## **Jordan Right** $(\phi, \theta)$ -derivation of prime Rings

# Farhan D. Shiya Department of Mathematics, College of Education, University of AL-Qudisiya

#### **Abstract**

Let R be a2-torsion free prime ring. Suppose that  $\phi, \theta$  are automorphisms of R. In the present paper it is established that if R admits non zero Jordan right  $(\theta, \theta)$  derivation, then R is commutative .Further ,as an corollary of this result it is show that every Jordan right  $(\theta, \theta)$  derivation on R is a right  $(\theta, \theta)$ -derivation on R.

Finally ,in case of an arbitrary prime ring it is proved that if R admits a right  $(\phi, \theta)$  –derivation which acts also as a homorphisms on anon zero ideal of R ,then d=0 on R where d: R $\rightarrow$ R **is a right**  $(\theta, \theta)$ -derivation on R

## 1- <u>Introduction</u>

Thought the present paper R will denote an associative ring with center Z ( R) .Recall that R is prime if aRb={0} implies that a=0 or b=0.As usually [x,y] will denote the commutator xy-yx .An additive subgroup U of R is called a Lie ideal of R if [u,r] $\in$ U for all u $\in$ U and r $\in$ R .Suppose that  $\phi$ ,  $\theta$  are endomorphisms of R .An additive mapping d:R $\rightarrow$ R is called a( $\phi$ , $\theta$ )—derivation if d(xy)=d(x) $\phi$ (y) + $\theta$ (x)d(y), and a Jordan ( $\phi$ , $\theta$ )-derivation if d(x<sup>2</sup>)= d(x) $\theta$ (x) + d(x) $\phi$ (x) For all x,y  $\in$  R .In this present paper we shall show that if a 2-torsion free prime ring R admits an additive mapping satisfying d(u<sup>2</sup>)=2d(u)  $\theta$ (u) for all u  $\in$ U, then either

 $d(U)=\{0\}$  or  $U\subseteq Z$  (R) where U is a Lie ideal of R with  $u^2\in U$  for all  $u\in U$  and  $\theta$  is automorphism of R. Further, some more related results are also obtain. Final section of the present paper deals with the study of right  $(\phi,\theta)$ -derivation which acts also a homomorphism of the ring.

#### 1-1 Defintion

An additive Mapping d:R $\rightarrow$ R is called a right  $(\phi,\theta)$ -derivation if  $d(xy)=d(x)\phi(y)+d(y)\theta(x)$  and a Jordan right $(\phi,\theta)$ -derivation if  $d(x^2)=d(x)\phi(x)+d(x)\theta(x)$  for all  $x,y \in R$ .

## **2- Preliminaries**

## (2.1)<u>Lemma</u>: [7, Lemma 2]

If  $U \not\subset Z(R)$  is a lie ideal of a 2-torsion free prime ring R and  $a,b \in R$  such that  $aUb = \{0\}$ , then a = 0 or b = 0.

## (2.2) <u>Lemma:</u>[8, Lemma 4]

Let G and H be additive groups and let R be a 2-trosion free ring, Let  $f:G\times G\to H$  and  $g:G\times G\to R$  be biadditive mappings Suppose that for each pair  $a,b\in G$  either f(a,b)=0 or  $g(a,b)^2=0$ , in this case either f=0 or  $g(a,b)^2=0$  for all  $a,b\in G$ .

## (2.3)<u>Lemma</u>:[9]

Let R be a 2-torsion free prime ring and U a Lie ideal of R if admits a derivation d such that  $d(U)^n = 0$  for all  $u \in U$ , where  $n \ge 1$  is a positive integer then d(u) = 0 for all  $u \in U$ .

## (2.4)<u>Lemma</u>: [10, Lemma 13]

Let R be a 2-torsion free semi prime ring if u is a commutative Lie ideal of R, then  $u \subseteq z(R)$ .

## (2.5)Lemma:

Let R be a 2-torsion free ring and let U be a Lie ideal of R such that  $u^2 \in U$  for all  $u \in U$ , suppose that  $\theta$  is an endomorphism of R if  $d: R \to R$  is an additive mapping satisfying  $d(u^2) = 2d(u)\theta(u)$  for all  $u, v \in U$ , then.

