Principally Quasi Ker-Injective Modules

By

Mazin Omran Kereem

Department of Mathematics

College of Education

Al-Qadisiyah University

E-mail: mazin792002@yahoo.com

Abstract:

In this paper the concepts of principally quasi-injective modules and pointwise ker-injective modules are generalized to principally quasi ker-injective modules . Many properties and characterizations of principally quasi ker-injective modules are given for example , M is principally quasi ker-injective module if and only if for each $m,n\in M$, such that $ann_R(n)\subseteq ann_R(m)$, there exist an R-monomorphism $\alpha\colon M\to M$ and an R-homomorphism $g\colon M\to M$ such that $g(n)=\alpha(m)$. Finally some relationships between principally quasi ker-injective modules and another classes of R-modules are given .

§1: Introduction

Throughout this paper, R will denote an associative, commutative all unitary ring with identity, and R-modules are (left) R-modules. G.F.Birkenmeier proved that an R-module M is ker-injective if and only if for each R-monomorphism $f:A \rightarrow B$ (where A and B are R-modules) and for each R-homomorphism g:A \rightarrow M , there exist an R-monomorphism $\alpha: M \to M$ and R-homomorphism $h: B \to M$ such that $(h \circ f)(a) = (\alpha \circ g)(a)$ for all $a \in A$ [2]. An R-module M is said to be quasi injective if each R-homomorphism of any submodule N of M into M can

be extended to an endomorphism of M [7]. An R-module M is called principally N-injective if for any cyclic R-submodule A of N and every R-homomorphism from A into M can be extended to R-homomorphism from N into M [6]. An R-module M is called principally quasi-injective (or semi-fully stable [1]) if M is principally M-injective [6] .An R-module M is called pointwise injective if for each R-monomorphism $f:A \rightarrow B$ (where A and B are two R-modules), each R-homomorphism g:A \rightarrow M and for each $a \in A$, there exists an R-homomorphism $h_a: B \rightarrow M \quad (h_a)$ may depend on a) such that $(h_a \circ f)(a) = g(a)$ [3]. Also an R-module M is pointwise injective if and only if M is principally N-injective for every R-module N [3]. An R-module M is called pointwise ker-injective if for each R-monomorphism $f:A \rightarrow B$ (where A and B are R-modules), each R-homomorphism g:A \rightarrow M and for each a \in A, there exist an R-monomorphism $\alpha: M \to M$ and R-homomorphism $\beta_a: B \to M$ (β_a may depend on a) such that $(\beta_a \circ f)(a) = (\alpha \circ g)(a)$ [5]. An R-monomorphism f:N \rightarrow M is called p-split if for each $a \in N$, there exists R-homomorphism $g_a:M{\rightarrow}N$ (g_a may depend on a) such that $(g_a \circ f)(a)=a$ [3] . An R-monomorphism $f:N \rightarrow M$ is called pointwise ker-split if for each $a \in N$, there exist an R-monomorphism $\alpha: N \to N$ and an R-homomorphism $g_a:M{\rightarrow}N$ (g_a may depend on a) such that $(g_a \circ f)(a) = \alpha(a)$ [5]. For an R-module M , E(M) and $S = End_R(M)$ will respectively stand for the injective envelope of M and the endomorphism ring of M. Hom_R(N,M) denoted to the set of all R-homomorphism from R-module N into R-module M. For a submodule N of an R-module M and $a \in M$, $[N:a]_R = \{ r \in R \mid ra \in N \}$. For an R-module M and $a \in M$, then $\operatorname{ann}_{R}(a)$ denoted to the set $[(0):a]_{R}$.

§2: Principally quasi ker-injective modules

Definition (2-1):- Let M and N be two R-modules , M is said to be principally ker-N-injective (in short, p-ker-N-injective) if for any cyclic R-submodules A of N and any R-homomorphism $f:A \to M$, there exist an R-monomorphism $\alpha: M \to M$ and R-homomorphism $g: N \to M$ such that $(g \circ i)(a) = (\alpha \circ f)(a)$, for all $a \in A$, where i is the inclusion R-homomorphism from A to N . An R-module M is called principally quasi ker-injective (in short, PQ-ker-injective) if M is p-ker-M-injective . A ring R is called PQ-ker-injective if R is PQ-ker-injective R-module .

