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ON NONLINEAR DIFFERENTIAL OPERATORS THAT COMMUTES
WITH ANY FUNCTION
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Abstract: A natural differential operator series is one that commutes
with every function .This paper discusses natural nonlinear "normally
ordered" differential operators series .The operators provides a wide range
of higher order derivative identities , these identities specialize to a large
variety of identities among binomial coefficient and the orthogonal

polynomials ,a number of which are new.

1.Introduction:
An operator Q is called natural if it commutes with arbitrary function ,
Ie.,
¢(Qu) =Qp (u),
(1)
for all scalar function ¢[5]. A formal power series fin k variables

t,,t,,....t, over afield Cis a formal expression of the following type

f=ft)="f(t,t,...t)=Dat'=>a, . totj 1k,

©>0

where a, =a, ,  the coefficients of f.

2l !

In this paper we will take u(t) to be a formal power series in the

variable t, and Qto be a formal series of differential operators. A simple
example of a natural operator in this context is the exponential operator

e’® where D=d/dt.
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Olver [5 ] show that the translation operators e“® are essentially the
only linear natural differential series. The main result of this paper is the

nonlinear differential operator series

_ ' (n) Zn _
D ! :ezDz//(u,u ) D=1+ E _I Dn l.l,V(U,U',...,U(n))n.D,
— Nl
n=1

(2)

iIs natural ,i.e.,, for any analytic function ¢g(u)and any formal power
seriesy(u,u’,...,u™)
D1 eV Dg(y) = (DL : VY4 Dy,
3)
via Lagrange inversion formula [6] which is given by

x" d"[¢"(a) f'(a)]

ni da"!

f(Q)=f@)+>

where f(z) = f(z(x)) is an analytic function.

In (2) the colons mean that the operator is normally ordered "meaning that
all the multiplication terms appear after all the differentiations.

In our work ,and for the purpose of computations, we suppose that

w =u",ris areal number, i.e.,
D—l :ezDz//(u,u' ..... utm) ‘D= D—l :ezDu’ ‘D
:ii Dn—lurn D
o N ’

(4)

which is a generalization of the nonlinear differential operator series

-1.,zDu . _ wi n-1,,n
D':e .D_1+n§n!D u".D,

which introduced by Olver [5],consequently , we obtain derivative

identities reduce to those in [5 ] if r=1.
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2.Natural operators

Certain formal series differential operators play a distinguished role ,
in that commute with functional evaluation.
Definition:A series differential operator Q is called natural, [5] if it
commutes with all functions, i.e.,

¢ (Qu) =Q¢ (u), for all scalar functions ¢ and all formal series u.

The main result of this paper are the following examples of a
nonlinear natural differential operators.

Theorem:Let u(t) be a formal power series and let D =d/dt,then the series

differential operator

_ ) 27"
D*:e?Udd D :1+Z—ID” Ly (u,u',...,u™)".D
n1 I

(5)

is natural, i.e., for any analytic functions ¢#(u),w(u,u’,..,u™)
D11 e 4" Dg(u) = (D : eV V4" Dy,

(6)

Proof: This result follows as a direct consequence of the famous
Lagrange inversion formula when z=x,a=t,¢(a) = w(u(t),u’().....,u® t)).If
u(t) is any analytic function (or formal power series ),and we define
x = &(z,t) implicitly by the formula

X =t+zyu(x),u’(x),....u™(x)),

(7)
then, for any analytic function f(t), we have the classical Lagrange

inversion formula

_ D—l :ezDu/(u(t),u’(t) ...... u(™ (1) - Df (t) (8)
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Now set f (t) = #(u(t)),so that ( 8 ) becomes
$(u(x)) =D :e®™ : Dg(u(t)).

9)
On the other hand , according to the formula at the bottom of page 144

of [ 6] for any analytic function g(x),evaluated at ( 7 ) if w =u.

o=D""(u(®)"Dg(t)), n>1.

It IS clear that for any analytic function

o), x=t+zyu(x),u’(x),.,u™(x)), can be expanded at x ,by verifing

0= D" (w (u(x),u'(x),...,u™(x) )"Dg(t)), n>1.