- (i)  $d(uv + vu) = 2d(u)\theta(v) + 2d(v)\theta(u)$
- (ii)  $d(uvu) = d(v)\theta(u^2) + 3d(u)\theta(u)\theta(v) d(u)\theta(u)\theta(v)$
- (iii)  $d(u)\theta(u)[\theta(u),\theta(v)] = d(u)[\theta(u),\theta(v)]\theta(v)$
- (iv)  $d[u,v][\theta(u),\theta(v)] = 0$  for all  $u,v \in U$
- (V)  $d(vu^2) = d(v)\theta(u^2) + d(u)[3\theta(v)\theta(u) \theta(u)\theta(v)] d[u,v]\theta(u)$  for all  $u,v \in U$ .

#### Proof:

(i) 
$$d(u+v)^2 = 2d(u+v)\theta(u+v)$$
$$= 2d(u)\theta(u) + 2d(u)\theta(v) + 2d(v)\theta(u) + 2d(v)\theta(v)$$

#### and on the hand

$$d(u+v)^{2} = d(u^{2}+v^{2}+uv+vu) = d(u^{2})+d(v^{2})+d(uv+vu)$$

## Combining two relations

$$d(uv + vu) = 2d(u)\theta(v) + 2d(v)\theta(u)$$

(ii) 
$$d(u(vu+uv)+(vu+uv)u)$$
 by (i)

$$=2d(u)\theta(vu+uv)+2d(vu+uv)+\theta(u)$$

$$=2d(u)\big[\theta(v)\theta(u)+\theta(u)\theta(v)\big]+2\big[d(v)\theta(u)+2d(u)\theta(u)\big]\theta(u)$$

$$4d(v)\theta(u^2) + 6d(u)\theta(u) + 2d(u)\theta(u)\theta(v)$$

#### on the other hand.

$$d(u(vu+uv) + (vu + (uv)u) = d(uvu + u^{2}v + vu^{2} + uvu)$$
  
=  $d(u^{2}v + vu^{2}) + 2d(uvu)$ 

## combining the above equation we get

$$d(uvu) = 2d(v)\theta(u^{2}) + 3d(u)\theta(v)\theta(u) - d(u)\theta(u)\theta(v)$$

## (iii) by linearzing (i) on u we get

$$d(u+w)v(u+w)$$

```
= d(v)\theta(u+w)^{2} + 3d(u+w)\theta(v)\theta(u+w) - d(u+w)\theta(u+w)\theta(v)
= d(v)\theta(u^2) + d(v)\theta(w^2) + d(v)[\theta(u)\theta(w) + \theta(w)\theta(u)] + 3d(u)\theta(v)\theta(u) + 3d(u)\theta(v)\theta(w)
+3d(w)\theta(v)\theta(u)+3d(w)\theta(v)\theta(w)-d(u)\theta(u)\theta(v)-d(w)\theta(u)\theta(v)-d(u)\theta(w)\theta(v)-d(w)\theta(w)\theta(v)
----(2)
on the other hand.
combining (2) and (3) we arrive at
d(uvw + wvu) = d(v)[\theta(u)\theta(v) + \theta(w)\theta(u)] + 3d(u)\theta(v)\theta(w)
+3d(w)\theta(v)\theta(u)-d(w)\theta(u)\theta(v)-d(u)\theta(w)\theta(v)
--(4)
since uv + vu and uv - vu both belong to u we find that 2uv \in U for all
u, v \in U.
Hence, by our hypothesis we find that
d((2uv)^2) = 2d(2uv)\theta(2uv)
i.e. 4d(uv)^2 = 8d(uv)\theta(uv) since char R \neq 2
we have d(uv)^2 = d(uv)\theta(u)\theta(v). Replace w by 2uv in ---(4) and use the
fact that char
                       R \neq 2 to get
d(uv(uv) + (uv)vu) = d(v)[\theta(u)\theta(uv) + \theta(uv)\theta(u)] + 3d(u)\theta(v)\theta(uv) + 3d(uv)\theta(v)\theta(u)\theta(v)
= d(v) \left[ \theta(u^2)\theta(v) + \theta(u)\theta(v)\theta(u) \right] + 3d(u)\theta(v)\theta(u)\theta(v) - d(uv)\theta(v)\theta(u)
= d(v) \left[\theta(u^2)\theta(v) + \theta(u)\theta(v)\theta(u)\right] + 3d(u) \left[\theta(v^2)\theta(u)\right] - d(uv)\theta(v)\theta(u) - -----(5)
on the other hand
d((uv)^{2} + uv^{2}u) = 2d(uv)2\theta(u)\theta(v) + 2d(v)\theta(u^{2})\theta(v) + 3d(u)\theta(u)\theta(v^{2}) - d(u)\theta(v^{2})\theta(u) - ----(6)
combining 5 and 6 we get
d(uv)[\theta(u),\theta(v)] = d(v)[\theta(u),\theta(v)]\theta(u) + \theta(v)[\theta(u),\theta(v)]\theta(v) -----(7)
Replacing v by u+v in (7) we have
2d(u)\theta(u)[\theta(u),\theta(v)] + d(uv)[\theta(u),\theta(v)] = 2d(u)[\theta(u),\theta(v)]\theta(u) + d(v)[\theta(u),\theta(v)]\theta(u) + d(u)[\theta(u),\theta(v)]\theta(v)
Now application of (7) yields (iii)
(iv) Lineariz (iii) on u to get
d(u)\theta(u)[\theta(u),\theta(v)] + d(v)\theta(v)[\theta(u),\theta(v)] + d(v)\theta(u)[\theta(u),\theta(v)] + d(u)\theta(v)[\theta(u),\theta(v)]
```