Examples and remarks(2-2):

- 1) All principally quasi injective (also pointwise ker-injective modules) are trivial examples of PQ-ker- injective modules .
- 2) The concept of PQ-ker-injective modules is a proper generalization of both principally quasi injective modules and pointwise ker-injective modules for examples:
- i) Let $M=Z\oplus \prod Q$ (where $\prod Q$ is an infinite direct product of copies of Q as Z-module) M is ker-injective Z-module [2], hence by (1) M is PQ-ker-injective Z-module. If M principally quasi injective Z-module, then by [4,lemma(2,3)], we have that Z is principally quasi injective Z-module and since Z is principally ideal domain, thus Z self injective ring and this a contradiction [7]. Therefore M is PQ-ker injective Z-modules is not principally quasi injective Z-modules, also this example

showed that P-ker-N-injectivity is a proper generalization of principally N-injectivity.

- ii) Let $M=Z_p$ as Z-module where p is a prime number . M is PQ-ker-injective Z-module, but by[5,corollary(1.9)] M is not pointwise ker-injective module.
- 3) P-ker-N-injectivity is an algebraic property .
- 4) Let M be any R-module and $\prod E(M)$ be infinite direct product of copies of E(M) then:
- a) Every R-module of the form $M \oplus \prod E(M)$ is PQ-ker-injective R-module.
- b) if M is not PQ-injective R-module, then by [4,lemma(2,3)], $M \oplus \prod E(M)$ is not PQ-injective R-module.

In the following theorem we give many characterizations of P-ker-N-injective modules

Theorem (2-3): Let M and N be two R-modules and $S=End_R(M)$. Then the following statements are equivalent:-

- (1) M is p-ker-N-injective.
- (2) For each $m \in M$, $n \in N$ such that $ann_R(n) = ann_R(m)$, there exists an R-monomorphism $\alpha: M \to M$ and an R-homomorphism $g: N \to M$ such that $g(n) = \alpha(m)$.
- (3) For each $m \in M$, $n \in N$ such that $ann_R(n) \subseteq ann_R(m)$, there exist an R-monomorphism $\alpha:M \to M$ such that $S\alpha(m) \subseteq Hom_R(N,M)n$.
- (4) For each R-homomorphism $f:A \rightarrow M$ (where A be any R-submodule of N) and each $a \in A$, there exists an R-monomorphism $\alpha:M \rightarrow M$ and an R-homomorphism $g:N \rightarrow M$ such that $g(a) = (\alpha \circ f)(a)$.

Proof: (1) \Rightarrow (2) Let M be a p-ker-N-injective R-module. Let $m \in M$, $n \in N$ such that $ann_R(n) \subseteq ann_R(m)$. Define f: $Rn \rightarrow M$ by f(rn) = rm, for all $r \in R$. It is clear that f is a well-defined R-monomorphism. Since M is p-ker-N-injective R-module, thus there exists an R-monomorphism $\alpha: M \rightarrow M$ and an R-homomorphism $g: N \rightarrow M$ such that $g(x) = (\alpha \circ f)(x)$ for all $x \in Rn$. Therefore $g(n) = (\alpha \circ f)(n) = \alpha(f(n)) = \alpha(m)$.

