ON CENTRALIZERS ON SOME GAMMA
 RING

Rajaa C.Shaheen
Department of Mathematics, College of
Education, University of Al-Qadisiya, Al-Qadisiya, Iraq. الخلاصة (العربية: قدمنا في هنا البحث دراسة حول تطبيق جوردان المركزي على بعض الحقات

ABSTRACT

Let M be a 2-torsion free Γ-ring satisfies the condition $\boldsymbol{x} \alpha \boldsymbol{y} \beta z=\boldsymbol{x} \beta \boldsymbol{y} \alpha z$ for all $\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z} \in \boldsymbol{M}$ and $\alpha, \beta \in \Gamma$. In section one, we prove if M be a completely prime Γ-ring and $T: M \rightarrow M$ an additive mapping such that $\boldsymbol{T}(\boldsymbol{a} \alpha a)=\boldsymbol{T}(\boldsymbol{a}) \alpha a($ resp., $\boldsymbol{T}(a \alpha a)=a \alpha$ $T(a))$ holds for all $a \in M, \alpha \in \Gamma$.Then T is a left centralizer or M is commutative (res., a right centralizer or M is commutative) and so every Jordan centralizer on completely prime Γ-ring M is a centralizer. .In section two ,we prove this problem but by another way. In section three we prove that every Jordan left centralizer(resp., every Jordan right centralizer) on Γ-ring has a commutator right non-zero divisor(resp., on Γ-ring has a commutator left non-zero divisor)is a left centralizer(resp., is a right centralizer) and so we prove that every Jordan centralizer on $Г$-ring has a commutator non-zero divisor is a centralizer .

Key wards $: \Gamma$-ring, prime Γ-ring,semi-prime Γ-ring, left centralizer, Right centralizer, centralizer, Jordan centralizer.

1-INTRODUCTION

Throughout this paper,M will represent Γ-ring with center Z .In [7] B.Zalar proved that any left (resp.,right)Jordan centralizer on a 2-torsion free semi-prime ring is a left (resp.,right)Centralizer.In [3] authors prove the same question on the condition that R has a commutator right (resp., left) non- zero divisor .And J.Vukman in [6] proved that if R is2torsion free semi-prime ring and $T: R \rightarrow R$ be an additive
mapping such that $2 T\left(x^{2}\right)=T(x) x+x T(x)$ holds for all $x, y \in R$.Then T is left and right centralizer.In this paper we define Jordan centralizer on Γ-ring and we show that the existence of a non-zero Jordan centralizer Ton a 2-torsion free completely prime Γ-ring M which satisfies the condition $\boldsymbol{x} \alpha y_{\beta} z=\boldsymbol{x} \beta \boldsymbol{y} \alpha \boldsymbol{z}$ for all $\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z} \in \boldsymbol{M}$ and $\alpha, \beta \in \Gamma$ implies either T is centralizer or M is commutative Γ-ring.

Let M and $г$ be additive abelian groups, M is called a гring if for any $\boldsymbol{x}, \mathbf{y}, z \in \boldsymbol{M}$ and $\alpha, \beta \in \Gamma$,the following conditions are satisfied
(1) $x \alpha y \in M$
(2) $(x+y) \alpha z=x \alpha z+y \alpha z$
$\boldsymbol{x}(\alpha+\beta) \boldsymbol{z}=\boldsymbol{x} \alpha \boldsymbol{z}+\boldsymbol{x} \beta \boldsymbol{z}$
$x \alpha(y+z)=x \quad \alpha y+x \alpha z$
(3) $(x \alpha y) \beta z=x \quad \alpha(y \beta z)$

The notion of Γ-ring was introduced by Nobusawa[5] and generalized by Barnes[1],many properties of Г-ring were obtained by many research such as [2]

Let A, B be subsets of $a \Gamma$-ringM and $\wedge a$ subset of $Г w e$ denote $A_{\wedge} B$ the subset of M consisting of all finite sum of the form $\sum a_{i} \lambda_{i} b_{i}$ where $a_{i} \in \boldsymbol{A}, b_{i} \in \boldsymbol{B}$ and $\lambda_{i} \in \Lambda$.Aright ideal(resp.,left ideal) of a Γ-ring M is an additive subgroup I of M such that $I\ulcorner M \subset I($ resp., $M\ulcorner I \subset I)$.If I is a right and left ideal inM, then we say that I is an ideal . M is called a 2-torsion free if $2 x=0$ implies $x=0$ for all $x \in M . A \Gamma$-ringM is called prime if $a \Gamma М Г b=0$ implies $a=0$ or $b=0$ and M is called completely prime if a г $b=0$ implies $a=0$ or $b=0(a, b \in M)$ Since a г \boldsymbol{b} а гb $\subset a \Gamma M$ гb,then every completely prime Γ-ring is prime. $А$ Гring M is called semi-prime if $a\ulcorner М Г a=0$ implies $a=0$ and M is called completely semi-prime if $a \Gamma a=0$ implies $a=0(a \in M)$

Let R be a ring, an additive mapping $D: R \rightarrow R$ is called derivation if $D(x y)=D(x) y+x D(y)$ holds for all $x, y \in R . A$ left(right) centralizer of R is an additive mapping $T: R \rightarrow R$ which satisfies $\mathrm{T}(\mathrm{xy})=\mathrm{T}(\mathrm{x}) \mathrm{y}(\mathrm{T}(\mathrm{xy})=\mathrm{xT}(\mathrm{y}))$ for all $\boldsymbol{x}, \boldsymbol{y} \in \boldsymbol{R} \cdot \boldsymbol{A}$ Jordan centralizer be an additive mapping T which satisfies $T(x \circ y)=T(x) \circ y=x \circ T(y)$.