 $= d(v) [\theta(w), \theta(v)] \theta(u) + d(v) [\theta(u), \theta(v)] \theta(u) + d(u) [\theta(u), \theta(v)] \theta(v) + d(v) [\theta(u), \theta(v)] \theta(v)$ 

```
for all u, v \in U
Now application of (7) and (ii) yields that
d(v)\theta(u)[\theta(u),\theta(v)]+d(u)\theta(v)[\theta(u),\theta(v)]
= d(uv)[\theta u, \theta v] and hence
combining
d(uv + vu) = 2d(v)\theta(u) + 2d(u)\theta(v) and (8) we find that
\{d(uv)-d(v)\theta(u)-d(w)\theta(v)\}[\theta(u),\theta(v)]=0 -----(9)
for all u, v \in U
Further, combining of (8) and (9) yields the required result.
(iv) Replace v by 2vu in d(uv+vu) and use the fact char R \neq 2 to get
d(u2vu + 2vu^2) = 2d(2vu)\theta(u) + 2d(u)\theta(2vu)
=4(d(vu)\theta(u)+d(u)\theta(v)\theta(u))
Again me placing v by 2uv in d(uv + vu)
d(u^2v + uvu) = 2d(uv)\theta(u) + d(u)\theta(u)\theta(v) for all u, v \in U -----(11)
Now combining (10) and (11), we get
d(u^{2}v - vu^{2}) = 2d[u, v]\theta(u) + d(u)[\theta(u), \theta(v)]  for all u, v \in U -----(12)
Replacing u by u^2 in d(uv + vu), we have
d(u^{2}v + vu^{2}) = 2d(v)\theta(u^{2}) + 2d(u^{2})\theta(v) + 2d(u)\theta(u)\theta(v)
```

Hence, subtracting (12) from (13) and using the fact that characteristic of  $R \neq 2$  we find that

 $d(vu^2) = d(v)\theta(u^2) + d(u)\{3\theta(v)\theta(u) - \theta(u)\theta(v)\} - d[u,v]\theta(u)$  for all  $u,v \in U$ .

