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On Solutions of Second Order Differential Equations 

By 
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Abstract 

Our aim in this work is to give the general form for finding the general 
solution to the    differential equation which has the form   y″+ p (x) y'+ Q 

(x) y =0 and its proofs by using the assumption 
dxxZ

ey
)(

     which 

changes the above equation to Riccati equation which has the form    
Z' +Z² + p (x) Z+ Q(x) = 0 . 

Introduction 
Many researchers in the field of differential equations and others, may face 

the problem of solving some differential equations whose solutions are 

difficult to find by using the simple methods . Therefore , they are trying to 

solve these equations by the power series or the Frobenius method [7] . 

Mohammed [4] faced difficulties in solving equations with the following 

forms  
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     yxbpppxyyx              
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By using usual simple methods. So, he tried to solve these two equations 

which have a regular singular point at x=0, where p is a constant , by using 

the Frobenius method. Another researcher faced a difficult , in solving  the 

equation 4xy"+2y'+y=0 

By using known methods, therefore, he applied the Frobenius method for 

solving this equation.  

In this work, we will give a method for solving the above equations and 

which like it. This method depends on finding a function Z(x) such that the  

assumption                  y=e∫Z(x)dx
  gives the general solution of the  differential 

equations.  

. 
1-   Riccati Equation [5]:- 
The general form of Riccati equation is written as 
                      y'=ƒ(x) +g(x) y+h(x) y²... (1) 
Where ƒ(x), g(x) and h(x) are given functions of x (or constants). We can 
solve it, if one or more particular solutions of (1) can be found by inspection 
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or otherwise. And the general solution of (1) is easy to be obtained by the 
following conditions: 
i-if y1   a particular solution is known, then the general solution can be 
obtained by the assumption:- 

1
yyU    

Then (1) transformed into Bernoulli equation  
2)' hUU2hy(g(x)U 

1
 

So, the general solution of (1) is given by  

 
  


dx2hyg

ez(x);   xzdxxzxhcyy
1

1
)()()()( 

ii –if two particular solutions y1 and y2 are known, then the general solution 
of (1) can be found by the assumption  

U(y-y2) =y-y1, 

Then the general solution is given by:- 

 


dxy(y  xh
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Where C is an arbitrary constant. 
III-if three particular solutions are known, say y1 ,y2 and y3, then the general 
solution of equation (1) is given as: 

,
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Where C is an arbitrary constant. 
2- Some Types of Second Order Differential Equations Reduced to the 
First Order Differential Equation [3] 
        The general formula of the second order differential equation is  

F (x, y, ý, y") =0... (2) 
Some of these equations can be reduced to first order equations as follows 
i-if x is missing, we assume  

dy

dp p
dx

dp
   y″=    ý=p 

Then the equation (2) becomes of first order equation with variables y and p, 
and we can solve it by simple methods. 
ii-if y is missing, we assume that  

dx

dp   y"=p'=      y'=p 

Then the equation (2) becomes of the first order equation with variables x 
and p, and we can also solve it by simple methods.  
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iii-if x and y are not missing, then the solution of the equation (2) will be 
shown in the last section.  
3-How to find the general solution for the second order differential 
equations which have the standard form  

y″+p(x) ý+Q(x) y=0.   
 In this section, we discuss a method for solving some of the second   order 
differential equations, which have the general form  

y″+p(x) ý+Q(x) y =0... (3) 
Where p(x) and Q(x) are functions of x. In order to find the general solution 

of this equation,  we search a new function Z(x), such that the assumption  

)4...(




Z(x)dx

ey   

Represents, the general solution of the equation (3). This assumption will 
transform the equation (3) to the first order differential equation through 
finding ý, y″ from equation (4) where as, 
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 And by substituting (y, ý, y″) in equation (3), we get    

  0
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exZxp
Z(x)dx

exZxZ 

  ,
Z(x)dx

e   0
Since 

),5...(0)()()()()(' 2  xQxZxpxZxZ 

(5) is an equation of the first order which is similar to Riccati equation.   
In order to find the solution of (5), we go back to the form of the functions 
P(x) and Q(x). Now 
i-if p(x) and Q(x) are constants say p(x) =a andQ(x) =b then the 
equation (5) becomes  

Z′(x) +Z²(x) + aZ(x) +b=0 
 And the solution of (3) is given by:-    
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Proof: 
a)  Since Z´(x) +Z²(x)+ aZ(x) +b=0, so   
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where A and B are arbitrary constants 

Proof:-since 
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dx
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by   given is  solution
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Note: - some of these equations can be transformed into  

variable separable equations and don't need the above formula to find the 
general solution  

Example (1):- for solving the differential equation  
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: cases three are there then result  a As
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Where A and B are constants 
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