A Centralizer of R is an additive which is both left and right centralizer.An easy computation shows that every centralizer is also a Jordan centralizer.Many Papers work about the problem every Jordan centralizer be centralizer such as in[7] .In this paper , we work this problem on some kind of Γ ring.
Now ,we shall give the following definition which are basic in this paper.
Definition1.1:-Let M be a Γ-ring and let $D: M \rightarrow M$ be an additive map, D is called a Derivation if for any $a, b \in M$ and $\alpha \in \Gamma$,if the following condition satisfy
$\boldsymbol{D}(\boldsymbol{a} \alpha \boldsymbol{b})=\boldsymbol{D}(\boldsymbol{a}) \alpha b+\boldsymbol{a} \alpha \boldsymbol{D}(b)$
Definition1.2:- Let M be a г-ring and let $T: M \rightarrow M$ be an additive map ,T is called Left centralizer of M, if for any a,b $\in M$ and $\alpha \in \Gamma$, the following condition satisfy $T(a \alpha b)=T(a) \alpha b$, Right centralizer of M,if for any $a, b \in M$ and $\alpha \in \Gamma$, the following condition satisfy
$\boldsymbol{T}(\boldsymbol{a} \alpha b)=\boldsymbol{a} \alpha \boldsymbol{T}(b)$,
Jordan left centralizer if for all $a_{\in M}$ and $\alpha \in \Gamma$, the following condition satisfy
$\boldsymbol{T}(\boldsymbol{a} \alpha a)=\boldsymbol{T}(\boldsymbol{a}) \alpha a$
Jordan Right centralizer if for all $a \in M$ and $\alpha \in \Gamma$, the
following condition satisfy
$\boldsymbol{T}(\boldsymbol{a} \alpha a)=a \alpha T(a)$
Jordan centralizer of M, if for any $a, b \in M$ and $\alpha \in \Gamma$, the following condition satisfy $T(a \alpha b+b \alpha a)=T(a) \alpha b+b \alpha T(a)=a$ $\alpha \boldsymbol{T}(\boldsymbol{b})+\boldsymbol{T}(\boldsymbol{b}) \alpha \boldsymbol{a}$

A centralizer of M is an additive mapping which is both left and right centralizer.An easy computation shows that every centralizer is also a Jordan centralizer but the converse is not true .In this paper we prove this problem when M is 2-torsion free completely prime Γ-ring.Now we shall prove the following Lemmas which are necessarily to prove our main result in this paper.
Lemma 1.3:-Let M be a 2-torsion free Γ-ring and let $T: M \rightarrow$ M be an additive mapping which satisfies $T(a \alpha a)=T(a)$
$\alpha a,($ resp., $T(a \alpha a)=a \alpha T(a))$ for all $a \in M$ and $\alpha \in \Gamma$, then the following statement holds for all a,b,c $\in M$ and $\alpha, \beta \in \Gamma$,
(i) $\quad \boldsymbol{T}(a \alpha b+b \alpha a)=T(a) \alpha b+T(b) \alpha a$ $($ resp., $T(a \alpha b+b \alpha a)=a \alpha T(b)+b \alpha T(a))$
(ii) Especially if M is 2-torsion free and $a a_{\beta} c=a \beta b \alpha c$ for all a,b,c $\in M$ and $\alpha, \beta \in \Gamma$ then
$\boldsymbol{T}\left(a_{\alpha} b_{\beta} a\right)=\boldsymbol{T}(\boldsymbol{a}) \alpha_{\beta} \boldsymbol{a}\left(\right.$ resp., $\boldsymbol{T}\left(\boldsymbol{a} \alpha b_{\beta} a\right)=a \alpha_{\beta}$
$T(a))$
(iii) $\boldsymbol{T}\left(\boldsymbol{a} \alpha \boldsymbol{b}_{\beta} \boldsymbol{c}+\boldsymbol{c} \alpha \boldsymbol{b}_{\beta} \boldsymbol{a}\right)=\boldsymbol{T}(\boldsymbol{a}) \alpha b \beta \boldsymbol{c}+\boldsymbol{T}(\boldsymbol{c}) \alpha{ }_{\beta}{ }_{\beta}$ a. (resp., $\boldsymbol{T}\left(\boldsymbol{a}_{\alpha} \boldsymbol{b}_{\beta} \boldsymbol{c}+\boldsymbol{c} \alpha \boldsymbol{b}_{\beta} \boldsymbol{a}\right)=\boldsymbol{a} \alpha_{\beta} \boldsymbol{T}(\boldsymbol{c})+\boldsymbol{c} \alpha_{\beta} \boldsymbol{b} \boldsymbol{T}(\boldsymbol{a})$

Proof:-(i) Since $T(a \alpha a)=T(a) \quad \alpha a$ for all $a \in M$ and $\alpha \in Г, \ldots . . .$. (1)
Replace a by $a+b$ in (1), we get

$$
\begin{equation*}
\boldsymbol{T}(a \alpha b+b \alpha a)=T(a) \alpha b+T(b) \tag{2}
\end{equation*}
$$

