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Abstract 
         Design of steel tapered member under combined axial and flexural strength is somewhat 
complex if no approximations are made. However, recent Load Resistance Factor Design (LRFD) 
of the AISC code has treated the problem with sufficient accuracy and ease. The aim of this study is 
to present an algorithm for the optimum design of steel frames composed of tapered beams and 
columns with I-section in which the width is taken as constant, together with the thickness of web 
and flange, while the depth is considered to be varying linearly between joints .The objective 
function which is taken as the weight of the steel frame is expressed in terms of the depth at each 
joint. Both the displacement and combined axial and flexural strength constraints are considered in 
the formulation of the design problem .The strength constraints are expressed as a nonlinear 
function of the depth variables. The optimality criteria method is then used to obtain a recursive 
relationship for the depth variable under the displacement and strength constraints. Numerical 
examples are presented to demonstrate the practical application of the algorithm.  
Keywords: Design, tapered, steel, axial, flexural, strength, constraints , optimum, nonlinear, 
stability 

  
 و الإزاحة غير موشورية و باستخدام محددي أعضاء للمنشات الحديدية المرآبة من الأمثلالتصميم 

 المرن للمنشأو  السلوك غير الخطي تأثيرالمقاومة تحت 
 

  باديهيثم علي
  آليَّة هندسة\ جامعة القادسية \ تدريسي في 

  
 

  الخلاصة
 المعقدة الأمور الانثناء من وأحمال لمحورية المركبة االأحمال  أثيرتالموشوري تحت غير الإنشائييعتبر تصميم العضو      

 التابعة  LRFD الأمريكيةان المدونة , صياغة المعادلات التصميمية  التقريبية في الحلول  لم تستخدم بعض إذا الشيءبعض 

ان الهدف من هذا ابحث هو .  بهالأبأسة  للمنشات الحديدية  تعاملت مع هذه المسالة بطريقة بسيطة نسبيا وبدقالأمريكيهد عللم

ومكونة ) جسور , أعمدة( لاموشورية أعضاء للهياكل الحديدية المؤلفة من الأمثلتقديم طريقة ومن ثم مخطط انسيابي للتصميم 

ون متغيرا كبحيث يكون عرض المقطع مع سمك الشفة و الوتر ثابتين بينما عمق المقطع ي)  I (حرف من مقاطع على شكل 

 ولذلك تم التعبير عن هذه الدالة بدلالة سمك للمنشأان الدالة المطلوبة في هذه الدراسة تمثل الوزن الكلي . لى طول ذلكع

 و المقاومة في كتابة المعادلات الإزاحة بنضر الاعتبار محددي الأخذ تم . هالمقطع العرضي للعضو في كل نهاية من نهايتي

ومن ثم وباستخدام محدد  , أيضاحدد المقاومة بصيغة غير خطية وبدلالة سمك المقطع تم التعبير عن دالة م . ةالتصميمي
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 و الإزاحةتحت محددي ) الإنشائيسمك المقطع ( علاقات  تكرارية متتالية للمتغير التصميمي ى عدةة تم الحصول عليالامثل

  . ة التقنية المتبعة والبرنامج المستخدم فعاليح  لتوضيالأمثلةعلى مجموعة من ح  المقترالأسلوبتم تطبيق . المقاومة 
 
Nomenclature 
li is the length of the tapered member i. 
 tf, tw, thickness of flange and web of the I-section of the tapered member respectively. 
bf  is the width of the flange  
ρ and iν  are the density and volume of typical tapered member  
i shown in Fig.(1) , respectively . 
nm is the total number of tapered members in the frame . 
Di is the depth variable belonging to member i,  
D1i is the lower bound of the depth variable . 
gdj (D1i , D2i) represents jth displacement constrains .  
gsri (D1i , D2i) represents strength  constrains  for member i. 
k  Is the total number of restricted displacement. 

jδ  is the displacement at node where constraints is wanted . 
juδ is its upper bound. 

Fy is specified yield stress  
Ag is the gross area of· the member at the smaller end. 

effλ  is called the effective slenderness parameter. 
Sx, the sectional modulus of the larger end  
Fb is the design flexural stress of tapered member,  
 
Introduction  
 Steel frames with tapered members were preferred  in the design of structure whenever the 
architectural requirements allow their presence .They  provide better distribution of strength as well 
as yield  lighter design. The methods available for the analysis of such frames are well established 
(Haitham, 2000), (Oran, 1974) .In most of the practical design codes , approximate procedures are 
suggested for dimensioning  tapered members which are  subjected to the combined action of axial 
force and bending moment . 
 In this study, an optimum design algorithm is presented which takes into account the 
geometrical nonlinearity for steel frames with tapered members. This is achieved by coupling 
optimality criteria approach with large deformation analysis method of elastic tapered steel frame 
develops in Ref (2). 
 