- $\begin{array}{lll} \textbf{(2)} \Rightarrow \textbf{(3)} Let \ m \in M, \ n \in N \ such \ that \ ann_R(n) \subseteq \ ann_R(m). \ By \ hypothesis, \\ there \ exists \ an \ R-monomorphism \ \alpha: M \rightarrow M \ and \ an \ R-homomorphism \\ g: N \rightarrow M \ such \ that \ g(n) = \alpha(m). \ Let \ \beta \in S, \ thus \ \beta(\alpha(m)) = \beta(g(n)) = (\beta \circ g)(n). \\ Since \ \beta \circ g \in Hom_R(N,M) \ , \ thus \ \beta(\alpha(m)) \in Hom_R(N,M)n \ . \ Therefore \\ S\alpha(m) \subseteq Hom_R(N,M)(n). \end{array}$
- (3) \Rightarrow (4)Let f:A \rightarrow M be any R-homomorphism where A be any R-submodule of N, and let $a \in A$. Put m=f(a), since $m \in M$ and $ann_R(m) \subseteq ann_R(a)$, thus there exists an R-monomorphism $\alpha: M \rightarrow M$ such that $S\alpha(m)Hom_R(N,M)a$. Let $I_M: M \rightarrow M$ be the identity R-homomorphism. Since $I_M \in S$, thus there exists an R-homomorphism $g: N \rightarrow M$ such that $I_M(\alpha(m)) = g(a)$. Thus $g(a) = \alpha(m) = \alpha(f(a)) = (\alpha \circ f)(a)$.
- (4) \Rightarrow (1)Let A=Ra be any cyclic R-submodule of N and f:A \rightarrow M be any R-homomorphism. Since $a \in A$, thus by hypothesis there exists an R-monomorphism α :M \rightarrow M and an R-homomorphism g:N \rightarrow M such that $g(a)=(\alpha \circ f)(a)$. For each $x \in A$, x=ra for some $r \in R$, we have that $g(x)=g(ra)=rg(a)=r(\alpha \circ f)(a)=(\alpha \circ f)(ra)=(\alpha \circ f)(x)$. Therefore M is p-ker-N-injective R- module. \square

As an immediate consequence of Theorem (2.3) we have the following corollary in which we give many characterizations of PQ-ker-injective modules.

Corollary (2.4):-The following statements are equivalent for an R-module M:-

- (1) M is PQ-ker-injective.
- (2) For each $n,m \in M$, such that $ann_R(n) \subseteq ann_R(m)$, there exists an R-monomorphism $\alpha:M \to M$ and an R-homomorphism $g:M \to M$ such that $g(n) = \alpha(m)$.
- (3) For each $n,m \in M$ such that $ann_R(n) \subseteq ann_R(m)$, there exist an R-monomorphism $\alpha: M \to M$ such that $S\alpha(m) \subseteq Sn$.
- (4) For each R-homomorphism $f:A \rightarrow M$ (where A be any R-submodule of M) and each $a \in A$, there exists an R-monomorphism $\alpha:M \rightarrow M$ and an R-homomorphism $g:M \rightarrow M$ such that $g(a) = (\alpha \circ f)(a)$.

Corollary (2.5):- The following statements are equivalent for an R-module M:

- (1) M is P-ker-R-injective.
- (2) For each $m \in M$, $n \in R$ such that $ann_R(n) = ann_R(m)$, there exists an R-monomorphism $\alpha: M \to M$ and an R-homomorphism $g: R \to M$ such that $g(n) = \alpha(m)$.
- (3) For each $m \in M$, $n \in R$ such that $\operatorname{ann}_R(n) = \operatorname{ann}_R(m)$, there exist an R-monomorphism $\alpha: M \to M$ such that $S\alpha(m) \subseteq \operatorname{Hom}_R(R,M)n$.
- (4) For each R-homomorphism $f:A \rightarrow M$ (where A be any ideal of R) and each $a \in A$, there exists an R-monomorphism $\alpha:M \rightarrow M$ and an R-homomorphism $g:R \rightarrow M$ such that $g(a) = (\alpha \circ f)(a)$.

Proposition (2-6):-Every integral domain R is PQ-ker-injective ring.

Proof: let R be any integral domain and let $n,m \in R$ such that $ann_R(n) \subseteq ann_R(m)$. Since R is an integral domain, thus $ann_R(r)=0$ for all $r \in R$, $r \neq 0$.

i) if n=0, thus $ann_R(n)=R$, since $ann_R(n)\subseteq ann_R(m)$, then $ann_R(m)=R$ and this implies that m=0. Define $g\colon R\to R$ and $\alpha\colon R\to R$ by g(x)=x and $\alpha(x)=x$ for all $x\in R$. It clear that g is an R-homomorphism and α is an R-monomorphism and $g(n)=\alpha(m)$.

ii) if $n \neq 0$, define $g:R \rightarrow R$ by g(x)=mx for all $x \in R$, And $\alpha: R \rightarrow R$ by $\alpha(x)=nx$ for all $x \in R$, It is clear that g and α are R-homomorphisms. for each $x,y \in R$ if $\alpha(x)=\alpha(y)$ then nx=ny and since $n \neq 0$ and R is an integral domain, thus x=y, therefore α is an R-monomorphism and g(n)=m n=n $m=\alpha(m)$. From i and ii we have R is a PQ-ker-injective ring by corollary (2-4). \square

Example (2-7): Z as Z-modules (by proposition 2-6) is PQ-ker-injective but Z is not PQ-injective Z-module and not pointwise-ker-injective module.

proposition(2-8): Let M , N and K are R-modules , if M is P-ker-K-injective R-module and there exist an R-monomorphism from N into K, then M is P-ker-N-injective R-module.