α a.
(ii) by replacing b by $\boldsymbol{a} \beta b+b \quad \beta a, \beta \in \Gamma$
$\boldsymbol{W}=\boldsymbol{T}(\boldsymbol{a} \alpha(\boldsymbol{a} \beta b+\boldsymbol{b} \beta \boldsymbol{a})+(\boldsymbol{a} \beta b+\boldsymbol{b} \beta \boldsymbol{a}) \alpha a)$
$=\boldsymbol{T}(\boldsymbol{a}) \alpha(\boldsymbol{a} \beta \boldsymbol{b}+\boldsymbol{b} \beta \boldsymbol{a})+\boldsymbol{T}(\boldsymbol{a} \beta \boldsymbol{b}+\boldsymbol{b} \beta \boldsymbol{a}) \alpha \boldsymbol{a}$
$=\boldsymbol{T}(\boldsymbol{a}) \alpha(\boldsymbol{a} \beta \boldsymbol{b})+\boldsymbol{T}(\boldsymbol{a}) \alpha(\boldsymbol{b} \beta \boldsymbol{a})+(\boldsymbol{T}(\boldsymbol{a}) \beta \boldsymbol{b}+\boldsymbol{T}(\boldsymbol{b}) \beta \boldsymbol{a}) \alpha \boldsymbol{a}$
$=\boldsymbol{T}(\boldsymbol{a}) \alpha(\boldsymbol{a} \beta \boldsymbol{b})+\boldsymbol{T}(\boldsymbol{a}) \alpha(b \beta a)+\boldsymbol{T}(\boldsymbol{a}) \beta \boldsymbol{b} \alpha a+\boldsymbol{T}(\boldsymbol{b}) \beta \boldsymbol{a} \alpha a$
Since $\boldsymbol{a} \alpha \boldsymbol{b}_{\beta} \boldsymbol{c}=\boldsymbol{a} \beta \boldsymbol{b} \boldsymbol{c}$, then
$\boldsymbol{W}=\boldsymbol{T}(\boldsymbol{a}) \alpha(\boldsymbol{a} \beta \boldsymbol{b})+\mathbf{2 T}(\boldsymbol{a}) \alpha(\boldsymbol{b} \beta \boldsymbol{a})+\boldsymbol{T}(\boldsymbol{b}) \beta \boldsymbol{a} \alpha \boldsymbol{a}$
On the other hand
$\boldsymbol{W}=\boldsymbol{T}(\boldsymbol{a} \alpha(\boldsymbol{a} \beta \boldsymbol{b}+\boldsymbol{b} \beta \boldsymbol{a})+(\boldsymbol{a} \beta \boldsymbol{b}+\boldsymbol{b} \beta \boldsymbol{a}) \alpha \boldsymbol{a})$
$=\boldsymbol{T}\left(\boldsymbol{a} \alpha(\boldsymbol{a} \beta \boldsymbol{b})+\boldsymbol{a} \alpha(\boldsymbol{b} \beta \boldsymbol{a})+\left(\boldsymbol{a}_{\beta} \boldsymbol{b}\right) \alpha \boldsymbol{a}+\left(\boldsymbol{b}_{\beta} \boldsymbol{a}\right) \alpha \boldsymbol{a}\right.$

$$
=\left(\boldsymbol{a} \alpha a a_{\beta} \boldsymbol{b}+\boldsymbol{b} \beta \boldsymbol{a} \alpha \boldsymbol{a}\right)+\mathbf{2 T}\left(\boldsymbol{a} \alpha \boldsymbol{b}_{\beta} \boldsymbol{a}\right)
$$

By comparing these two expression of W, we get
$2 \boldsymbol{T}\left(\boldsymbol{a} \alpha \boldsymbol{b}_{\beta} \boldsymbol{a}\right)=\mathbf{2 T}(\boldsymbol{a}) \alpha b \beta a$
Since M is 2-torsion free ,then
$\boldsymbol{T}\left(a_{\alpha} b_{\beta} a\right)=T(a) \alpha b \quad \beta a$.
(iii)In (3) replace a by a+c,to get
$\boldsymbol{T}\left(\boldsymbol{a} \alpha \boldsymbol{b}_{\beta} \boldsymbol{c}+\boldsymbol{c} \alpha \boldsymbol{b} \beta \boldsymbol{a}\right)=\boldsymbol{T}(\boldsymbol{a}) \alpha \boldsymbol{b} \beta \boldsymbol{c}+\boldsymbol{T}(\boldsymbol{c}) \alpha b \beta \boldsymbol{a}$.
Theorem 1.4:- Let M be a 2-torsion free completely prime Γ ring which satisfy the condition $x_{\alpha} y_{\beta} z=x_{\beta} y_{\alpha} z$ for all
$\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z} \in \boldsymbol{M}, \alpha, \beta \in \Gamma$, and let $\boldsymbol{T}: M \rightarrow M$ be an additive mapping which satisfies $T(a \alpha a)=T(a) \alpha a$,for all $a \in M$ and $\alpha \in \Gamma$, then $T(a \alpha b)=T(a) \alpha b$, for all $a, b \in M$ and $\alpha \in \Gamma$ or M is
commutative Γ-ring.
Proof:-By [Lemma 1.3,iii], we have
$\boldsymbol{T}\left(\boldsymbol{a} \alpha \boldsymbol{b}_{\beta} \boldsymbol{c}+\boldsymbol{c} \alpha \boldsymbol{b}_{\beta} \boldsymbol{a}\right)=\boldsymbol{T}(\boldsymbol{a}) \alpha \boldsymbol{b} \beta \boldsymbol{c}+\boldsymbol{T}(\boldsymbol{c}) \alpha \boldsymbol{b}_{\beta} \boldsymbol{a}$
Replace c by a α b
$\boldsymbol{W}=\boldsymbol{T}\left(\boldsymbol{a} \alpha \boldsymbol{b}_{\beta}(\boldsymbol{a} \alpha \boldsymbol{b})+(\boldsymbol{a} \alpha \boldsymbol{b}) \alpha \boldsymbol{b}_{\beta} \boldsymbol{a}\right)$

$$
=\boldsymbol{T}(\boldsymbol{a}) \alpha \boldsymbol{b}_{\beta} \boldsymbol{a} \alpha \boldsymbol{b}+\boldsymbol{T}(\boldsymbol{a} \alpha \boldsymbol{b}) \alpha b_{\beta} \boldsymbol{a}
$$