Optimum Design Problem 

The optimum design problem a nonlinear steel frames composed of tapered  members 
subjected to displacement and strength constraints can be expressed as follows :- 

Min W=
∑
=

nm

i
ii v

1
ρ

                        i=1,…,nm                                                                                        (1) 
Subjected to  
gdj (D1i, , D2i)     ≤  0                    j=1,…, k  
gsri (D1i, , D2j)     ≤  1                   i=1,…,nm          
 D1i-D1il       ≥  0                       i=1… nm                                                           (2) 
D2i-D1il       ≥   0                       i=1… nm          
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Objective Displacement  
 The objective function, which is the total volume of frame, is obtained as a summation of 
weights of all members. The volume vi  of member i as shown in Fig. (1) can be expressed in terms 
of the values of the depth variables (D1) and  (D2) , as follow:- 

Vi =
( ) ( ) iwffw

ii ltbtt
DD

⎥⎦
⎤

⎢⎣
⎡ −+

+
2

2
21                                                                            (3) 

 
where D1i, D2i is the depth variables of the smallest and largest end respectively of tapered member 
i. 
of the I-section of the tapered member. 
It can be seen that bf, tf and tw are selected to be constant throughout the frame, which leaves only 
the depths at nodes (1) and (2) as the design variables. 
 The elastic sectional modulus for symmetrical sections are calculated easily when the values 
of D1i and D2i are known. 
 
Combined Axial and Flexural Strength Constraints 

The combined axial and flexural strength constraint for member i , which is subjected to 
axial force and bending moment about its major axis, is given in LRFD(4) as,  
for  
Pu/(φ Pn) ≥  0.2                                                                                                  (4) 

1
9
8

≤+
nxb

uxu

M
M

nP
P

φφ                                                                                                                       (5) 
and for 
Pu/(φ Pn) < 0.2,                                                                                                             (6) 

1
2

≤+
nxb

uxu

M
M

nP
P

φφ ,                                                                                                  (7) 
where Pu is the required axial strength and  Pn  is the nominal tensile or compressive strength for the 
member depending upon whether it is in tension or compression. Mux is the required flexural 
strength and Mnx is the nominal flexural strength about the major axis of the section. The resistance 
factor (φ ) is given as 0.90 in the case of tension and as 0.85 in the case of compression in LRFD. 

The resistance factor for flexure bφ is specified as 0.90 by the same code(Hayalioglu, Saka,1992).  
Since only the nominal strengths are the functions of the depth variables, the strength 

constraint for member i can be re-written as:- 
gsr(Di,Dj)=a1/Pn+ a2/Mnx,                                                                                            (8) 

Where a1 and a 2 are the constants given as, for 
 

Pu/(φ Pn) ≥  0.2  
 

a1=Pu/0.85   a2=8Mu/8.1                        (9) 

Pu/(φ Pn) < 0.2,  
 

a1=Pu/1.7 a2=Mu/0.9                          (10) 

 
Displacement Constraint 
 The jth displacement constraints gdj (D1i, , D2i)  has the following form:- 

 gdj (D1i, , D2i)  = juj δδ −                                                      (11) 
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The displacement jδ  can be expressed as a function of the depth variable by making use of 
the virtual work theorem 

( ) iji

nm

i

T
ij XiDiDKX 21

1
,∑

=

=δ
                                                              (12) 

 
Where  
Xi is the vector of virtual displacements of member i due to the virtual loading corresponding 

to the jth constrains. This is obtained by applying the unit load in the direction of the restricted 
displacement j. 

 K (D1i, D2i) is the stiffness matrix of member i in the global coordinate. 
Xi is the displacement vector e due to applied load. 

 
 
Nominal Axial And Flexural Strength of Tapered Member  
It is shown from Eqs. (8) to (10) that the combined strength constraint for a tapered member makes 
it necessary to express the design axial and flexural strength of the member in terms of depth 
variables defined at its ends.  
 
