \sup\{||Tf|| : f \in H, ||f|| = 1\}$.

Littlewood's Subordination principle (2.6) : [11]

Let $\psi: U \to U$ and holomorphic on U with $\psi(0) = 0$, then for each $\mathbf{f} \in \mathbf{H}^2$, $\mathbf{f} \circ \psi \in \mathbf{H}^2$ and $\|\mathbf{f} \circ \psi\| \le \|\mathbf{f}\|$. The goal of this theorem $C_{\psi}: \mathbf{H}^2 \to \mathbf{H}^2$.

Definition(2.7) :

The composition operator $C_{\varphi_{\beta}}$ induced by φ_{β} is defined on H^2 by the equation $C_{\varphi_{\beta}}f = f \circ \varphi_{\beta}$, $(f \in H^2)$

Proposition(2.8):

If $\beta \in U$, then for each $f \in H^2$, $f \circ \phi_{\beta} \in H^2$ and $||f \circ \phi_{\beta}|| \le ||f||$

Proof :

Since $\phi_{\beta}: U \to U$ and holomorphic on U with $\phi_{\beta}(0) = 0$, then by (2-6)

 $f \in H^2, \ f \circ \phi_\beta \in H^2 \text{ and } \left\| f \circ \phi_\beta \right\| \le \left\| f \right\| \text{ , hence } C_{\phi_\beta} : H^2 \to H^2$

<u>Remark (2.9)</u> : [4]

1) One can easily show that $C_{\kappa}C_{\psi} = C_{\psi \circ \kappa}$ and hence $C_{\psi}^{n} = C_{\psi}C_{\psi} \cdots C_{\psi}$

$$=C_{\psi\circ\psi\circ\cdots\circ\psi}=C_{\psi_n}$$

2) C_{ψ} is the identity operator on H^2 if and only if ψ is identity map from U into U and holomorphic on U.

3) It is simple to prove that $C_{\kappa} = C_{\psi}$ if and only if $\kappa = \psi$.

Theorem (2. 10) : [11]

Let $\psi: U \to U$ and holomorphic on U. C_{ψ} is an invertible operator on H^2 if and only if ψ automorphism of U and $C_{\psi}^{-1} = C_{\psi^{-1}}$

Proposition(2.11) :

If $\beta \in U,$ then C_{φ_β} is an invertible operator on $\,H^2$

Proof :

Since $\,\varphi_{\beta}\,$ is automorphism of $\,U$ by (1- 4) , hence $\,C_{\varphi_{\beta}}\,$ is an invertible operator on $\,H^2\,$.

Definition(2.12): [3]

Let T be an operator on a Hilbert space H , The operator T^* is the adjoint of T if $\langle Tx, y \rangle = \langle x, T^*y \rangle$ for each $x, y \in H$.

Theorem (2.13): [5]

 $V_{\alpha \in U} \big\{ K_{\alpha} \big\}$ forms a dense subset of $\, H^2 .$

Theorem (2.14) : [10]

Let $\psi: U \to U$ and holomorphic on U, then for all $\alpha \in U$

 $C_{\psi}^{*}K_{\alpha}=K_{\psi(\alpha)}$

Definition(2.15): [6]

Let $g \in H^{\infty}$, the Toeplits operator T_{g} is the operator on H^{2} given by :

$$(T_g f)(z) = g(z) f(z) (f \in H^2, z \in U)$$

<u>Remark (2.16)</u> : [7]

For each $f \in H^2$, it is well-know that $T_h^* f = T_{\overline{h}} f$, such that $h \in H^{\infty}$.

Proposition(2.17) :

Let
$$\mathbf{C}^*_{\phi_{\beta}} = \mathbf{T}_{g} \mathbf{C}_{\gamma} \mathbf{T}_{h}$$
, where $\mathbf{h}(z) = (2 + \overline{\beta}z)$, $\mathbf{g}(z) = \frac{1}{2}$, $\gamma(z) = \frac{z - \beta}{2}$

Proof :

By (2-16), $T_{h}^{*} f = T_{\overline{h}} f$ for each $f \in H^{2}$. Hence for all $\alpha \in U$,

$$\langle T_{h}^{*} f, k_{\alpha} \rangle = \langle T_{\overline{h}} f, k_{\alpha} \rangle = \langle f, T_{\overline{h}}^{*} k_{\alpha} \rangle \cdots \cdots (2-1)$$