Therefore, taking g =u in the last formula ,we find the expansion

u(x) = Z ,a ; l//(U(f(Z,t)),U’(é(Z,t)) ----- u® (2, 1)] 0

Substituting this into ( 9 ) completes the proof of the theorem .

We will suppose that w=u",ris a real number ,s0 we introduce the

following results:

3 .Derivative identities:

Any natural differential operator leads to a large class of derivative
identities, obtained by considering different functions ¢ in the basic
condition ( 6 ) . Here we present some of the more elementary derivative
identities to be found as consequence of the main theorem . We , first

compute the basic formula

190



2007 and (1) 23801 (12) lanall & juall o slall Ganealall ilae

S(uy=D":e™ :Du= ZZ— D" (u"u’)

Dn (U rn+1). (10)
More generally , we find that , for ¢(u) =u*,

0 k Zn
D':e®™ :Du* = Z_D"(u™"). 11
nz(;(rn+k) n! ( ) (11)

As long as kis not a negative integer, (11) is valid as it stands . It also ,

remains correct when k =—j is a negative integer, provided we interpret
that term corresponding to n = j in the summation according to the general

"rule "

lim — 1 D"u" =lim D"'(u™"u)=D"logu, n>1.
m—> m

(12)

Now , according to the main theorem , the series (11) is the kth power of
the series (10) , this implies certain identities among higher-order
derivatives of powers of u .For instance , taking the case k=2, the

series identity

i 2 _D ( rn+2) (Z

rn+l
~rn+2nl _D() "

srn+1n!

implies the following derivative identities :

n m+2y _ C rn+2 n i ri+l n—i r(n—-i)+1
> )_§2(ri+1)(r(n—i)+1)(iJD(u )P

More generally , if we apply the identities corresponding to ¢(u) being

u“' u* and u', then the series identity

i k+1 Zn n rn+k+| ) (Z
=0

rn+k+1 nt

—D ( rn+k)) (Z n urn+l)),

rn+k n! rn+| nt

implies the additional derivative identities
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k+1 nogrnek+ly C Kl I i+l
e “ )_iz_o“(ri+k)(r(n_i)+|)(iJD u™)D™ (u )

(13)

These identities are valid for arbitrary ( positive and negative ) values of

k,1provided we use the rule (12) if either rn+k+1=0,0r any of the

summation terms ri+k=00r r(n—-i)+1=0.

3.1 Inverse operators
To obtain the inverse series for the natural differential operators (4),
we have two cases by taking k=-11=1in (13)

Case 1.If r is an integer number differs from 1,we find the series

o0 1 Zn
— _Dn rn-1 ,
n(u) Z;,—_ P u™)
is the inverse series for ( 4 ) ,rez —{&},wherez is the set of integer

numbers ,and hence we have the series identity

0 1 Zn [e's] 1 Zn
1= _Dn urn+l __Dn urn—1 .
(n; r+1n ( ))(nZ:O: —rn n! ( 2

Rearranging the terms of degree n in z in this formula results the new

derivative identities.

n 1 i ri-1 n-i r(n-i)+ly _
go:(1—ri)i!(lr(n—i)+1)(n—1)!D(u )-D™ () =0,

(14)

n>1r e Z —{1},which does not appear in literatures.

Case 2. If r =%,s e Z —{0},we find the series

s} 1 Zn
u)=-z°D(logu) +> ——=—D"(u™Y),
n(u) (logu) nzz(;l—rnn! u™)

n#s
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IS the series inverse for (4),r :l,s e Z—-{0},and hence we have the series
S
identity

s 2" ta =01 z"
1= —=D"(us ).(-z°D(logu) + > ——=—D"(u™™)).
(§n+s v (us ) (logu) nz_:;l—rn o u™))

(15)
Rearranging the terms of degree n in z in this formula results the new

derivative identities.

hpeas (n+s)(n=1)! N (n+s)n! .
Dru* )= gy uP (logubTu H;i!(ri—l)(n—i+s)(n—i)!d
D'(U™).0" ), (16)

r= E,s e Z -{0},which does not appear in literatures.
S

It is clear that if s =1then the series identity

S g u & 1 Z n-1
1= G e T A T ), sl

and the resulting derivative identity
( n+l) (n+1)u(Dn l(u )_'_Z (n+l)JDi(uifl).ani (un7i+l)'

which introduced by Olver [5] are a special cases of (15) and (16)

respectively.