Proof: Let $f:N \to K$ be any R-monomorphism and let M be a P-ker-K-injective R-module . Let $m \in M$, $n \in N$ such that $ann_R(n) \subseteq ann_R(m)$.Let $x \in ann_R(f(n))$, thus xf(n) = 0 and hence f(xn) = 0 , since f is an R-monomorphism ,thus xn = 0 and this implies that $x \in ann_R(n)$, since $ann_R(n) \subseteq ann_R(m)$ then $x \in ann_R(m)$, Therefore

ann_R(f(n)) \subseteq ann_R(m). Since M is P-ker-K-injective , thus by theorem (2-3) there exist an R-homomorphism g: K \rightarrow M and an R-monomorphism α :M \rightarrow M such that g(f(n))= α (m). Put g₁= g $_{\circ}$ f :N \rightarrow M g₁ is an R-homomorphism and g₁(n)=(g $_{\circ}$ f)(n)= g(f(n))= α (m). Therefore M is P-ker-N-injective R-module (by theorem 2-3).

Corollary(2-9): Let M and N be two R-modules, if M is P-ker-N-injective , then M is P-ker-A-injective for each R-submodule A of N.

Proof:- Let M be a P-ker-N-injective R-module and let A be any R-submodule of N, let i:A \rightarrow N be the inclusion R-homomorphism, it is clear that i is an R-monomorphism. Thus by proposition (2-8), M is P-ker-A-injective R-module. \Box

As an immediate consequence of corollary (2-9) we have the following corollary.

Corollary(2-10): Let N be any R-submodule of an R-module M, if N is P-ker-M-injective, then N is P-ker-injective R-module.

As an immediate consequence of proposition(2-8) we have the following corollary.

Corollary(2-11): If N_1 and N_2 are isomorphic R-modules and if M is P-ker- N_i -injective then M is P-ker- N_i -injective, for each i,j=1,2 and $i \neq j$.

Proposition(2-12): Any direct summand invariant R-submodule of P-ker-N-injective R-module is P-ker-N-injective.

Proof: let M be any P-ker-N-injective R-module and A be any direct summand invariant R-submodule of M , Thus there exist an R-submodule A_1 of M such that $M=A\oplus A_1$. Let $a\in A$, $n\in N$ such that $ann_R(a)\subseteq ann_R(n)$, since $a\in M$ and M is P-ker-N-injective R-module , thus by theorem (2-3) there exists an R-homomorphism $\alpha:N\to M$ and an R-monomorphism $\alpha:M\to M$ such that $g(n)=\alpha(0)$. Since A is an invariant R-sub module of M, thus $\alpha(A)\subseteq A$. Define $\alpha':A\to A$ by $\alpha'(x)=\alpha(x)$ for all $x\in A$. It is clear that α' is an R-monomorphism , Put $g_1=\pi_1\circ g:N\to A$ where π_1 is the natural projection from $M=A\oplus A_1$ into A . It is clear that g_1 is an R-homomorphism and $g_1(n)=(\pi_1\circ g)(n)=\pi_1(g(n))=\pi_1(\alpha(a))=\pi_1(\alpha'(a))=\alpha'(a)$ Therefore A is P-ker-N-injective R-module by theorem (2-3).

By proposition(2-12) and corollary(2-10) we have the following **corollary**.

Corollary(**2-13**):Any direct summand invariant R-submodule of PQ-ker-N-injective R-module is PQ-ker-N-injective R-module .□

Proposition(2-14): Let M and N are two R-modules. If M is P-ker-N-injective, then every R-monomorphism $f:M \rightarrow N$ is pointwise ker-split.