On the other hand,

$$\langle T_h^* f, k_\alpha \rangle = \langle f, T_h f \rangle = \langle f, h(\alpha) k_\alpha \rangle \cdots (2-2)$$

From (2-1)and (2-2) one can see that $T_{\overline{h}}^* k_{\alpha} = h(\alpha) k_{\alpha}$. Hence $T_{h}^* k_{\alpha} = \overline{h(\alpha)} k_{\alpha}$. Calculation give

$$\mathbf{C}_{\phi_{\beta}}^{*}\mathbf{k}_{\alpha}(z) = \mathbf{k}_{\phi_{\beta}(\alpha)}(z)$$

$$\begin{split} &= \frac{1}{1 - \overline{\phi_{\beta}}(\alpha) z} = \frac{1}{1 - \frac{\overline{\alpha}z}{2 + \beta\overline{\alpha}}} \\ &= \frac{1}{\frac{2 + \beta\overline{\alpha} - \overline{\alpha}z}{2 + \beta\overline{\alpha}}} = \frac{2 + \beta\overline{\alpha}}{2 - \overline{\alpha}(z - \beta)} = \frac{\overline{(2 + \overline{\beta}\alpha)}}{2 - \overline{\alpha}(z - \beta)} \\ &= \overline{(2 + \overline{\beta}\alpha)} \cdot \left(\frac{1}{2}\right) \cdot \frac{1}{1 - \overline{\alpha}\left(\frac{z - \beta}{2}\right)} \\ &= \overline{h(\alpha)} \cdot T_{g} k_{\alpha}(\gamma(z)) = T_{g} \overline{h(\alpha)} k_{\alpha}(\gamma(z)) \\ &= T_{g} \overline{h(\alpha)} C_{\gamma} k_{\alpha}(z) = T_{g} C_{\gamma} \overline{h(\alpha)} k_{\alpha}(z) \\ &= T_{g} C_{\gamma} T_{h}^{*} k_{\alpha}(z) , \text{ therefore} \\ &\mathbf{C}_{\phi_{\beta}}^{*} \mathbf{k}_{\alpha}\left(\mathbf{Z}\right) = T_{g} C_{\gamma} T_{h}^{*} k_{\alpha}(z) \quad (z \in \mathbf{U}) . \end{split}$$
But $\overline{V_{\alpha \in \mathbf{U}}} \{K_{\alpha}\} = \mathbf{H}^{2}, \text{ then } \mathbf{C}_{\phi_{\beta}}^{*} = T_{g} C_{\gamma} T_{h}^{*} \end{split}$

Definition (2.18) : [3]

Let T be an operator on a Hilbert space H , T is called normal operator if T $T^* = T^* T$

Theorem (2.19) : [9]

Let $\psi: U \to U$ and holomorphic on U, then C_{ψ} is normal if and only if $\psi(z) = \lambda z$ for some

 λ , $|\lambda| = 1$

Proposition(2.20) :

 C_{φ_β} is not normal composition operator .

Proof :

Since $\phi_{\beta}(z) = \frac{z}{2 + \overline{\beta}z} \neq \lambda z$, hence by (2.19) $C_{\phi_{\beta}}$ is not normal composition operator.

Definition (2.21) : [12]

Let $\psi: U \to U$ and holomorphic on U, the eigenvalue equation for the composition operator is define by $C_{\psi}f = \kappa f$ or $f \circ \psi = \kappa f$.

Theorem (2.22): [11]

Let $\psi: U \to U$ and holomorphic on U, and that fixes the point $p \in U$ and suppose that $C_{\psi}f = \kappa f$ for some non-constant $f \in H^2$ and some $\kappa \in \mathbb{C}$. Then $\kappa = (\psi'(p))^n$ for some n = 0, 1, 2, ...

