Jordan Right ($\phi, \boldsymbol{\theta}$)-derivation of prime Rings

Farhan D. Shiya Department of Mathematics, College of Education, University of AL-Qudisiya

Abstract

Let R be a2-torsion free prime ring. Suppose that $\phi, \boldsymbol{\theta}$ are automorphisms of R. In the present paper it is established that if R admits non zero Jordan right (θ, θ)derivation, then R is commutative .Further , as an corollary of this result it is show that every Jordan right ($\boldsymbol{\theta}, \boldsymbol{\theta}$) derivation on R is a right ($\boldsymbol{\theta}, \boldsymbol{\theta}$)-derivation on R .
Finally , in case of an arbitrary prime ring it is proved that if R admits a right $(\phi, \boldsymbol{\theta})$-derivation which acts also as a homorphisms on anon zero ideal of R,then $d=0$ on R where $d: R \rightarrow R$ is a right ($\boldsymbol{\theta}, \boldsymbol{\theta}$)-derivation on R

1- Introduction

Thought the present paper R will denote an associative ring with center $Z(R)$. Recall that R is prime if $a R b=\{0\}$ implies that $\mathrm{a}=0$ or $\mathrm{b}=0$.As usually $[\mathrm{x}, \mathrm{y}$] will denote the commutator xy - yx .An additive subgroup U of R is called a Lie ideal of R if $[u, r] \in U$ for all $u \in U$ and $r \in R$. Suppose that ϕ, θ are endomorphisms of R.An additive mapping $\mathrm{d}: \mathrm{R} \rightarrow \mathrm{R}$ is called $\mathrm{a}(\phi, \boldsymbol{\theta})$-derivation if $\mathrm{d}(\mathrm{xy})=\mathrm{d}(\mathrm{x}) \phi(\mathrm{y})+\theta(\mathrm{x}) \mathrm{d}(\mathrm{y})$, and a Jordan (ϕ, θ)-derivation if $\mathrm{d}\left(\mathrm{x}^{2}\right)=$ $\mathrm{d}(\mathrm{x}) \theta(\mathrm{x})+\mathrm{d}(\mathrm{x}) \phi(x)$ For all $\mathrm{x}, \mathrm{y} \in \mathrm{R}$. In this present paper we shall show that if a 2 -torsion free prime ring R admits an additive mapping satisfying $d\left(u^{2}\right)=2 d(u) \theta(u)$ for all $u \in U$, then either
$d(U)=\{0\}$ or $U \subseteq Z(R)$ where U is a Lie ideal of R with $u^{2} \in U$ for all $u \in U$ and θ is automorphism of R. Further, some more related results are also obtain. Final section of the present paper deals with the study of right (ϕ, θ)-derivation which acts also a homomorphism of the ring.

1-1 Defintion

An additive Mapping $\mathrm{d}: \mathrm{R} \rightarrow \mathrm{R}$ is called a right (ϕ, θ)-derivation if $\mathrm{d}(\mathrm{xy})=\mathrm{d}(\mathrm{x}) \phi(\mathrm{y})+\mathrm{d}(\mathrm{y})_{\boldsymbol{\theta}}(\mathrm{x})$ and a Jordan $\operatorname{right}(\phi, \theta)$-derivation if $\mathrm{d}\left(\mathrm{x}^{2}\right)=\mathrm{d}(\mathrm{x}) \phi(\mathrm{x})+\mathrm{d}(\mathrm{x}) \theta(\mathrm{x})$ for all $\mathrm{x}, \mathrm{y} \in \mathrm{R}$.

2-Preliminaries

(2.1)Lemma: [7, Lemma 2]

If $U \not \subset Z(R)$ is a lie ideal of a 2-torsion free prime ring R and $a, b \in R$ such that $a U b=\{0\}$, then $a=0$ or $b=0$.
(2.2) Lemma:[8 , Lemma 4]

Let G and H be additive groups and let R be a 2 -trosion free ring, Let $f: G \times G \rightarrow H$ and $g: G \times G \rightarrow R$ be biadditive mappings
Suppose that for each pair $a, b \in G$ either $f(a, b)=0$ or $g(a, b)^{2}=0$, in this case either $f=0$ or $g(a, b)^{2}=0$ for all $a, b \in G$.