On the other hand
$\boldsymbol{W}=\boldsymbol{T}((\boldsymbol{a} \alpha \boldsymbol{b}) \beta(\boldsymbol{a} \alpha \boldsymbol{b})+\boldsymbol{a} \alpha(\boldsymbol{b} \alpha \boldsymbol{b}) \beta \boldsymbol{a})$
$=\boldsymbol{T}(\boldsymbol{a} \alpha \boldsymbol{b}) \beta \boldsymbol{a} \alpha \boldsymbol{b}+\boldsymbol{T}(\boldsymbol{a}) \alpha \boldsymbol{b}_{\alpha} b \beta a$
By comparing these two expression of W, we get
$\boldsymbol{T}(\boldsymbol{a} \alpha \boldsymbol{b}) \beta(\boldsymbol{a} \alpha \boldsymbol{b}-\boldsymbol{b} \alpha \boldsymbol{a})+\boldsymbol{T}(\boldsymbol{a}) \alpha \boldsymbol{b} \beta(\boldsymbol{b} \alpha \boldsymbol{a}-\boldsymbol{a} \alpha \boldsymbol{b})=\mathbf{0}$
$\boldsymbol{T}(\boldsymbol{a} \alpha \boldsymbol{b}) \beta(\boldsymbol{a} \alpha \boldsymbol{b}-\boldsymbol{b} \alpha \boldsymbol{a})-\boldsymbol{T}(\boldsymbol{a}) \alpha \boldsymbol{b} \quad(\boldsymbol{a} \alpha \boldsymbol{b}-\boldsymbol{b} \alpha \boldsymbol{a})=\mathbf{0}$
(T(a, $\boldsymbol{C})-\boldsymbol{T}(\boldsymbol{a}) \alpha \boldsymbol{b}) \beta(\boldsymbol{a} \alpha \boldsymbol{b}-\boldsymbol{b} \alpha \boldsymbol{a})=\mathbf{0}$
Since M is completely prime Γ-ring, then
either $\boldsymbol{T}(\boldsymbol{a} \alpha \boldsymbol{b})-\boldsymbol{T}(\boldsymbol{a}) \alpha \boldsymbol{b}=0$ or $\boldsymbol{a} \alpha b-b \alpha a=0$
if $\boldsymbol{T}(\boldsymbol{a} \alpha \boldsymbol{b})-\boldsymbol{T}(\boldsymbol{a}) \alpha \boldsymbol{b}=0$ then $\mathbf{T}(\boldsymbol{a} \alpha b)=\boldsymbol{T}(\boldsymbol{a}) \alpha b$
and if $a \alpha b-b \alpha a=0$ for all $a, b \in M$ and $\alpha \in \Gamma$,then M is commutative Γ-ring ${ }^{\text {a }}$
Theorem 1.5:- Let M be a 2-torsion free completely prime Γ ring which satisfy the condition $x \alpha y \beta z=x \beta y \alpha z$ for all $\boldsymbol{x}, \mathbf{y}, \boldsymbol{z} \in \boldsymbol{M}, \alpha, \beta \in \Gamma$, and and let $T: M \rightarrow M$ be an additive mapping which satisfies $T(a \alpha a)=a \alpha T(a)$ for all $a \in M$ and $\alpha \in \Gamma$,then $\boldsymbol{T}(\boldsymbol{a} \alpha b)=a \alpha \boldsymbol{T}(b)$ for all $a, b \in M$ and $\alpha \in \Gamma$ or M is commutative Γ-ring.
Proof:- From[Lemma 1.3,iii],we have for all a,b,c $\in M$ and α, $\beta \in \Gamma$,
$\boldsymbol{T}(\boldsymbol{a} \alpha \boldsymbol{b} \boldsymbol{c}+\boldsymbol{c} \alpha \boldsymbol{b} \beta \boldsymbol{a})=\boldsymbol{a} \alpha \boldsymbol{b} \boldsymbol{T}(\boldsymbol{c})+\boldsymbol{c} \alpha \boldsymbol{b} \beta^{\boldsymbol{T}}(\boldsymbol{a})$
In (6) replace c by b a, then

$$
\begin{align*}
\boldsymbol{W} & =\boldsymbol{T}(\boldsymbol{a} \alpha \boldsymbol{b} \beta(\boldsymbol{b} \alpha \boldsymbol{a})+(\boldsymbol{b} \alpha \boldsymbol{a}) \alpha \boldsymbol{b} \boldsymbol{a}) \tag{6}\\
& =\boldsymbol{a} \alpha \boldsymbol{b} \beta^{\boldsymbol{T}}(\boldsymbol{b} \alpha \boldsymbol{a})+\boldsymbol{b} \alpha \boldsymbol{a} \beta \boldsymbol{b} \alpha \boldsymbol{T}(\boldsymbol{a})
\end{align*}
$$

on the other hand

$$
\begin{aligned}
\boldsymbol{W} & =\boldsymbol{T}(\boldsymbol{a} \alpha(\boldsymbol{b} \beta \boldsymbol{b}) \alpha \boldsymbol{a}+(\boldsymbol{b} \alpha \boldsymbol{a}) \alpha(\boldsymbol{b} \beta \boldsymbol{a})) \\
& =\boldsymbol{a} \alpha \boldsymbol{b} \beta^{2} \boldsymbol{b} \alpha \boldsymbol{T}(\boldsymbol{a})+\boldsymbol{b} \alpha \boldsymbol{a} \beta \boldsymbol{T}(\boldsymbol{b} \alpha \boldsymbol{a})
\end{aligned}
$$