Proof: let f: $M \rightarrow N$ be any R-monomorphism and $a \in A$. Define $h:f(M) \rightarrow M$ by h(f(m))=m for all $m \in M$. h is well-defined R-homomorphism, since M is P-ker-N-injective R-module and Thus $f(a) \in f(M)$ by theorem (2-3)there exist an R-homomorphism $g:N \rightarrow M$ and R-monomorphism $\alpha: M \rightarrow M$ an such that $g(f(a))=(\alpha \circ h)(f(a))$ and since put $g_a = g$

 $(\alpha \circ h)(f(a)) = \alpha(h(f(a))) = \alpha(a)$, thus $(g_a \circ g)(a) = \alpha(a)$. Therefore f is pointwise -ker- split R-homomorphism . \Box

Corollary(2-15): If M is PQ-ker-injective R-module, then every R-monomorphism $\alpha: M \rightarrow M$ is pointwise ker-split .

Proposition (2-16): An R-module M is pointwise-ker-injective if and only if M is PQ-ker-E(M)-injective for each R-module M.

Proposition (2-1): For each R-module M, the following statements are equivalent:

- (1) M is pointwise-ker-injective.
- (2) M is PQ-ker-N-injective, for every extended R-module N of M
- (3)M is PQ-ker-E(M)-injective \Box

By proposition(2-8) and [5,proposition(1-7)] we have the following corollary:

corollary (2-18): For a cyclic R-module M, the following statements are equivalent:

- (1) M is an injective R-module
- (2)M is pointwise injective R-module
- (3)M is ker-injective R-module.
- **(4)**M is PQ-ker-E(M)-injective R-module .□

Immediately from corollary(2-18) we have the following corollaries

Corollary (2-19): the following statements are equivalent for a ring R:

- (1) R is self- injective ring
- (2) R is self-pointwise injective ring

- (3) R is self-ker-injective ring.
- (4) R is PQ-ker-E(M)-injective R-module .□

Corollary (2-20):Every cyclic Z-module M is not PQ-ker-E(M)-injective. **Proof** :Assume that acyclic Z-module M is PQ-ker-E(M)-injective. Thus by corollary(2-18) .M is injective Z-module and this a contradiction, since every finitely generated Z-module is not injective[7] .Therefore M is not PQ-ker-E(M)-injective Z-module .□

References:-

- [1] Abbas,M.S. : Semi-fully stable modules , AL-Mustansiriyah J.Sci.,vol.7,1996,(10-13).
- [2] Birkenmeier, G.F.: modules which are subisomorphic to injective modules, J. of Pure and applied algebra ,13(1970),169-177.
- [3]Gataa,S.A.: Pointwise injective modules , M.Sc. thesis ,AL-Mustansiriyah University ,1999.
- [4] Kamal, M.A.; O.A.Elmnophy: On P-extending modules, Acta Math. Univ. Comenianae Vol.Lxxiv,2(2005),279-286.
- [5] Mehdi, A.R.: Pointwise ker-injective modules ,J.Al-Qadisiah for pure sci.,Vol 10,No 1,(2005)(199-211).
- [6] Nicholson, W.K., J.K.Park and M.F.Yousif: Principally Quasi-injective Modules, Comm. Algebra. 27(4) (1999),1683-1693.

[7] Sharpe, D.W.,; P.Vamos: Injective modules, Cambridge Univ. press, London, 1972.

الموديولات شبه اغمارية النواة رئيسياً

مازن عمران كريم قسم الرياضيات كلية التربية جامعة القادسية

الخلاصة: ـ

في هذا البحث قدمنا مفهوم الموديولات شبه اغمارية النواة رئيسيا كتعميم فعلي لمفهومي الموديولات شبه الاغمارية رئيسيا والموديولات اغمارية النواة نقطيا . مجموعة من الخواص والتميزات للموديولات شبه اغمارية النواة رئيسيا قد اعطيت فمثلا برهنا ان الموديول M بحيث يكون شبه اغماري النواة رئيسيا اذا وفقط اذا كان لكل m, عناصر في الموديول m بحيث انm فانه يوجد تشاكل متباين m من الموديول m الى نفسه وتشاكل m من الموديول m الى الموديول نفسه بحيث انm (m) . أخيرا درسنا بعض العلاقات بين الموديولات شبه اغمارية النواة رئيسيا واصناف اخرى من الموديولات .