(2.3)Lemma:[9]

Let R be a 2 -torsion free prime ring and U a Lie ideal of R if admits a derivation d such that $d(U)^{n}=0$ for all $u \in U$, where $n \geq 1$ is a positive integer then $d(u)=0$ for all $u \in U$.
(2.4)Lemma: [10 , Lemma 13]

Let R be a 2 -torsion free semi prime ring if U is a commutative Lie ideal of R , then $\boldsymbol{U} \subseteq \boldsymbol{Z}(\boldsymbol{R})$.

(2.5 Lemma:

Let R be a 2 -torsion free ring and let U be a Lie ideal of R such that $u^{2} \in U$ for all $u \in U$, suppose that θ is an endomorphism of R if $d: R \rightarrow R$ is an additive mapping satisfying $d\left(u^{2}\right)=2 d(u) \theta(u)$ for all $u, v \in U$,then.
(i) $d(u v+v u)=2 d(u) \theta(v)+2 d(v) \theta(u)$
(ii) $d(u v u)=d(v) \theta\left(u^{2}\right)+3 d(u) \theta(u) \theta(v)-d(u) \theta(u) \theta(v)$
(iii) $d(u) \theta(u)[\theta(u), \theta(v)]=d(u)[\theta(u), \theta(v)] \theta(v)$
(iv) $d[u, v[\theta(u), \theta(v)]=0$ for all $u, v \in U$
(v) $d\left(v u^{2}\right)=d(v) \theta\left(u^{2}\right)+d(u)[3 \theta(v) \theta(u)-\theta(u) \theta(v)]-d[u, v] \theta(u)$ for all $u, v \in U$.

Proof:

(i) $d(u+v)^{2}=2 d(u+v) \theta(u+v)$

$$
=2 d(u) \theta(u)+2 d(u) \theta(v)+2 d(v) \theta(u)+2 d(v) \theta(v)
$$

and on the hand

$$
d(u+v)^{2}=d\left(u^{2}+v^{2}+u v+v u\right)=d\left(u^{2}\right)+d\left(v^{2}\right)+d(u v+v u)
$$

Combining two relations

$$
d(u v+v u)=2 d(u) \theta(v)+2 d(v) \theta(u)
$$

(ii) $d(u(v u+u v)+(v u+u v) u)$ by (i)
$=2 d(u) \theta(v u+u v)+2 d(v u+u v)+\theta(u)$
$=2 d(u)[\theta(v) \theta(u)+\theta(u) \theta(v)]+2[d(v) \theta(u)+2 d(u) \theta(u)] \theta(u)$
$4 d(v) \theta\left(u^{2}\right)+6 d(u) \theta(u)+2 d(u) \theta(u) \theta(v)$
on the other hand.

$$
\begin{aligned}
& d\left(u(v u+u v)+(v u+(u v) u)=d\left(u v u+u^{2} v+v u^{2}+u v u\right)\right. \\
& =d\left(u^{2} v+v u^{2}\right)+2 d(u v u)
\end{aligned}
$$

combining the above equation we get

$$
d(u v u)=2 d(v) \theta\left(u^{2}\right)+3 d(u) \theta(v) \theta(u)-d(u) \theta(u) \theta(v)
$$