# 3- Right derivation and commutativity of prime ring.

## (3-1)Theorem:

Let R be a 2-torsion free prime ring and let U be a lie ideal of R such that  $u^2 \in U$  for all  $u \in U$  suppose that  $\theta$  is an outomorphism of R if  $d: R \to R$  is an additive mapping satisfying  $d(u^2) = 2d(u)\theta(u)$  for all  $u \in U$  then either  $d(U) = \{0\}$  or  $U \subseteq Z(R)$ 

```
proof: suppose that U \not\subset Z(R) by Lemma( 2-5 ) (iii) we have d(u) \{ \theta(u^2)\theta(v) - 2\theta(u)\theta(v)\theta(u) + \theta(v)\theta(u^2) \} = 0 for all u, v \in U ------(3.1) Replacing [u, w] for u in (3.1) we get d[u, w][\theta(u), \theta(w)]^2 \theta(v) - 2[\theta(u), \theta(w)]\theta(v)[\theta(u), \theta(w)]\theta(v)\theta[u, w]^2 d[u, w] \{ [\theta(u), \theta(w)]^2 \theta(v) - 2[\theta(u), \theta(w)]\theta(v)[\theta(u), \theta(w)] + \theta(v)[\theta(u), \theta(w)] \} for all u, v, w \in U
```

Now, application of Lemma (2-5) (ii) yields that

$$\theta^{-1}d([u,w]\theta^{-1}[\theta(u),\theta(w)]^2)U = \{0\}$$

hence by Lemma 2.1 we find that R or each pair  $u, w \in U$  either  $[\theta(v), \theta(w)]^2 = 0$  or d([u, w]) = 0. This implies that either

 $[u,w]^2 = 0$  or d([u,w]) = 0. Note that the mappings  $(u,w) \rightarrow [u,w]$  and  $(u,w) \rightarrow d([u,w])$ 

satisfy the requirements of the Lemma (2-2).

Hence either  $[u,w]^2 = 0$  for all  $u,w \in U$  or d([u,w]) = 0 for all  $u,w \in U$ . If  $[u,w]^2 = 0$  for all  $u,w \in U$ , then for each  $u \in U$ ,

 $(I_n(w))^2 = 0$  for all  $w \in U$ , where  $I_n$  is the inner derivation such that  $I_n(w) = [u, w]$ . Thus by the application of Lemma (2-3). we find that U is a commutative Lie ideal of R, and hence by Lemma (2.4)  $U \subseteq Z(R)$ , a contradiction. Hence we consider the remaining case that d([u, w]) = 0 for all  $u, w \in U$ 

i.e. d(uw) = d(wu) for all  $u, w \in U$ , since wu - uw and wu + uw both belong to U, we find that  $2wu \in U$  for all  $u, w \in U$ .

This yields that d((2wu)u) = d(u(2wu))

Since d(uv+vu) is valid in the present situation, we find that

```
4d((wu)u) = d((2wu)u + u(2wu)
```

- $=4d(u)\theta(w)\theta(u)+2d(2wu)\theta(u)$
- $=4d(u)\theta(w)\theta(u)+2d(wu+uw)\theta(u)$
- $=4\left[d(u)\theta(w)\theta(u)+d(u)\theta(u)\theta(w)+d(w)\theta(u^2)\right]$

since R is 2-torsion free, we obtain

 $d((wu)u) = d(w)\theta(u^{2}) + d(u)\theta(w)\theta(u) + d(u)\theta(w)\theta(u)$  for all  $u, w \in U$  ------(3-2)

since d([u,w]) = 0 for all  $u, w \in U$ , using Lemma (2-5) (iv) and (3-2), we get

 $2d(u)[\theta(u),\theta(w)]=0$  this implies that

 $d(w)[\theta(u), \theta(w)] = 0$  for all  $u, w \in U$  -----(3-3)

Now, replacing w by 2wv in (3-3) and using the fact that char  $R \neq 2$  we get

 $d(u)[\theta(u), \theta(w)]\theta(v) = 0$  i.e.,  $\theta^{-1}d(u)\theta^{-1}[\theta(u), \theta(w)]U = \{0\}$ 

thus by Lemma (2-1), we find that for each  $u \in U$ ,  $\theta^{-1}[\theta(u), \theta(w)] = 0$  or  $\theta^{-1}d(w) = 0$ .

This implies that [u, w] = 0 or d(u) = 0

Now let  $U_1 = \{u \in U / [u, w] = 0 \text{ for all } w \in U\}$ 

And  $U_2 = \{u \in U/d(u) = 0\}$ . Clearly  $U_1, U_2$  are additive subgroups of U whose union is U, but a group can not be written as a union of two of its proper subgroups and hence by brauer's trick either  $U = U_1$  or  $U = U_2$  if  $U = U_1$ , then [u, w] = 0 for all  $u, w \in U$  and by using the similar arguments as above we get  $U \subseteq Z(R)$ , again a contradiction.