Proposition(2.23) :

If
$$\beta \in U$$
, then $\left(\frac{1}{2}\right)^n$ is an eigenvalue of C_{ϕ_β} for some $n = 0, 1, 2, ...$

Proof :

Since
$$\phi_{\beta}(z) = \frac{z}{2 + \overline{\beta}z}, \phi_{\beta}'(z) = \frac{(2 + \overline{\beta}z)(1) - (\overline{\beta}z)}{(2 + \overline{\beta}z)^2} = \frac{2}{(2 + \overline{\beta}z)^2}$$
, and since ϕ_{β} fixed the point $0 \in U$,

and by (2.22) $\kappa = (\phi'_{\beta}(O))^n = (\frac{1}{2})^n$ is an eigenvalue of $C_{\phi_{\beta}}$ for some n = 0, 1, 2,

REFERENCES

- [1] Ahlfors, L.V., "Complex Analysis", Sec, Ed., McGraw-Hill Kogakusha Ltd, (1966).
- [2] Appell, M.J., Bourdon, P.S. & Thrall, J.J.," Norms of Composition Operators on the Hardy Space", Experimented Math., pp.111-117, (1996).
- [3] Berberian, S.K., " Introduction to Hilbert Space", Sec. Ed., Chelesa publishing Com., New York, N.Y., (1976).
- [4] Bourdon, P.S. & Shapiro, J.H., "Cyclic Phenomena for Composition Operators", Math. Soc., (596), 125, (1999).
- [5] Cowen ,C.C. "Linear Fraction Composition Operator on H²", Integral Equations Operator Theory ,11, pp. 151 -160, (1988).
- [6] Deddnes, J.A. "Analytic Toeplits and Composition Operators ", Con. J. Math., vol (5), pp. 859-865, (1972).
- [7] Halmos, P.R., "A Hilbert Space Problem Book ", Springer- Verlag, New York, (1982).
- [8] Radjavi ,H & Rosenthal, P.," Invariant Subspace", Springer-Verlage, Berlin, Heidelberg, Newyork, (1973).
- [9] Schwartz, H.J., "Composition Operator on H^2 ", Ph.D.thesis.Univ.of Toled, (1969).
- [10] Shapiro, J.H., " Composition operators and Classical Function Theory ", Springer- Verlage, New York, (1993).
- [11] Shapiro, J.H., " Lectures on Composition operators and Analytic Function Theory ". www.mth.mus.edu./~shapiro / pubrit / Downloads / computer / complutro . pdf .

[12] Shapiro, J.H.," Composition operators and Schroders Functional Equation ", Contemporary Math., 213, pp.213-228, (1998).

الموثر التركيبي $c_{\phi_{\beta}}$ المتولد بالدالة $c_{\phi_{\beta}}$ المتولد بالدالة $c_{\phi_{\beta}}$ المتولد بالدالة $c_{\phi_{\beta}}$ من قبل محمد حسين عقبل محمد حسين عقبل محمد حسين قسم الرياضيات كلية التربية كلية التربية جامعة القلاسية ($c_{\mu} = c_{\mu} = c_{\mu} = c_{\mu} = c_{\mu} = c_{\mu}$) المستخلص المستخلص المستخلص المستخلص المستخلص المستخلص التحليلية على U بحيث أن مى $c_{\mu} = c_{\mu} = c_{\mu}$ ($c_{\mu} = c_{\mu} = c_{\mu} = c_{\mu} = c_{\mu}$) التحليلية على U بحيث أن مى $c_{\mu} = c_{\mu} = c_{\mu}$ ($c_{\mu} = c_{\mu} = c_{\mu} = c_{\mu} = c_{\mu}$) التحليلية على U بحيث أن مى $c_{\mu} = c_{\mu} = c_{\mu}$ ($c_{\mu} = c_{\mu} = c_{\mu} = c_{\mu} = c_{\mu}$) التحليلية على U بحيث أن مى $c_{\mu} = c_{\mu} = c_{\mu}$) التحليلية على U بحيث أن مى $c_{\mu} = c_{\mu} = c_{\mu}$ ($c_{\mu} = c_{\mu} = c_{\mu} = c_{\mu} = c_{\mu}$) التحليلية على U برمز الى محدث من الدالة c_{μ} حيث نائشنا الموثر المرافق للموثر التركيبي المحتث من الدالة c_{μ} (c_{μ}) در سنا في هذا البحث الموثر التركيبي المحتث من الدالة c_{μ} حيث نائشنا الموثر المرافق للموثر التركيبي المحتث من الدالة عند النتائج المعروفة وحاولنا الحصول على نتائج مناظرة التمكن من ملاحظة كيفية تغير النتائج عنما تتغير الذالة التحليلية w.

ومن أجل جعل مهمة القارئ أكثر سهولة، عرضنا بعض النتائج المعروفة عن المؤثرات التركيبية وعرضنا براهين مفصلة وكذلك بر هنا بعض النتائج التي أعطيت بدون بر هان.