(iii) by linearzing (i) on u we get

$$
d(u+w) v(u+w)
$$

$=d(v) \theta(u+w)^{2}+3 d(u+w) \theta(v) \theta(u+w)-d(u+w) \theta(u+w) \theta(v)$
$=d(v) \theta\left(u^{2}\right)+d(v) \theta\left(w^{2}\right)+d(v)[\theta(u) \theta(w)+\theta(w) \theta(u)]+3 d(u) \theta(v) \theta(u)+3 d(u) \theta(v) \theta(w)$
$+3 d(w) \theta(v) \theta(u)+3 d(w) \theta(v) \theta(w)-d(u) \theta(u) \theta(v)-d(w) \theta(u) \theta(v)-d(u) \theta(w) \theta(v)-d(w) \theta(w) \theta(v)$
-----------------(2)
on the other hand.
$d(u+w) v(u+w)=d(u v u)+d(w v w)+d(u v w+d(u v w+w v u)$

combining (2) and (3) we arrive at

$d(u v w+w v u)=d(v)[\theta(u) \theta(v)+\theta(w) \theta(u)]+3 d(u) \theta(v) \theta(w)$
$+3 d(w) \theta(v) \theta(u)-d(w) \theta(u) \theta(v)-d(u) \theta(w) \theta(v)$
--(4)
since $u v+v u$ and $u v-v u$ both belong to u we find that $2 u v \in U$ for all $u, v \in U$.
Hence, by our hypothesis we find that

$d\left((2 u v)^{2}\right)=2 d(2 u v) \theta(2 u v)$

i.e. $4 d(u v)^{2}=8 d(u v) \theta(u v)$ since char $R \neq 2$
we have $d(u v)^{2}=d(u v) \theta(u) \theta(v)$. Replace w by $2 u v$ in ---(4) and use the
fact that char $\quad R \neq 2$ to get
$d(u v(u v)+(u v) v u)=d(v)[\theta(u) \theta(u v)+\theta(u v) \theta(u)]+3 d(u) \theta(v) \theta(u v)+3 d(u v) \theta(v) \theta(u) \theta(v)$
$\left.=d(v) \theta\left(u^{2}\right) \theta(v)+\theta(u) \theta(v) \theta(u)\right]+3 d(u) \theta(v) \theta(u) \theta(v)-d(u v) \theta(v) \theta(u)$
$=d(v)\left[\theta\left(u^{2}\right) \theta(v)+\theta(u) \theta(v) \theta(u)\right]+3 d(u)\left[\theta\left(v^{2}\right) \theta(u)\right]-d(u v) \theta(v) \theta(u)--\cdots-\cdots---(5)$
on the other hand

$$
\begin{equation*}
d\left((u v)^{2}+u v^{2} u\right)=2 d(u v) 2 \theta(u) \theta(v)+2 d(v) \theta\left(u^{2}\right) \theta(v)+3 d(u) \theta(u) \theta\left(v^{2}\right)-d(u) \theta\left(v^{2}\right) \theta(u) . \tag{6}
\end{equation*}
$$