3.2 Binomial and orthogonal polynomial identities :-

We now specialize the above derivative identities for particular
function u(t), and find that reduce to a wide range of identities among
binomial coefficient and orthogonal polynomials .

1. First consider the case
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n

uty=t",so %D”um = (e Jpmen,

Then( 13 ) reduces to the identity
k+1 ((rn+k+|)ajzz”: kl

rn+k+1 n

(ri+K)e \( (r(n=i)+1)
io(ri+k)(r(n—i)+l)( i )( n—i }(17)

This is equivalent to the Hagen —Rothe identity [2], which generalizes the classical
Vandermonde convolution identity for binomial coefficients,
r+s N n s
(7= 2 a2i) a9
i=0
As another example, the formula (14) in this case reduces to the identity

" “1 ((ri-Da(Ir(0-0)+1) _
izz(;(ri—l)[r(n—i)ﬂ]k i j( n—i j—o'”ﬂ- (19)

amt

2.Let u=e“soD"u" =m"a"e
Then (13) reduces to the identity

(rn+k+|)"1=2kk' [ )(r|+k)'1(r(n i)+ 1) (20)
o K+1
If we set k =—x/z,1 =—rn—y/z ,we deduce
n-1 X(y+rn2)( ) n|1
_— r +riz 21
ey =3 T o)y 1) (21)
which is very similar to the Abel identity [ 4] ,
n_ X n N s\ n—i
(X+Y) _g(i)x(x iz) ™ (y +iz)™". (22)
3. Letu=e", D"u™ = (-1)"m"?H, (Vmt)e ™,

where H, denotes the usual Hermite polynomial [3], [1].In this case ,(13)

reduces to the identity

n—i

(rn+k+|)2 "Ho Sk +1t) = Zn:kH(nJ(er)z (r(n=i)+1) 2

=0

H (ri+kOH, (Jrin =) +11) (23)

which we can interpret as an Abel-type identity for Hermite

polynomials.It is not the same as the usual addition formula ,since the
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arguments of the Hermite polynomials appearing in the summation depend on the

summation index i. If eitherrn+k +1=0,ri+k =0,0r r(n—i)+1 =0, then we view the

corresponding term in (23) according to the rule (12)

-2t n=1,
Iirr(l)(—l)“m(“’z)‘lHn(\/ﬁ t)=4-2 n=2,
0 n>3.

4. letu=t“e™, so %D”um =t e ™ LM (mt),
n!
where L7 are generalized Laguerre polynomials [1], [3] .Again (13) reduces to an Abel-

type identity

k+I (rn+k+l)a—n _ C kl (ri+k)a—i i
BLSL T (k) =D L (D,

rmn+k+I1 "
(24)

Lo (r(n=i) + 1))
for Laguerre polynomials .As in the previous example , we make the convention

according to the rule (12)

im = L7 (mt) =4 )
R m =
mom " [(-D)"*/n]le, n=>2,

5. Let the case u=(1—-t)*(1+1t)”,s0
Dnum — n!(_z)n (1—t) ma—n (1+t) mg-n pr(]ma—n,m/?—n) (t),

where  P“# are the Jacobi polynomials [ 3 ] .In this case (13) reduces to the Hagen —

Rothe type formula

k+1 p (ke Da-n (k) -n) 1y _
n ( ) -
r+k+1
\ ki ((ri+k)a—i,(ri+k) i) ) p((r_(n—i)+l)a

Z(m =i+

i=0

D (=D~ (| (25)

Again , from (12) we have

lim i pr(]mafn,mﬂfn) (t) — [a(t +1)n _IBn(t _1)”] ’ n>1.
[n(-2)"]

m-0m

Finally ,the identities (13),(17),(21),(23),(24),(25) are reduced to those

in [5] if r =1.
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