by comparing these two expression of W, we get
$\left.\boldsymbol{a} \alpha \boldsymbol{b}_{\beta}\left(\boldsymbol{T}\left(\boldsymbol{b}_{\alpha} \boldsymbol{a}\right)-\boldsymbol{b}_{\alpha} \boldsymbol{T}(\boldsymbol{a})\right)-\boldsymbol{b}_{\alpha} a_{\beta(\boldsymbol{T}}\left(\boldsymbol{b}_{\alpha} a\right)-\boldsymbol{b}_{\alpha} \boldsymbol{T}(\boldsymbol{a})\right)=\mathbf{0}$
$(\boldsymbol{a} \alpha \boldsymbol{b}-\boldsymbol{b} \alpha \boldsymbol{a}) \beta(\boldsymbol{T}(\boldsymbol{b} \alpha \boldsymbol{a})-$
$b \alpha T(a))=0$.
since M is completely prime Γ-ring,then
either $(\boldsymbol{T}(b \alpha a)-b \alpha T(a))=0 \Rightarrow T(b \alpha a)=b \alpha T(a)$
or $a \alpha b-b \alpha a=0 \Rightarrow a \alpha b=b \alpha a \Rightarrow M$ is commutative Г-ring \square
Corrolary 1.6:- Every Jordan centralizer of 2-torsion free completely prime Γ-ring M which satisfy the condition $\boldsymbol{x} \alpha \boldsymbol{y} \beta z=\boldsymbol{x}_{\beta} \boldsymbol{y} \alpha z$ for all $\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z} \in \boldsymbol{M}, \alpha, \beta \in \Gamma$, is a centralizer on \boldsymbol{M}.

2-The second result

In this section we again divided the proof in few lemmas.
Lemma2.1:- Let M be a semi-prime Γ-ring and D a derivation of M and $a \in M$ some fixed element.
(i) $\boldsymbol{D}(\boldsymbol{x}) \alpha \boldsymbol{D}(\boldsymbol{y})=0$ for all $x, y \in M, \alpha \in \Gamma$ implies that $\boldsymbol{D}=0$ on \boldsymbol{M}
(ii) $a \alpha x-x \alpha a \in Z$, for all $x \in M, \alpha \in \Gamma$ implies that $a \in Z$.

Proof:-
(i) since $D(x) \alpha D(y)=0$ for all $x, y \in M, \alpha \in \Gamma$.
and $D(y \alpha x)=D(y) \alpha x+y \alpha D(x)$
and so $D(x) \alpha D(y \alpha x)=0$,then
$\boldsymbol{D}(\boldsymbol{x}) \alpha \boldsymbol{D}(\boldsymbol{y}) \alpha \boldsymbol{x}+\boldsymbol{D}(\boldsymbol{x}) \alpha \boldsymbol{y} \alpha \boldsymbol{D}(\boldsymbol{x})=\mathbf{0}$
since $D(x) \propto D(y)=0$, then
$D(x) \alpha y \alpha D(x)=0$ for all $x, y \in M, \alpha \in \Gamma$
And since M be a semi-prime Γ-ring, then
$D(x)=0$ for all $x \in M$.
(ii)define $D(x)=a \alpha x-x \propto a$
it is easy to see that D is derivation on M
since $D(x) \in Z$ for all $x \in M$, we have
$D(y) \alpha x=x \propto D(y)$
Replace y by $y \alpha z$ in (8)
$\boldsymbol{D}(\boldsymbol{y} \alpha z) \alpha \boldsymbol{x}=\boldsymbol{x} \alpha \boldsymbol{D}(\boldsymbol{y} \alpha \boldsymbol{z})$
$\boldsymbol{D}(\boldsymbol{y}) \alpha \boldsymbol{z} \alpha \boldsymbol{x}+\boldsymbol{y} \alpha \boldsymbol{D}(\boldsymbol{z}) \alpha \boldsymbol{x}=\boldsymbol{x} \alpha \boldsymbol{D}(\boldsymbol{y}) \alpha \boldsymbol{z}+\boldsymbol{x} \alpha \boldsymbol{y} \alpha \boldsymbol{D}(z)$
$\boldsymbol{D}(\boldsymbol{y}) \alpha(\boldsymbol{z} \alpha \boldsymbol{x}-\boldsymbol{x} \alpha z)=\boldsymbol{D}(z) \alpha(\boldsymbol{x} \alpha \boldsymbol{y}-\boldsymbol{y} \alpha \boldsymbol{x})$
Now, take $z=a$, then it is easy to see that $D(a)=0$, so
$\boldsymbol{D}(\boldsymbol{y}) \alpha(\boldsymbol{a} \alpha \boldsymbol{x}-\boldsymbol{x} \alpha \boldsymbol{a})=\mathbf{0}$
$D(y) \alpha D(x)=0$, then from (i), we get $D=0$ and hence $a \in Z \square$

Lemma 2.2:- Let M be a semi-prime Γ-ring and $a \in M$ some fixed element.
If $\boldsymbol{T}(x)=a \alpha x+x \propto a$, for all $x \in M, \alpha \in \Gamma$ is a Jordan
centralizer, then $a \in Z$
Proof:-from [definition 1.2]
$T(x \alpha y+y \alpha x)=T(x) \alpha y+y \alpha T(x)$
Gives us
$T(x \alpha y)+T(y \alpha x)=T(x) \alpha y+y \alpha T(x)$
$\boldsymbol{a} \alpha \boldsymbol{x} \alpha \boldsymbol{y}+\boldsymbol{a} \alpha \boldsymbol{y} \alpha \boldsymbol{x}+\boldsymbol{x} \alpha \boldsymbol{y} \alpha \boldsymbol{a}+\boldsymbol{y} \alpha \boldsymbol{x} \alpha \boldsymbol{a}=$
$=(a \propto x+x \propto a) \alpha y+y \alpha(a \alpha x+x \alpha a)$
$=a \alpha x \alpha y+x \alpha a \alpha y+y \alpha a \alpha x+y \alpha x \alpha a$