combining 5 and 6 we get
$d(u v)[\theta(u), \theta(v)]=d(v)[\theta(u), \theta(v)] \theta(u)+\theta(v)[\theta(u), \theta(v)] \theta(v)--\cdots---(7)$
Replacing v by $u+v$ in (7) we have
$2 d(u) \theta(u)[\theta(u), \theta(v)]+d(u v)[\theta(u), \theta(v)]=2 d(u)[\theta(u), \theta(v)] \theta(u)+d(v)[\theta(u), \theta(v)] \theta(u)+d(u)[\theta(u), \theta(v)] \theta(v)$
Now application of (7) yields (iii)
(iv) Lineariz (iii) on u to get
$d(u) \theta(u)[\theta(u), \theta(v)]+d(v) \theta(v)[\theta(u), \theta(v)]+d(v) \theta(u)[\theta(u), \theta(v)]+d(u) \theta(v)[\theta(u), \theta(v)]$
$=d(v)[\theta(w), \theta(v)] \theta(u)+d(v)[\theta(u), \theta(v)] \theta(u)+d(u)[\theta(u), \theta(v)] \theta(v)+d(v)[\theta(u), \theta(v)] \theta(v)$
for all $u, v \in U$
Now application of (7) and (ii) yields that
$d(v) \theta(u)[\theta(u), \theta(v)]+d(u) \theta(v)[\theta(u), \theta(v)]$
$=d(u v)\left[\theta u, \theta_{v}\right]$ and hence
$\{d(u v)-d(v) \theta(u)-d(u) \theta(v)\}[\theta(u), \theta(v)]=0$ for all $u, v \in U$
combining
$d(u v+v u)=2 d(v) \theta(u)+2 d(u) \theta(v)$ and (8) we find that
$\{d(u v)-d(v) \theta(u)-d(w) \theta(v)\}[\theta(u), \theta(v)]=0$
for all $u, v \in U$
Further, combining of (8) and (9) yields the required result.
(iv) Replace v by $2 v u$ in $d(u v+v u)$ and use the fact char $R \neq 2$ to get
$d\left(u 2 v u+2 v u^{2}\right)=2 d(2 v u) \theta(u)+2 d(u) \theta(2 v u)$
$=4(d(v u) \theta(u)+d(u) \theta(v) \theta(u))$
$\therefore d\left(u v u+v u^{2}\right)=2(d(v u) \theta(u)+d(u) \theta(v) \theta(u))$ for all $u, v \in U$
Again me placing v by $2 u v$ in $d(u v+v u)$
$d\left(u^{2} v+u v u\right)=2 d(u v) \theta(u)+d(u) \theta(u) \theta(v)$ for all $u, v \in U$
Now combining (10) and (11), we get $d\left(u^{2} v-v u^{2}\right)=2 d[u, v] \theta(u)+d(u)[\theta(u), \theta(v)]$ for all $u, v \in U$
Replacing u by u^{2} in $d(u v+v u)$, we have
$d\left(u^{2} v+v u^{2}\right)=2 d(v) \theta\left(u^{2}\right)+2 d\left(u^{2}\right) \theta(v)+2 d(u) \theta(u) \theta(v)$
$=2\left\{d(v) \theta\left(u^{2}\right)+2 d(u) \theta(u) \theta(v)\right\}$

Hence, subtracting (12) from (13) and using the fact that characteristic of $R \neq 2$ we find that

$$
d\left(v u^{2}\right)=d(v) \theta\left(u^{2}\right)+d(u)\{3 \theta(v) \theta(u)-\theta(u) \theta(v)\}-d[u, v] \theta(u) \text { for all } u, v \in U .
$$

3- Right derivation and commutativity of prime ring .

(3-1) Theorem:
Let R be a 2-torsion free prime ring and let U be a lie ideal of R such that $u^{2} \in U$ for all $u \in U$ suppose that θ is an outomorphism of R if $d: R \rightarrow R$ is an additive mapping satisfying $d\left(u^{2}\right)=2 d(u) \theta(u)$ for all $u \in U$ then either $d(U)=\{0\}$ or $U \subseteq Z(R)$
proof: suppose that $U \not \subset Z(R)$ by Lemma(2-5) (iii) we have $d(u)\left\{\theta\left(u^{2}\right) \theta(v)-2 \theta(u) \theta(v) \theta(u)+\theta(v) \theta\left(u^{2}\right)\right\}=0$ for all $u, v \in U$
Replacing $[u, w]$ for ${ }_{u}$ in (3.1) we get $d[u, w \| \theta(u), \theta(w)]^{2} \theta(v)-2[\theta(u), \theta(w)] \theta(v)[\theta(u), \theta(w)] \theta(v) \theta[u, w]^{2}$ $d[u, w]\left\{[\theta(u), \theta(w)]^{2} \theta(v)-2[\theta(u), \theta(w)] \theta(v)[\theta(u), \theta(w)]+\theta(v)[\theta(u), \theta(w)]\right\}$ for all $u, v, w \in U$