Hence we have the remaining possibility that d(u) = 0 for all  $u \in U$ . i.e

 $d(u) = \{0\}$  this completes the proof of the theorem.

#### (3-2)Theorem :

Let R be a 2-torsion free prime ring and v a Lie ideal of R such that

 $u^2 \in U$  for all  $u \in U$ . Suppose that  $\theta$  is an automorphism of R. if  $d: R \to R$  is an additive mapping satisfying  $d(u^2) = 2d(u)\theta(u)$  for all  $u \in U$ , then

 $d(uv) = d(v)\theta(u) + d(u)\theta(v)$  for all  $u, v \in U$ .

<u>Proof:</u> suppose that d = 0 on U. Since  $2uv \in U$ , uv - vu both belong to U, we find that 2d(uv) = d(2uv) = 0. This implies that d(uv) = 0 for all  $u, v \in U$ .

Hence the result is obvious in the present case. Therefore now assume that  $d(U) \neq \{0\}$ . Then by above theorem  $U \subseteq Z(R)$ . This R satisfies the property

 $d(u^2) = d(u)\theta(u) + \theta(u)d(u)$  for all  $u \in U$ . By theorem (3-2) of [3] we find that d(uv)=d(u)  $\theta(v)+\theta(u)d(v)$  for all  $u,v \in U$ . Further since  $\theta(u) \subseteq Z(R)$ .

We find that  $d(uv) = d(v)\theta(u) + d(u)\theta(v)$  holds for all  $u, v \in U$ .

## (3-3)Corollary:

Let R be a 2-torsion free prime ring if  $d: R \to R$  if is a Jordan right derivation, then d is right derivation.

## (3-4)Theorem:

Let R be a 2-torsion free ring and U a lie ideal of R such that  $u^2 \in U$  for all  $u \in U$ . Suppose that  $\theta$  is an endomrphism of R and R has a commutator which is not a zero divisor. If  $d: R \to R$  is an additive mapping satisfying  $d(u^2) = 2d(u)\theta(u)$  for all  $u \in U$ , then  $d(uv) = d(v)\theta(u) + d(u)\theta(v)$ 

<u>Proof:</u> for any  $u,v \in U$ , define a map  $f:U \times U \to R$ ,  $f(u,v) = d(uv) - d(v)\theta(u) - d(u)\theta(v)$  since  $\theta$  and d both are additive, f is additive in both the arguments and is zero if J is a right  $(\theta,\theta)$ -derivation.

Not that (8) is still valid in the present situation and hence we have  $[\theta(u), \theta(v)] f(u, v) = 0$  for all  $u, v \in U$  -----(3-4)

let a,b be an elements of U such that

 $[\theta(a), \theta(b)]c = 0$  limits that c = 0

application of (3-4) yields that

$$f(a,b) = 0$$
 -----(3-5)

Replacing u by u+a in (3-4) and using (3-4), we find that

 $[\theta(u), \theta(v)] f(a, v) + [\theta(a), \theta(v)] f(u, v) = 0 \text{ for all } u, v \in U -----(3-6)$ 

Replacing v by b in (3-6) and using (3-6) we have

$$f(u,b) = 0$$
 for all  $u \in U$  -----(3-7)

Further, substituting v+b for v in (3-6) and using (3-5) and (3-7) we get

$$[\theta(u), \theta(b)]f(a, v) + [\theta(a), \theta(b)]f(u, v) = 0 \text{ for all } u, v \in U ------(3-8)$$

Now replacing u by a in (3-8) and using the fact char  $R \neq 2$ , we have

$$f(a,v) = 0$$
 for all  $v \in U$  -----(3-9)

combining of (3-8) and (3-9) yields that  $[\theta(a), \theta(b)]f(u,v) = 0$  this implies that f(u,v) = 0 for all  $u,v \in U$ . i.e. d is a right  $(\theta,\theta)$ -derivation.

## (3-5)Theorem: [2.Theorem 3-2]:

Let R be a prime ring and k a non-zero ideal of R, and let  $\theta, \phi$  be automorphisms of R.

Suppose that  $d: R \to R$  is a  $(\theta, \varphi)$ -derivation of R.