Nominal tensile strength  
In the case where the tapered member is in tension, LRFD gives the nominal tensile strength Pn as , 

  gyn AFP ×=                                                                                                                        (13) 
Hence, the nominal tensile strength Pn can be expressed as a function of depth variable D1, 

of the smaller end as  
 

Pn=Fy(D1tw+2T) 
                                                                                                                                    (14) 
where T is a constant given by  
 
T = (tf bf – tw tf)        
                                                                                                                                               (15) 
Nominal Compressive Strength  
 
 When the tapered member is in compression, its nominal compressive strength is given by 
LRFD as;  
 

gcrn AFP ×=   
                                                                                                                                              (16) 
where Fcr is the critical stress computed from one of the following expressions:  
 

  5.1≤effλ  Fcr= )658.0.(
2

eff
yF λ                                   (17)

 
5.1>effλ  

 
Fcr= 2

).877.0(

eff

yF
λ

,                                     (18) 

 
 
 

)/( 2 EQFS yeff πλ =     
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                                                                                                                                             (19) 
in which S is equal to Kl/roy for weak axis bending and Kl/rox for strong axis bending. K is the 
effective length factor for the member. Since between the adjacent lateral restraints, buckling about 
the weak axis governs, S is taken as Kl/roy. The approximate radius of gyration roy is defined at the 
smaller end of the tapered member as,  
 

2/1

1

3

)2(6 ⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

+
=

TtD
bt

r
w

ff
oy                                                                                                 (20) 

Substituting Eq. (20) into Eq. (19) and taking Q = 1 gives the effective slenderness as,  
 

( )[ ] 2/1
11 2TtDc weff +=λ                                                                                                     (21) 

 
where c1 is a constant.  
 

( )
ff bEt

KlFyc 32

2

1
6
π

=                                                                                                             (22) 

 
Hence, the nominal compressive strength Pn of eq. (16) can be expressed in terms of depth  
variable Di, at the smaller end as for :- 
 
Nominal Flexural Strength  
The nominal flexural strength of tapered flexural member for the limit state of lateral torsional 
buckling is given in LRFD(1) as  
 
Mn = (5/3) SxFb  
                                                                                                                                       (25) 

( ) yy
ws

y
b FF

FF
FF 6.0

12
13/2

22
≤

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

+
−=                                                                           (26)  

 
Unless Fb≤  Fy/3, in which case, 
 

( )wsb FFF 225.1 +=                                                                                                  (27) 
 
In Eq (26) and (27)  
 

1

12000
lDh

AF
s

f
s = , 

2170000
⎟
⎠
⎞⎜

⎝
⎛

=
TO

w
w

rlhF

                                                                                (28) 

 
Where factors hs and hw are given as,  
 

x 5.1≤effλ  ( ) ( )TtDc
wn

wFyTtDP 2
1

11658.02 −××+=                     (23) 

5.1>effλ  
 

1/)877.0( cFyPn ×=                                              (24) 
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hs = 1+ 0.023 f

i
A

lDγ
                                                                                                     (29) 

     

hw = 1 + 0.00385 
⎟
⎠
⎞⎜

⎝
⎛

TOr
lγ

                                                                                                (30) 
 
in which rTo is radius of gyration of the section at the smaller end, considering only the compression 
flange plus 1/3 of the compression web area, taken about an axis in the plane of the web, Af is the 
area of the compression flange, γ  is given as  

1

12

D
DD −

=γ          268.0≤  , (l/D1) or 6.                                                                                        (31) 

The relationships listed in eqns. (25)-(31) can be expressed in terms of depth variables at the ends of 
the tapered member as shown in the following. The sectional modulus Sx 
  

( )
1

2
2

3
1

6
)(6

D
tDtbtDt

S ffffw
x

++−
=                                                                                              (32) 

Fs and Fw of Eq. (28) are written as  
 

1

12000
lDh

tbF
s

ff
s = , 

1
2

4
2

3

2

Dhchc
cF

ww
w +
=                                                                     (33) 

where constants c2, c3 and c4 are 
  
c2 = 425,000tfb3

f   , c3 = 3l2 tf bf ,  c4=l2tw                                                                                  (34) 
 
                                                                                                   
In which γ  is function of Di as shown in Eq. (31), and rTo is  
 

( )1

3

34 Dtbt
bt

r
wff

ff
TO +×

=                                                                                                 (35) 

 
It is clear from Eqs. (32) to (35) that nominal flexural strength Mn can be expressed in terms of 
depth variables D1, and D2 .  