Now, application of Lemma (2-5) (ii) yields that $\theta^{-1} d\left([u, w] \theta^{-1}[\theta(u), \theta(w)]^{2}\right) U=\{0\}$
hence by Lemma 2.1 we find that R or each pair $u, w \in U$ either $[\theta(v), \theta(w)]^{2}=0$ or $d([u, w]=0$. This implies that either $[u, w]^{2}=0$ or $d([u, w])=0$. Note that the mappings $(u, w) \rightarrow[u, w]$ and $(u, w) \rightarrow d([u, w])$
satisfy the requirements of the Lemma (2-2).
Hence either $[u, w]^{2}=0$ for all $u, w \in U$ or $d([u, w]=0$ for all $u, w \in U$. If $[u, w]^{2}=0$ for all $u, w \in U$, then for each $u \in U$,
$\left(I_{n}(w)\right)^{2}=0$ for all $w \in U$, where I_{n} is the inner derivation such that $I_{n}(w)=[u, w]$. Thus by the application of Lemma (2-3). we find that U is a commutative Lie ideal of R , and hence by Lemma (2.4) $U \subseteq Z(R)$, a contradiction. Hence we consider the remaining case that $d([u, w])=0$ for all $u, w \in U$
i.e. $d(u w)=d(w u)$ for all $u, w \in U$, since $w u-u w$ and $w u+u w$ both belong to U, we find that $2 w u \in U$ for all $u, w \in U$.
This yields that $d((2 w u) u)=d(u(2 w u))$
Since $d(u v+v u)$ is valid in the present situation, we find that
$4 d((w u) u)=d((2 w u) u+u(2 w u)$
$=4 d(u) \theta(w) \theta(u)+2 d(2 w u) \theta(u)$
$=4 d(u) \theta(w) \theta(u)+2 d(w u+u w) \theta(u)$
$=4\left[d(u) \theta(w) \theta(u)+d(u) \theta(u) \theta(w)+d(w) \theta\left(u^{2}\right)\right]$
since R is 2-torsion free, we obtain
$d((w u) u)=d(w) \theta\left(u^{2}\right)+d(u) \theta(w) \theta(u)+d(u) \theta(w) \theta(u)$ for all $u, w \in U$
(3-2)
since $d([u, w])=0$ for all $u, w \in U$, using Lemma (2-5) (iv) and (3-2), we get
$2 d(u)[\theta(u), \theta(w)]=0$ this implies that
$d(w)[\theta(u), \theta(w)]=0$ for all $u, w \in U$---------(3-3)
Now, replacing w by $2 w v$ in (3-3) and using the fact that char $R \neq 2$ we get
$d(u)[\theta(u), \theta(w)] \theta(v)=0$ i.e., $\theta^{-1} d(u) \theta^{-1}[\theta(u), \theta(w)] U=\{0\}$
thus by Lemma (2-1), we find that for each $u \in U, \theta^{-1}[\theta(u), \theta(w)]=0$ or $\theta^{-1} d(w)=0$.
This implies that $[u, w]=0$ or $d(u)=0$
Now let $U_{1}=\{u \in U /[u, w]=0$ for all $w \in U\}$
And $U_{2}=\{u \in U / d(u)=0\}$. Clearly U_{1}, U_{2} are additive subgroups of U whose union is U, but a group can not be written as a union of two of its proper subgroups and hence by brauer's trick either $U=U_{1}$ or $U=U_{2}$ if $U=U_{1}$, then $[u, w]=0$ for all $u, w \in U$ and by using the similar arguments as above we get $U \subseteq Z(R)$, again a contradiction.
Hence we have the remaining possibility that $d(u)=0$ for all $u \in U$. i.e
$d(u)=\{0\}$ this completes the proof of the theorem.

(3-2)Theorem :

Let R be a 2-torsion free prime ring and U a Lie ideal of R such that
$u^{2} \in U$ for all $u \in U$. Suppose that θ is an automorphism of R. if $d: R \rightarrow R$ is an additive mapping satisfying $d\left(u^{2}\right)=2 d(u) \theta(u)$ for all $u \in U$, then

$$
d(u v)=d(v) \theta(u)+d(u) \theta(v) \text { for all } u, v \in U .
$$

Proof: suppose that $d=0$ on U. Since $2 u v \in U, u v-v u$ both belong to U, we find that $2 d(u v)=d(2 u v)=0$. This implies that $d(u v)=0$ for all $u, v \in U$.