- (i) if d acts as a homomorphism on k then d = 0 on R.
- (ii) if d acts as anti-homomorphism on k then d = 0 on R.

In the present section our objective is to extend the above study to the right derivation of a prime ring R which acts either as a homomorphism or as an anti-homomorphism of R.

## (3-6)Theorem:

Let R be a prime ring and k anon-zero ideal of R, and let  $\theta$  be outomorphisms of R suppose  $d: R \to R$  is a right  $(\theta, \phi)$ -derivation of R.

- (i) if d acts as an anti-homomorphism on K, then d = 0 on R.
- (ii) if d acts as a homomorphism on K, then d = 0 on R.

## proof:

(i) Let *d* act as an anti-homomorphism on k by our hypothesis we have

$$d(yx) = d(x)\theta(y) + d(y)\phi(x) - - - (3-10)$$
  
in (3-10) replacing y by yx  
$$d(x)d(yx) = d(yx(x)) = d(x)\theta(yx) + d(yx)\phi(x) - - - (3-11)$$

Now multiplying (3-10) in the left by d(x)

$$d(x)d(yx) = d(x)d(x)\theta(y) + d(x)d(y)\phi(x)$$

$$d(x)d(yx) = d(x)d(x)\theta(y) + d(yx)\phi(x)$$
 -----(3-12)

combining (3-11) and (3-12) we get

$$d(x)d(x)\theta(y) = d(x)\theta(y)\theta(x) - - - - (3-13)$$

in (3-13) replace y by yr to get

$$d(x)d(x)\theta(y)\theta(r) = d(x)\theta(y)\theta(r)\theta(x) - - - - - (3-14)$$

for all  $x, y \in K$ , and  $r \in R$ .

multiplying (3-13) on right by  $\theta(r)$  and combining with (3-14), we obtain

$$d(x)\theta(y)[\theta(r),\theta(x)] = 0 - - - - (3-15)$$

in (3-15) replacing y by ys we get

 $d(x)\theta(y)\theta(s)[\theta(r),\theta(x)] = 0$  for all  $x, y \in K$  and  $r, s \in R$ .

#### And hence

 $\theta^{-1}d(x)yR[r,x]=\{0\}$  for all  $x,y\in K$  and  $r\in R$ . Thus for each  $x\in K$ , the primeness of R forces that either [r,x]=0 or  $d(x)\theta(y)=0$ 

let  $K_1 = \{x \in K / d(x)\theta(y) = 0 \text{ for all } y \in K \text{ and } r \in R.$  Thus for each  $x \in K$ , the prime ness of R forces that either [r,x] = 0 or  $d(x)\theta(y) = 0$ .

Let  $K_1 = \{x \in K / d(x)\theta(y) = 0 \text{ for all } y \in K\}$  and  $K_2 = \{x \in K / [r,x] = 0 \text{ for all } r \in R\}$ Then clearly  $K_1$  and  $K_2$  are additive subgroups of K whose union is K by braur's trick, we have

 $d(x)\theta(y) = 0$  for all  $x, y \in K$  or [r, x] = 0 for all  $x \in K$  and  $r \in R$ ,

if [r,x]=0, replace x by sx to get [r,s]x=0 for all  $x \in K$  and  $r,s \in R$ , this implies that  $[r,s]Rx=\{0\}$ .

The prime ness of R forces that either x = 0 or [r,s] = 0, but  $K \neq \{0\}$ .

We have [r,s]=0 for all  $r,s \in R$ , i.e. R is commutative so

 $d(xy) = d(x)\phi(y) + \theta(x)d(y)$  for all  $x, y \in K$ , i.e. d is a  $(\phi, \theta)$ -derivation which acts as an anti-homomorphism on K. Hence by theorem (3-5) (ii) we have d = 0 on K.