 
Figures (2) to (5) shows the relationships between the  Nominal axial force and flexural moment 

strength and their derivatives  with the design variables D1 & D2 .Figures (6) and (7) shows the 
relationship between the strength constrain with the design variables D1 & D2. From these figures 
we can conclude that :- 

1-The nominal axial tension force strength for the cross section is greater that the nominal axial 
compression force strength in specified depth variables D1 & D2. This is due to the material 
properties for the steel which is included empirically in the equation pg the nominal Strength.  

2-The flexural moment strength for the section decreases with increasing the depth variable D1 
but it is increases with increasing the  depth variable D2. This is because that the flexural 
moment strength equation depends basically on the depth variable D2. 

3-The strength constrain function  is slightly affected by the design variable D1 but it is strongly 
affected by the design variable D2. 
Optimality Criteria for Depth variables 
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It is shown previously that displacement and strength constraints in addition to the objective 
function of the optimum design problem considered is highly nonlinear function of design variables. 
The optimality criteria approach was found to be an effective method in finding the solution of such 
design problem (1, 5and 8).This technique transformation the constrained problem into an 
unconstrained one by using Lagrange multipliers. The Lagrangian of design problem is:-  

 

 ),(.),(),,,( 21
1

21
11

21 iisti

nm

i
sriiidj

j
dji

nm

i
isridjii DDgDDgvDDL ∑∑∑

===

++= λλρλλ
ρ

                                  (36) 

 

where djλ  and sriλ  are the Lagrange multipliers for the displacement and strength constraints 
respectively . The necessary condition for the local constraint optimum is obtained by 
differentiating this equation with respect to design variables (D1 D2 as the follows:- 
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The derivative of the volume of tapered member with respect to depth variables can 

analytically obtained as follows :- 
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The derivative of the displacement constraint from Eq. (11) becomes:- 
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Which in turn from Eq. (12) becomes:- 
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The derivatives of stiffness matrix of the tapered member can be achieved analytically in Ref.(3 ). 

On the other hand the , the same can also be achieved for the derivative  of the strength 
constraints with respect to design variables(D1 , D2) as follows:- 
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The derivatives 
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can be achieved using numerical technique (finite 

difference technique) as follows;- 
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Hence the optimality criteria for depth variables are obtained from Equation (37) and (38) as 
follows:- 
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which lead to:-  
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which lead to:-  
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Multiplying both sides of Equations (52) and (54) by Dc
1i and Dc

 2 i ,   respectively,  and then 
taking the cth root yields:- 
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where 
  t and  t+1  represent the current and the following optimum design cycles,  and the 
 c    is known as the step size process. 
It is apparent that the use of Equation. (53) and (54) require that values of Lagrange 

multipliers to be known .There are several methods to obtain their values .One simple and effective 

way used  in Ref.(1).This method takes the constraint equality and multiplies both sides by 
m
djλ  and 

then takes the mth  root .This leads to the following recursive relationship :- 
 

m

ju

jr
j

r
dj

1
1 ⎟

⎠
⎞

⎜
⎝
⎛⋅= +

δ
δλλ

   j=1, 2,eq.  ρ                                               (55) 
 
where m is the step size and its value form the numerical examples is between 0.8 and 0.7 for 

m
1

  .It is clear that Eqs. (54) and (55) require the initial values of the Lagrange parameters to be 
selected .It was found suitable to use (10000) as an initial value for these parameters (multipliers). 

Figures (8) and (9) shows the relationships between the  derivatives of the strength constraints  
with the design variables D1 & D2 .  

 From these figures we can conclude that :- 

1-for the value of
2.0<

n

u
P

P
, the derivative of  strength constraints for the cross section is slightly 

greater in compression  that in the tension force with respect to design variables D1 & D2.  

2- for the value of 
2.0≥

n

u
P

P
 the derivative of  strength constraints for the cross section is slightly 

greater in tension   that in the compression  force with respect to design variables D1 . 
 
 
 

          (53) 

          (54) 
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Nonlinear Elastic Analysis of Steel Frames Composed of Tapered Members. 
The nonlinear elastic analysis of frames composed from tapered members is obtained by the method 
reported in Ref.(3) .This method improved from the nonlinear elastic analysis of frames composed 
of prismatic members described in Ref.(7) which takes into account both the geometrical and 
material nonlinearities . 