Hence the result is obvious in the present case. Therefore now assume that $d(U) \neq\{0\}$. Then by above theorem $U \subseteq Z(R)$. This R satisfies the property
$d\left(u^{2}\right)=d(u) \theta(u)+\theta(u) d(u)$ for all $u \in U$. By theorem (3-2) of [3] we find that $\mathrm{d}(\mathrm{uv})=\mathrm{d}(\mathrm{u}) \theta(\mathrm{v})+\theta(\mathrm{u}) \mathrm{d}(\mathrm{v})$ for all $u, v \in U$. for all $u, v \in U$. Further since $\theta(u) \subseteq Z(R)$.
We find that $d(u v)=d(v) \theta(u)+d(u) \theta(v)$ holds for all $u, v \in U$.

(3-3)Corollary :

Let R be a 2-torsion free prime ring if $d: R \rightarrow R$ if is a Jordan right derivation, then d is right derivation.

(3-4)Theorem:

Let R be a 2-torsion free ring and U a lie ideal of R such that $u^{2} \in U$ for all $u \in U$. Suppose that θ is an endomrphism of R and R has a commutator which is not a zero divisor. If $d: R \rightarrow R$ is an additive mapping satisfying $d\left(u^{2}\right)=2 d(u) \theta(u)$ for all $u \in U$, then $d(u v)=d(v) \theta(u)+d(u) \theta(v)$

Proof: for any $u, v \in U$, define a map $f: U \times U \rightarrow R$, $f(u, v)=d(u v)-d(v) \theta(u)-d(u) \theta(v)$ since θ and d both are additive, f is additive in both the arguments and is zero if J is a right (θ, θ)-derivation .
Not that (8) is still valid in the present situation and hence we have $[\theta(u), \theta(v)] f(u, v)=0$ for all $u, v \in U$--------(3-4)
let a, b be an elements of U such that
$[\theta(a), \theta(b)] c=0$ limits that $c=0$
application of (3-4) yields that
$f(a, b)=0$
Replacing u by $u+a$ in (3-4) and using (3-4), we find that $[\theta(u), \theta(v)] f(a, v)+[\theta(a), \theta(v)] f(u, v)=0$ for all $u, v \in U$
Replacing v by b in (3-6) and using (3-6) we have
$f(u, b)=0$ for all $u \in U------(3-7)$
Further, substituting $v+b$ for v in (3-6) and using (3-5) and (3-7) we get
$[\theta(u), \theta(b)] f(a, v)+[\theta(a), \theta(b)] f(u, v)=0$ for all $u, v \in U---\cdots----(3-8)$
Now replacing u by a in (3-8) and using the fact char $R \neq 2$, we have
$f(a, v)=0$ for all $v \in U$---------------(3-9)
combining of (3-8) and (3-9) yields that $[\theta(a), \theta(b)] f(u, v)=0$ this implies that $f(u, v)=0$ for all $u, v \in U$. i.e. d is a right $(\theta, \theta)-$ derivation .
(3-5)Theorem: [2.Theorem 3-2]:
Let R be a prime ring and k a non-zero ideal of R , and let θ, ϕ be automorphisms of R.
Suppose that $d: R \rightarrow R$ is a (θ, φ)-derivation of R .
(i) if d acts as a homomorphism on k then $d=0$ on R .
(ii) if d acts as anti-homomorphism on k then $d=0$ on R .

In the present section our objective is to extend the above study to the right derivation of a prime ring R which acts either as a homomorphism or as an anti-homomorphism of R.