Then

$\boldsymbol{a} \alpha \boldsymbol{y} \alpha x-x \alpha a \alpha y+x \alpha y \alpha a-y \alpha a \alpha x=0$
(a $\alpha y-y \alpha a) \alpha x-x \alpha(a \alpha y-y \alpha a)=0$ for all $x, y \in M, \alpha \in \Gamma$
Then a $\alpha y-y \alpha a \in Z$ and so by [Lemma 2.1,ii], we get $a \in Z$.
Lemma 2.3:- Let M be a semi-prime Γ-ring, then every Jordan
centralizers of M maps from Z into Z.
Proof:-take any $c \in Z$ and denote $a=t(c)$
$\mathbf{2 T}(\boldsymbol{c} \alpha \boldsymbol{x})=\boldsymbol{T}(\boldsymbol{c} \alpha \boldsymbol{x}+\boldsymbol{x} \alpha \boldsymbol{c})$
$=\boldsymbol{T}(c) \alpha x+x \alpha T(c)=a \alpha x+x \alpha a$
Then $S(x)=2 T(c \alpha x)$ is also a Jordan centralizer ,by[lemma
2.2], we get $a \in Z$.

Then $T(c) \in Z 0$
Lemma 2.4:- Let M be a semi-prime $\Gamma-$ ring and $a, b \in M$ two fixed elements.
If $a \alpha x=x \quad b$ for all $x \in M, \alpha \in \Gamma$ then $a=b \in Z$.
Proof:-Since $x \alpha b=a \alpha x$
Replace x by $x \alpha y$
$\boldsymbol{x} \alpha \boldsymbol{y} \alpha b=a \alpha x \quad y$
$x \alpha y \alpha b=x \alpha b \alpha y$
$\boldsymbol{x} \alpha(\boldsymbol{y} \alpha b-b \alpha y)=\mathbf{0}$, and so
$(\boldsymbol{y} \alpha b-b \alpha y) \boldsymbol{x} \alpha(\boldsymbol{y} \alpha b-b \alpha y)=0$
Since M is semi-prime Γ-ring, then
$(y \alpha b-b \alpha y)=0$
$y \alpha b=b \alpha y$ for all $y \in M$, then $b \in Z$
since $a \alpha x=x \alpha b=b \alpha x$
it is easy to see that
(a-b) $\alpha x=0$ for all $x \in M$
and(a-b) $\alpha \boldsymbol{x} \alpha(a-b)=0$ for all $x \in M$
again since M is semi-prime Γ-ring then $a-b=0 \Rightarrow a=b \in Z \square$
Proposition 2.5:-everyJordan centeralizerof 2-torsion free completely prime Γ-ringM is a centralizer.
Proof:-Let T be a Jordan centeralizer,i.e
$\boldsymbol{T}(\boldsymbol{x} \alpha \boldsymbol{y}+\boldsymbol{y} \alpha \boldsymbol{x})=\boldsymbol{T}(\boldsymbol{x}) \alpha \boldsymbol{y}+\boldsymbol{y} \alpha \boldsymbol{T}(x)=\boldsymbol{x} \alpha \boldsymbol{T}(\boldsymbol{y})+\boldsymbol{T}(\boldsymbol{y}) \alpha x$
If we replace y by $x \alpha y+y \alpha x$, then the left side
$\boldsymbol{W}=\boldsymbol{T}(\boldsymbol{x} \alpha(\boldsymbol{x} \alpha \boldsymbol{y}+\boldsymbol{y} \alpha \boldsymbol{x})+(\boldsymbol{x} \alpha \boldsymbol{y}+\boldsymbol{y} \alpha \boldsymbol{x}) \alpha \boldsymbol{x})$
$=T(x) \alpha(x \alpha y+y \alpha x)+(x \alpha y+y \alpha x) \alpha T(x)$
$=\boldsymbol{T}(\boldsymbol{x}) \alpha(\boldsymbol{x} \alpha \boldsymbol{y})+\boldsymbol{T}(\boldsymbol{x}) \alpha \boldsymbol{y} \alpha \boldsymbol{x}+\boldsymbol{x} \alpha \boldsymbol{y} \alpha \boldsymbol{T}(\boldsymbol{x})+\boldsymbol{y} \alpha \boldsymbol{x} \alpha \boldsymbol{T}(\boldsymbol{x})$
and the right side
$W=x \alpha T(x \alpha y+y \alpha x)+\boldsymbol{T}(x \alpha y+y \alpha x) \alpha x$
$=x \alpha T(x) \alpha y+x \alpha y \alpha T(x)+T(x) \alpha y \alpha x+y \alpha T(x) \alpha x$
Then
$T(x) \alpha x \alpha y+y \alpha x \alpha T(x)-x \alpha T(x) \alpha y-y \alpha T(x) \alpha x=0$
(T(x) $\alpha \boldsymbol{x}-\boldsymbol{x} \alpha T(x)) \alpha y+y \alpha(x \alpha T(x)-T(x) \alpha x)=0$
Then
$(T(x) \alpha x-x \alpha T(x)) \alpha y=y \alpha(T(x) \alpha x-x \alpha T(x))$ for all x, y
$\in \boldsymbol{M}, \alpha \in \Gamma$.
And so (T(x) $\alpha \boldsymbol{x}-\boldsymbol{x} \alpha T(x)) \in \boldsymbol{Z}$
then we must prove that
$\boldsymbol{T}(\boldsymbol{x}) \alpha \boldsymbol{x}-\boldsymbol{x} \alpha \boldsymbol{T}(\boldsymbol{x})=\mathbf{0}$
Take any $c \in Z$

$$
\begin{aligned}
2 T(c \alpha x) & =T(c \alpha x+x \alpha c) \\
& =T(c) \alpha x+x \alpha T(c) \\
& =2 T(x) \alpha c
\end{aligned}
$$