Design Convergence Criteria:- 
Two types of design criteria are use in this study to insurance the satisfaction of the convergence in 
design,  these are :- 

1-weigh criteria: This criterion depends on comparison of the weight of the frame for the 
current design cycle and the weight of the frame for the previous design cycle, and convergence is 
assumed to have occurred when the inequality :- 

12
2

1 tolWWW
r

rr ≤−+ )(
 is satisfied                                                                                (56)  

Where: -   Wr+1: represents the total weight of the structure in the current design cycle 
                     Wr       : represents the total weight of the structure in previous design cycle 
2-depth criteria :- This criterion depends on comparison of the depth at both ends of each design 
group of the frame for the current design cycle and for the previous design cycle, and convergence 
is assumed to have occurred when the inequality when the inequality  

21 )( tolDDD
t

tt ≤−+
                                                                                                 (57) 

In Eq. (56  ) and  (57 ), the dimensionless quantity, tol. represents a prescribed tolerance 
each criteria  In this study the tolerance used as indication for satisfied  the convergence is as 
follows 
tol1= 0.005.  tol2=  .01 

Flow chart and computer program:- 
The algorithm developed for optimum design of geometrical nonlinear elastic –frame 
composed of tapered members can be described by the following chart of the program with 
a brief description for each subroutine, Fig.(10) and a computer program (EDTS) is 
developed  using QBasic language. .  

Design Examples  
Two examples are used her to demonstrate the capability of the algorithm developed in this study to 
achieve the optimum design of tapered steel frame under elastic nonlinear behavior , the values of 
modulus of elasticity and yield strength of the steel used to fabricate the structure were taken as  
205 kN/mm2 and 275N/mm2 respectively .The density of the steel was 7850kg/m3.Th convergence 
criteria used for the minimum objective function was 0.1% while  it was  1% for the depth variables  
1-Fixed Ends Tapered Beam. 
In this example a single span beam was designed using the algorithm developed in this study , the 
dimensions of the beam ,member cross section and loading condition is shows in Fig. (11) the beam 
was divided into two linearly tapered beams which introduced two design variables in each beam 
(1,2)in beam No.1 and (2,3)in beam No.2 , due to symmetry the depths and nodes 1 & 3 was 
assumed to be the same . This would eliminate the design variables into two variables (D1& D2), the 
frames was designed under three cases of constraints 
1-Displacement constraints 
2-Strength constraints. 
3-Both displacements & strength constraints. 

The results  of both studies is shown in Figs.(12 to14) It shows from these figures that the 
reduction in depth variable D2 is more faster than  in depth variable D1 which mean that the value of 
depth variable D2 more effective in the optimum design processes from the value of D1 this may be 
caused by the including of the geometrical nonlinearity in the analysis and taking in the account the 
large deformation, bowing effect and stability behavior  of the structure which lead to increasing the 
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effect of design components relating to depth variable D2 on the other hand the depth variable D2 
usually used in maximum flexural moment zone which is usually near the support so that the 
deformations and displacement is being at their maximum value  and then cause that increase in 
optimum design components. 
             From figures (12-14) we can note that when excluding the displacement constraints from 
the optimum design processes the decreasing in depth variables D1 & D2 become more that when 
using both displacements and strength constraints and which lead to lighter structure and 
subsequently  more economic and more save in cost without increase in the constrained 
displacement on its  upper bound. This mean that including the strength constraints in the optimum 
design processes will improve the design efficiently. On the other hand the optimum design reached 
after design cycle No.8  we using strength constraints only in the optimum design comparing with  
design cycle No.9 when including both displacement and strength constraints.  
2-Pitched roof tapered steel frame. 
In the example a one bay pitch roof frame is designed using the optimum design algorithm developed 
her, the frame is divided to 15 node at the point of application the external loads  and 14 tapered 
member , the dimension of the frame ,member cross section and loading condition is shows in 
Fig.(15 ). This frame was designed by Ref. (5 ) using linear elastic analysis  , in this study the frame 
is designed  three constraints cases :- 
1-Displacement constraints 
2-Strength constraints. 
3-Both displacements & strength constraints. 
The results  of our study is shown in Figures (16 to 19) , from these figures we reach to the same 
view obtained from the previous example in addition to noting that in this example we have two 
deign groups the rafters (Beams ) and the columns , each group treated separately in design 
processes but at the joins the developed program takes into account the effect of changing in each 
depth variable on the connected members which help in giving more reliable design .T he results of 
design for each group are shown separately in figures ( 16  ) and ( 17  ) we can note the similarity in 
behavior for each group .  the effect of nonlinear analysis is shown obviously in Fig.( 19 ) hence 
from this Figure we can observe that the displacement reached to its upper limit faster than the 
former example. 
 