(3-6)Theorem:

Let R be a prime ring and k anon-zero ideal of R , and let θ be outomorphisms of R suppose $d: R \rightarrow R$ is a right (θ, ϕ)-derivation of R .
(i) if d acts as an anti-homomorphism on K, then $d=0$ on R.
(ii) if d acts as a homomorphism on K, then $d=0$ on R.
proof:
(i) Let d act as an anti-homomorphism on k by our hypothesis we have
$d(y x)=d(x) \theta(y)+d(y) \phi(x)-\cdots-----(3-10)$
in (3-10) replacing y by $y x$
$d(x) d(y x)=d(y x(x))=d(x) \theta(y x)+d(y x) \phi(x)$

Now multiplying (3-10) in the left by $d(x)$
$d(x) d(y x)=d(x) d(x) \theta(y)+d(x) d(y) \phi(x)$
$d(x) d(y x)=d(x) d(x) \theta(y)+d(y x) \phi(x)$
combining (3-11) and (3-12) we get
$d(x) d(x) \theta(y)=d(x) \theta(y) \theta(x)$
in (3-13) replace y by $y r$ to get
$\mathrm{d}(\mathrm{x}) \mathrm{d}(\mathrm{x}) \theta(\mathrm{y}) \theta(\mathrm{r})=\mathrm{d}(\mathrm{x}) \theta(\mathrm{y}) \theta(\mathrm{r}) \theta(\mathrm{x})$
for all $x, y \in K$, and $r \in R$.
multiplying (3-13) on right by $\theta(r)$ and combining with (3-14), we obtain
$d(x) \theta(y)[\theta(r), \theta(x)]=0------------------(3-15)$
in (3-15) replacing y by $y s$ we get
$d(x) \theta(y) \theta(s)[\theta(r), \theta(x)]=0$ for all $x, y \in K$ and $r, s \in R$.
And hence
$\theta^{-1} d(x) y R[r, x]=\{0\}$ for all $x, y \in K$ and $r \in R$. Thus for each $x \in K$, the primeness of R forces that either $[r, x]=0$ or $d(x) \theta(y)=0$
let $K_{1}=\{x \in K / d(x) \theta(y)=0$ for all $y \in K$ and $r \in R$. Thus for each $x \in K$, the prime ness of R forces that either $[r, x]=0$ or $d(x) \theta(y)=0$.
Let $K_{1}=\{x \in K / d(x) \theta(y)=0$ for all $y \in K\}$ and $K_{2}=\{x \in K /[r, x]=0$ for all $r \in R\}$ Then clearly K_{1} and K_{2} are additive subgroups of K whose union is K by braur's trick, we have $d(x) \theta(y)=0$ for all $x, y \in K$ or $[r, x]=0$ for all $x \in K$ and $r \in R$, if $[r, x]=0$, replace x by $s x$ to get $[r, s] x=0$ for all $x \in K$ and $r, s \in R$, this implies that $[r, s] R x=\{0\}$.
The prime ness of R forces that either $x=0$ or $[r, s]=0$, but $K \neq\{0\}$.
We have $[r, s]=0$ for all $r, s \in R$, i.e. R is commutative so $d(x y)=d(x) \phi(y)+\theta(x) d(y)$ for all $x, y \in K$, i.e. d is a $(\phi, \boldsymbol{\theta})$-deriveation which acts as an anti-homomorphism on K . Hence by theorem (3-5)
(ii) we have $d=0$ on R .

Hencefor, we have remaining possibility that $d(x) \theta(y)=0$ for all $x, y \in K$.