Hencefor, we have remaining possibility that  $d(x)\theta(y) = 0$  for all  $x, y \in K$ .

```
Replace y by ry in (3-17), to get
d(x)\theta(r)\theta(y) = 0 for all x, y \in K and r \in R, and hence
\theta^{-1}d(x)Ry = \{0\} this implies that
\theta^{-1}(d(x)) = 0 that is d(x) = 0 for x \in K (3-18)
Replace x by sx in (3-18) to get
\theta(x)d(s) = 0 for all x \in K, s \in R-----(3-19)
Replacing x by xr in (3-19) we get
\theta(x)\theta(r)d(s) = 0 for all x \in K and r, s \in R, and hence xR\theta^{-1}d(s) = \{0\}
Since R is prime, and \kappa a non-zero ideal of R, we find that d=0
on R.
(ii) if d acts as a homomorphism on \kappa then we have
d(y)d(x) = d(yx) = d(x)\theta(y) + d(y)\phi(x) for all x, y \in K -----(3-20)
Replacing x by yx in (3-20) we get
d(xy)d(y) = d(y)\theta(x)\theta(y) + d(xy)\theta(y) for all x, y \in K
d(y)d(yx) = d(yx)\theta(y) + d(y)\phi(y)\phi(x)
Now application of (3-20) yields d(y)\phi(y)\phi(x) = d(y)\phi(y)\phi(x) this implies
d(y)(d(y) - \phi(y))\phi(x) = 0 for all x, y \in K-----(3-21)
Replace x by rx in (3-21) to get
d(y)d(y) - \phi(y)\phi(r)\theta(x) = 0 for all x, y \in K and r \in R, and hence
\theta^{-1}(d(y)(d(y) - \phi(y))Rx = \{0\} \text{ for all } x, y \in K.
The prime ness of R forces that either x = 0 or \theta^{-1}d(y)(d(y) - \phi(y)) = 0
Since K is a non-zero ideal of R, we have \theta^{-1}d(y)(d(y) - \phi(y)) = 0 this
yields that
d(y)(d(y) - \phi(y)) = 0 this is d(y^2) = d(y)\theta(y), since d is a right (\theta, \phi)-derivition
we find that d(y)\theta(y) = 0.
Linear zing the latter relation we have
d(y)\theta(x) + d(x)\theta(y) = 0 for all x, y \in K-----(3-22)
Replace x by xy in (3-22) to get
d(y)\theta(x)\theta(y) = 0 for all x, y \in K -----(3-23)
Substituting xs for x in (3-23) we get
d(y)\theta(x)\theta(s)\theta(y) = 0 for all x, y \in K and s \in R, and hence \theta^{-1}d(y)xRy = \{0\}.
```

This for each  $y \in K$ , the prime ness of R forces that either y = 0 also implies that

 $\theta^{-1}d(y)x = 0$  that is  $\theta(x)d(y) = 0$  -----(3-24)

Now using similar techniques as used to get (I) from (3-17) we get the required result.

#### REFERENCES

- 1- Ashraf,M.and .Rehman,N."on Lie ideals and Jordan derivation of prime rings"Arch.Math.36(2000),201-206.
- 2- Ashraf,M. ,.Rehman,N. and QuadriS,M.A,"on $(\sigma,\tau)$ -derivations incertain clss of rings,Rad.Math.9(1999),187-192.
- 3- Ashraf,M. ,.Rehman,N. and QuadriS,M.A''on Lie ideals and  $(\sigma,\tau)$ -Jordan derivations on rime rings,Tamkang J.Math.32(2001),247-252.
- 4- Ashraf,M., Rehman,N. and Shakir Ali''on Jordan left derivations of Lie ideals in rime rings,Southeast Asan Bull.Math.25(2001),375-382.
- 5- Awtar, R''Lie and Jordan structures in prime rings with derivations, Proc. Amer. Math. Soc. 41(1973), 67-74.
- 6- Awtar ,R "Lie ideals and Jordan derivations of prim rings with derivation" proc,Amer. Math so ,11,1973,67-74.
- 7- Bergen, J., Herstein, I.N and Kerr, J.W, "Lie ideals and derivation of primr rings. J Algebra 71(1981), 259-267.
- 8- Bresar,M. and VUK Man,J.,Jordan  $(\phi,\theta)$ -derivation ,Glas,Math EEE.,ser.26(1991),13-17.
- 9- Cairini ,L aqnd Criambrun,A,Lie ideals and nil derivations ,Boll.Un.mat.Later 6(1985), 487-503.
- 10- Herstein, I.N. Topics in ring theory. Univ. of chicay press. Chicago 1969.