Using[Lemma 2.3]and since M is 2-torsion free Γ - ring
$\boldsymbol{T}(\boldsymbol{c} \alpha \boldsymbol{x})=\boldsymbol{T}(\boldsymbol{x}) \alpha \boldsymbol{c}=\boldsymbol{T}(\boldsymbol{c}) \alpha \boldsymbol{x}$
($\boldsymbol{T}(x) \alpha x-x \alpha T(x)) \alpha c=T(x) \alpha x \alpha c-x \alpha T(x) \alpha c$

$$
=\boldsymbol{T}(\boldsymbol{c}) \alpha \boldsymbol{x} \alpha \boldsymbol{x}-\boldsymbol{x} \alpha \boldsymbol{T}(\boldsymbol{c}) \alpha \boldsymbol{x}=\mathbf{0}
$$

then($T(x) \alpha x-x \alpha T(x)) \alpha c \alpha(T(x) \alpha x-x \alpha T(x))=0$
since M is semi-prime Γ - ring, thenT(x) $\alpha x-x \alpha T(x)=0$
$\mathbf{2 T}(x \alpha x)=\boldsymbol{T}(x \alpha x+x \alpha x)=T(x) \alpha x+x \alpha T(x)$

$$
=2 T(x) \alpha x=2 x \alpha T(x)
$$

Since M is 2-torsion free, then
$\boldsymbol{T}(\boldsymbol{x} \alpha x)=T(x) \alpha x=x \alpha T(x)$

And so by [Theorem 1.4,Theorem1.5], we get the result.
3-JORDAN CENTRALIZERS ON SOME GAMMA RING
Theorem 3.1:- Let M be a 2-torsion free Γ-ring which satisfy the condition $x \alpha y \beta z=x \beta y \alpha z$ for all $x, y, z \in M, \alpha, \beta \in \Gamma$ and has a commutator right non-zero divisor and let $T: M \rightarrow M$ be an additive mapping which satisfies
$\boldsymbol{T}(\boldsymbol{a} \alpha a)=\boldsymbol{T}(a) \alpha$ afor all $a \in M$ and $\alpha \in \Gamma$, then $T(a \alpha b)=T(a)$ α b for all $\boldsymbol{a}, \boldsymbol{b} \in \boldsymbol{M}$ and $\alpha \in \Gamma$.
Proof:- from (5), we have
$(\boldsymbol{T}(\boldsymbol{a} \alpha \boldsymbol{b})-\boldsymbol{T}(\boldsymbol{a}) \alpha \boldsymbol{b}) \beta(\boldsymbol{a} \alpha \boldsymbol{b}-\boldsymbol{b} \alpha \boldsymbol{a})=\mathbf{0}$
if we suppose that
$\delta(a, b)=T(a \alpha b)-\boldsymbol{T}(a) \alpha b$ and $[a, b]=a \alpha b-b \alpha a$
then $\delta(a, b) \beta[a, b]=0$ for all $a, b \in M$ and $\alpha, \beta \in \Gamma$
Since M has a commutator right non-zero divisor ,then
$\exists x, y \in M, \alpha \in \Gamma$ such that if for every $c \in M, \beta \in \Gamma$
$c_{\beta}[x, y]=0 \Rightarrow c=0$
by (9), we have $\delta(x, y) \beta[x, y]=0$ and so
$\delta(x, y)=0$.
replace a by $a+x$
$\delta(a+x, b) \beta[a+x, b]=0$ and so by (9) and (10)
$\boldsymbol{\delta}(\boldsymbol{x}, \boldsymbol{b}) \beta[\boldsymbol{a}, \boldsymbol{b}]+\boldsymbol{\delta}(\boldsymbol{a}, \boldsymbol{b}) \beta[\boldsymbol{x}, \boldsymbol{b}]=\mathbf{0} \ldots$
Now replace b by $b+y$
$\boldsymbol{\delta}(\boldsymbol{x}, \boldsymbol{b}+\boldsymbol{y}) \beta[\boldsymbol{a}, \boldsymbol{b}+\boldsymbol{y}]+\boldsymbol{\delta}(\boldsymbol{a}, \boldsymbol{b}+\boldsymbol{y}) \beta[\boldsymbol{x}, \boldsymbol{b}+\boldsymbol{y}]=\mathbf{0}$
and so by (10) and (11), we get
$\delta(x, b) \beta[a, y]+\delta(a, y) \beta[x, b]+\delta(a, b) \beta[x, y]+\delta(a, y) \beta[x, y]=0$
$\delta(a, b) \beta[x, y]+\delta(a, y) \beta[x, y]=0$
by (11),we get
$\delta(a, b) \beta[x, y]-\delta(x, y) \beta[a, y]=0$
then
$\delta(a, b) \beta[x, y]=0$, and so $\delta(a, b)=0$ for all $a, b \in M$ and $\alpha \in \Gamma$
$T(a \alpha b)=T(a) \alpha b \Rightarrow T$ is left centralizer of M.
Theorem 3.2:- Let M be a 2-torsion free Γ-ring which satisfy the condition $x \alpha y \beta z=x \beta y \alpha$ for all $x, y, z \in M, \alpha, \beta \in \Gamma$ and has a commutator left non-zero divisor and let $T: M \rightarrow M$ be an additive mapping which satisfies
$T(a \alpha a)=a \alpha T(a)$ for all $a \in M$ and $\alpha \in \Gamma$, then $T(a \alpha b)=a \alpha$ T(b) for all a,b $\in M$ and $\alpha \in \Gamma$.
Proof:- From[Lemma 1.3,iii], we have
$\boldsymbol{T}(\boldsymbol{a} \alpha \boldsymbol{b} \beta \boldsymbol{c}+\boldsymbol{c} \alpha \boldsymbol{b} \boldsymbol{a})=\boldsymbol{a} \alpha \boldsymbol{b} \boldsymbol{T}(\boldsymbol{c})+\boldsymbol{c} \alpha \boldsymbol{b}$
$\beta T(a)$
In (12) replace c by b α a,then
$\boldsymbol{W}=\boldsymbol{T}(\boldsymbol{a} \alpha \boldsymbol{b} \beta(\boldsymbol{b} \alpha \boldsymbol{a})+(\boldsymbol{b} \alpha \boldsymbol{a}) \alpha \boldsymbol{b} \boldsymbol{a})$
$=\boldsymbol{a} \alpha \boldsymbol{b}_{\beta} \boldsymbol{T}(\boldsymbol{b} \alpha \boldsymbol{a})+\boldsymbol{b} \alpha \boldsymbol{a} \beta \boldsymbol{b} \alpha \boldsymbol{T}(\boldsymbol{a})$
on the other hand
$\boldsymbol{W}=\boldsymbol{T}(\boldsymbol{a} \alpha(\boldsymbol{b} \beta \boldsymbol{b}) \alpha \boldsymbol{a}+(\boldsymbol{b} \alpha \boldsymbol{a}) \alpha(\boldsymbol{b} \beta \boldsymbol{a}))$
$=\boldsymbol{a} \alpha \boldsymbol{b} \boldsymbol{b}^{2} \boldsymbol{T}(\boldsymbol{a})+\boldsymbol{b} \alpha \boldsymbol{a} \beta \boldsymbol{T}(\boldsymbol{b} \alpha \boldsymbol{a})$
by comparing these two expression of W, we get
$\left.\boldsymbol{a} \alpha \boldsymbol{b}_{\beta}\left(\boldsymbol{T}\left(\boldsymbol{b}_{\alpha} \boldsymbol{a}\right)-\boldsymbol{b}_{\alpha} \boldsymbol{T}(\boldsymbol{a})\right)-\boldsymbol{b}_{\alpha} a_{\beta(\boldsymbol{T}}\left(\boldsymbol{b}_{\alpha} a\right)-\boldsymbol{b}_{\alpha} \boldsymbol{T}(\boldsymbol{a})\right)=\mathbf{0}$
then if we suppose $B(b, a)=(T(b \alpha a)-b \alpha T(a))$
$[a, b] \beta B(b, a)=[a, b] \beta B(a, b)=0$ for all $a, b \in M, \alpha$,
$\beta \in \Gamma$ (13)