Replace y by $r y$ in (3-17), to get
$d(x) \theta(r) \theta(y)=0$ for all $x, y \in K$ and $r \in R$, and hence
$\theta^{-1} d(x) R y=\{0\}$ this implies that
$\theta^{-1}(d(x))=0$ that is $d(x)=0$ for $x \in K$ (3-18)
Replace x by $s x$ in (3-18) to get
$\theta(x) d(s)=0$ for all $x \in K, s \in R$
Replacing x by $x r$ in (3-19) we get
$\theta(x) \theta(r) d(s)=0$ for all $x \in K$ and $r, s \in R$, and hence $x R \theta^{-1} d(s)=\{0\}$
Since R is prime, and k a non-zero ideal of \mathbf{R}, we find that $d=0$ on R.
(ii) if d acts as a homomorphism on K then we have
$d(y) d(x)=d(y x)=d(x) \theta(y)+d(y) \phi(x)$ for all $x, y \in K-\cdots-\cdots---(3-20)$
Replacing x by $y x$ in (3-20) we get
$d(x y) d(y)=d(y) \theta(x) \theta(y)+d(x y) \theta(y)$ for all $x, y \in K$
$d(y) d(y x)=d(y x) \theta(y)+d(y) \phi(y) \phi(x)$
Now application of (3-20) yields $d(y) \phi(y) \phi(x)=d(y) \phi(y) \phi(x)$ this implies $d(y)(d(y)-\phi(y)) \phi(x)=0$ for all $x, y \in K--------(3-21)$
Replace x by $r x$ in (3-21) to get
$d(y) d(y)-\phi(y) \phi(r) \theta(x)=0$ for all $x, y \in K$ and $r \in R$, and hence
$\theta^{-1}(d(y)(d(y)-\phi(y)) R x=\{0\}$ for all $x, y \in K$.
The prime ness of R forces that either $x=0$ or $\theta^{-1} d(y)(d(y)-\phi(y))=0$
Since K is a non-zero ideal of R , we have $\theta^{-1} d(y)(d(y)-\phi(y))=0$ this yields that
$d(y)(d(y)-\phi(y))=0$ this is $d\left(y^{2}\right)=\boldsymbol{d}(\boldsymbol{y}) \boldsymbol{\theta}(\boldsymbol{y})$, since d is a right $(\boldsymbol{\theta}, \boldsymbol{\phi})-$ derivition we find that $\boldsymbol{d}(\boldsymbol{y}) \boldsymbol{\theta}(\boldsymbol{y})=\mathbf{0}$.
Linear zing the latter relation we have $d(y) \theta(x)+d(x) \theta(y)=0$ for all $x, y \in K---\cdots----(3-22)$
Replace x by $x y$ in (3-22) to get
$d(y) \theta(x) \theta(y)=0$ for all $x, y \in K$
Substituting $x s$ for x in (3-23) we get
$d(y) \theta(x) \theta(s) \theta(y)=0$ for all $x, y \in K$ and $s \in R$, and hence $\theta^{-1} d(y) x R y=\{0\}$.

This for each $y \in K$, the prime ness of R forces that either $y=0$ also implies that

$$
\theta^{-1} d(y) x=0 \text { that is } \theta(x) d(y)=0 \text {-------------------(3-24) }
$$

Now using similar techniques as used to get (I) from (3-17) we get the required result.

REFERENCES

1- Ashraf,M.and .Rehman,N.'"on Lie ideals and Jordan derivation of prime rings"Arch.Math.36(2000),201-206.
2- Ashraf,M. ,.Rehman,N. and QuadriS,M.A,'on (σ, τ) derivations incertain clss of rings,Rad.Math.9(1999),187192.

3- Ashraf,M. ,.Rehman,N. and QuadriS,M.A'on Lie ideals and (σ, τ)-Jordan derivations on rime rings,Tamkang J.Math.32(2001),247-252.

4- Ashraf,M. ,.Rehman,N. and Shakir Ali"on Jordan left derivations of Lie ideals in rime rings,Southeast Asan Bull.Math.25(2001),375-382.
5- Awtar, R'Lie and Jordan structures in prime rings with derivations,Proc.Amer.Math.Soc.41(1973),67-74.
6- Awtar , R 'Lie ideals and Jordan derivations of prim rings with derivation" proc,Amer. Math so ,11,1973,6774.

7- Bergen,J.,Herstein,I.N and Kerr,J.W,'Lie ideals and derivation of primr rings.J Algebra 71(1981),259-267.
8- Bresar,M. and VUK Man,J.,Jordan ($\phi, \boldsymbol{\theta})$-derivation ,Glas,Math EEE.,ser.26(1991),13-17.
9- Cairini ,L aqnd Criambrun,A,Lie ideals and nil derivations ,Boll.Un.mat.Later 6(1985), 487-503.
10- Herstein,I.N.Topics in ring theory.Univ. of chicay press. Chicago 1969.