Conclusions:- 
Depending on the design results obtained from the present study, one can draw several conclusions, 
concerning the optimum design of the tapered steel frames with I –section these may be 
summarized as follows: - 

1-The optimum design components represented in this study by the strength and displacement 
constraints equations is affected by the design variable D2, specially when including the 
geometrical nonlinearity and stability behaviors in the analysis of steel frame. This is required 
to choose the value of depth variable D2 carefully in design of such frames.   

 2- The excluding of displacement constraints in the optimum design processes( using strength 
constraints only )lead to faster design and more economic and saving in cost design . 

 3-In frames composed from different structural members, the behavior of the optimum design 
results will be slightly different.  

4- This study may be improved by including more restrains in to design processes that make the 
design more economic and more saving in time and cost such as (buckling constraint, plasticity 
constraint, creep constraint) 
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Fig.(2): Relationship between Design variables D1  & D2  
and the Nominal Flexural Strength Mn 
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Fig.(3): Relationship between Design variables D1  & D2  
and the Nominal Axial Force Strength Pn 
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Fig.(4): Relationship between Design variable D1  and     
the Derivatives of Nominal Axial Force  Strength Pn with 

respect to D1 

Fig.(5): Relationship between Design variables D1 & D2 
and the Derivatives of Nominal Flexural Strength Mn 

with respect to D1&D2 

Fig.(6): Relationship between Design variable D1  and 
the Strength Constraints 

Fig.(7): Relationship between Design variable D1  and 
the Strength Constraints 
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Fig.(9): Relationship between Design variable D1 &D2 and the 
Derivatives of Strength Constraints in the case of compression 

force 

Fig.(8): Relationship between Design variable D1 &D2 and 
the Derivatives of Strength Constraints in the case of tension 

force  
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Select initial values of design variables (D1,D2 ) 
and other sectional properties for each group in 
addition to the geometrical and material properties 
for each member. 

Select the initial values of the design 
components (Lagrange multiplier, step size, 
constraints displacements, tolerance, upper 
bound displacement , )carry out the nonlinear elastic analysis of the 

frame and calculate the displacement vector  
[Xi]  
 

carry out the linear elastic analysis of the steel 
frame using the original coordinates of the frame 
due to a unite load and then obtain the joint 
displacement vector [Xij] of Eq.(12 ).  
 

 

 
Optimum Design Cycles 
  

 
tt DD ,1+

 

Compare   these values with their lower bound , 
take whichever greater as a new values of depth 
variables 

I-1 TO NG 
NG=Number of design 

groups in frame 

No Yes 

 
Continue 

Equal 

Compare 

Set the design variables 
equal to their lower 
bound 

Weight 

Convergence
Yes 

 
No 

 

Print the results

Start 

Select 

Design Parameters 

Nonlinear 

Linear 

calculate all the components   of Eqs. (55) & (56) 
and the new values of Lagrange multipliers using 
Eq. ( 57 ). 

Determine the new values of design variables 
(D1,D2) for each group in the frame using 
Eqs.(55 ) and (56 ). 

Calculate the new weight of the frame ,cheak  the 
convergence of  both weights an depths  , if it is 
obtain , terminate the design and printout the 
results otherwise go to  the next step 

Fig. (10) Flow Chart of the Computer Program (EDTS)  
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Fig.(11): Fixed Ends Tapered Beam. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.(13):Relationships Between the Iteration Cycles and 
Constrained  Displacement 
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Fig.(12):Relationships Between the Iteration Cycles and the 
Design variables D1 &D2 

Fig.(14):-Relationships Between the Iteration Cycles and 
Total Weight of the Beam 
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Fig(15): Pitched Roof Fixed Ends Steel Frame 
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Fig.(16):Relationships Between the Iteration Cycles and 
Depth Variables D1&D2 for Rafters 

Fig.(17):Relationships Between the Iteration Cycles and 
Depth Variables D1&D2 D2 for Columns 
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Fig.(19):Relationships Between the Iteration Cycles and the 
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