Since M has a commutator left non-zero divisor then $\exists x, y \in M$, $\alpha \in \Gamma$ such that if for every $c \in M, \beta \in \Gamma,[x, y] \beta c=0 \Rightarrow c=0$
then by (13),we have
$[x, y] \beta B(x, y)=0 \Rightarrow \boldsymbol{B}(x, y)=0$.
in (13) replace a by $a+x$
$[a+x, b] \beta B(a+x, b)=0$
then by (13)
$[x, y] \beta \boldsymbol{B}(\boldsymbol{a}, \boldsymbol{b})+[\boldsymbol{a}, \boldsymbol{b}] \beta \boldsymbol{B}(\boldsymbol{x}, \boldsymbol{b})=\mathbf{0}$.
Now replace b by $b+y$
$[x, b+y] \beta B(a, b+y)+[a, b+y] \beta B(x, b+y)=0$
then by using (14) and (15), we get
$[x, y] \beta B(a, b)=0$
and since $[x, y]$ is a commutator left non-zero divisor then
$B(a, b)=0 \Rightarrow T(a \alpha b)=a \alpha T(b)$ which is mean that T is right centralizer
Corrolary3.7:- Let M be a 2-torsion free Γ-ring which satisfy the condition $x \alpha y \beta z=x \beta y \alpha z$ for all $x, y, z \in M, \alpha, \beta \in \Gamma$, has a commutator non-zero divisor and let $T: M \rightarrow M$ be a Jordan centralizer then Tis centralizer

Acknowledgment:-the authors grateful to the referee for several suggestions that helped to improved the final version of this paper and especially Prof.Haetinger .

References

[1]W.E.Barnes"On the Γ-ring of
Nabusawa",PacificJ.Math.,18(1966),411-422.
[2]Y.Ceven,"Jordan left derivations on completely prime Gamma rings",Fenbilimleri Dergisi(2002)cilt 23say12.
[3]W.Cortes and C.Haetinger"On Lie ideal and Jordan left centralizers of 2-torsion free rings",URL:http://ensino.univates.br/~Chaet.
[4]I.N.Herstein"Topics in ring theory "University of Chicago press,1969.
[5]N. Nabusawa"On a generalization of the ring theory",OsakaJ.Math.,1(1964).
[6] J.Vukam"An identity related to centralizers in semi-prime rings", Comment .Math.Univ.Carolinae,40,3(1999)447-456.
[7]B.Zalar"On centralizers of semi-prime rings"
Comment.Math.Univ.Carolinae 32(1991)609-614.

