Al-Qadisiyah journal for pure science Vol. 22 No. 1 Year 2017

Some Properties of Contra θ gs-Closed Functions

Received :24/3/2016 Accepted :30/10/2016

Muntaha Khudair Abbass

Technical College of Management /Baghdad, Middle Technical University

Email: Muntahaabbas@Yahoo.Com

Abstract:

The aim of this paper is to introduce and study some properties of a new generalization of contra closed set called contra θ gs-closed function in topological spaces, as well as , some theorems and examples of these functions .

Key words— Contra θgs-continuous, θgs-closed set. Contra θgs-closed functions

mathematical Classification QA 440-699

1- Introduction:

In 1970, Levine [1] first considered the concept of generalized closed (briefly, g-closed) sets. Arya and Nour [2] defined generalized semi-open (briefly, gs-open) sets using semi openness and obtained some characterization of s-normal space. In 1996, Dontchev introduced the notion of contra continuity and strong Sclosedness in topological spaces. In 1999, Dontechev and H. Maki [3], introduced the notion of θ -generalized closed sets θ generalized semi closed(briefly, θ gs-closed) set. In 2014, Md. Hanif Page [9] introduced and studied of a new generalization of Contra θgsgeneralized closed sets. The aim of this paper is to introduce and study of a new 0 -generalized semi closed generalization of contra closed called contra -0gs-closed functions utilizing θgs-closed set.

2- Basic Definitions

Through this paper(X, τ) and (Y, σ) two topological space denote the spaces on which no separation axioms are assumed unless explicitly stated. If A is any subset of X, then Cl(A) and Int(A) denote the closure of A and the interior of A in X respectively.

Definition 2.1[1]: A subset A of a space (X, τ) is called a generalized closed set (briefly g-closed) if $Cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open.

Definition 2.2[5]: A subset A of a topological space X is called

- 1- a semi-open set if $A \subset Cl(Int(A))$,
- 2- a semi-closed set if $A \subset Int(Cl(A))$.

Definition 2.3[5]: The semi-closure of a subset of X is the intersection of all semi-closed sets that contain A and is denoted by sCl(A).

Definition 2.4[7]: The θ -closure of a set A is denoted by $Cl\theta(A)$ and is defined by $Cl\theta(A) = \{x \in X: Cl(U) \cap A = \varphi, U \in \tau, x \in U\}$ and a set A is θ -closed if and only if $A = Cl\theta(A)$.

Definition 2.5[6]: A subset A of a topological space X is called θ-generalized semi closed (briefly, θgs-closed) if $sCl\theta(A) \subset U$ whenever A $\subset U$ and U is open. The complement of θgs-closed set is θ-generalized-semi open (briefly, θgs-open). We denote the θgs-closed sets of X by θGSC(X, τ) and θgs open sets by θGSO(X, τ).

Definition 2.6[8]: A topological space X is called

- 1- T_b-space if every gs-closed set of X is closed set.
- 2- $T_{\theta gs}$ space if every θgs -closed set in it is closed set.

3- Some Properties Of Contra – θgs Closed Mapping

In this section, the notion of a new class of function called contra θ gs- closed functions is introduce and obtain some of their characterizations and properties. Also, the relationships with some other related.

- 1) A mapping $f:(x, \sigma) \rightarrow (y, \tau)$ is said to be contra $-\theta gs$ closed if $A \subseteq X$ is closed then f(A) is θgs open in Y.
- 2) A mapping $f:(x, \sigma) \rightarrow (y, \tau)$ is said to be contra (θgs) * closed if A $\subset X$ is θgs closed then f(A) is open in Y.
- 3) A mapping f: $x \rightarrow y$ is said to be contra $-(\theta gs) * closed$ if $A \subseteq X$ is $\theta gs closed$ then f(A) is $\theta gs open$.

From the following example, it is clear that both contra θ gs-closed and θ gs-closed both are independent notions of each other.

Definition 3.1: A function $f: X \rightarrow Y$ is contra θ gs-closed if $f^{-1}(V)$ is θ gs-closed set in X for each open set V of Y.

Definition 3.2 [9]: A function $f: X \rightarrow Y$ is called θ -generalized semi-continuous (in briefly, θgs -continuous), if f-1 (F) is θgs -closed in X for every closed set F of Y.

Example 3.3: Let $X=Y=\{a, b, c, d\}$ and $\sigma 1 = \{X, \phi, \{b\}, \{d\}, \{a, b, d\}, \{b, c, d\}\},$ $\sigma 2 = \{Y, \phi, \{b, d\}, \{a\}\}$

be topologies on X and Y respectively. We have θ gs-closed sets in X are $\{X, \phi, \{a\}, \{b\}, \{c\}, \{d\}, \{a, b\}, \{a, c\}, \{a, d\}, \{b, c\}, \{c, d\}, \{a, b, c\}, \{a, c, d\}\}.$

1- Define a function g: $X \rightarrow Y$ by g(a) = c, g(b) = b, g(c) = a and g(d) = d. Then g is θ gs-continuous function.

but not contra θ gs-continuous, because for open set $\{b, d\}$ in Y, g-1($\{b, d\}$) = $\{b, d\}$ is not θ gs-closed set in X.

2- Define a function g: $X \rightarrow Y$ by g(a) = b, g(b) = c, g(c) = d and g(d) = a. Then g is contra θ gs-continuous function but not θ gs-continuous, because for closed set $\{a, c\}$ in Y, $g-1(\{a, c\}) = \{b, d\}$ is not θ gs-closed set in X. We denote the family of θ gs-closed sets of X by θ GSC(X, τ) and θ gs-open.

Remark 3.4:

- 1- Any intersection of θ gs-closed sets is θ gs-closed set. Hence, by complement, any union of θ gs-open sets is θ gs-open.
- 2- Union of θ gs-closed sets may fail to be θ gs-closed set.

Definition 3.5[4] :The First Separation Axiom A topological space X satisfies the first separation axiom T_1 :

 $\forall x, y \in X, x \neq y$ if each one of any two points of X has a neighborhood that does not contain the other point. In other words, there exist open sets U_X and V_Y such that

$$x \in U_x$$
, $y \notin u_x$ and $y \in U_y$, $x \notin u_y$

Definition 3.6/4/: The Second Axiom

We start with the second axiom, which is most important. Besides the notation T_2 , it has a name:(Hausdorff axiom). A topological space X satisfying T_2 is a Hausdorff space. This axiom is stated as follows: any two distinct points possess disjoint neighborhoods. We can state it more formally: $\forall x, y \in X, x \neq y \exists U_x, V_y : U_x \cap V_y = \varnothing$.

Definition 3.7 [8]: A topological space (X, τ) is called

- 1- θ gs- T_0 if for any pair of distinct points x and y of X, there exists a θ gs-open set containing x but not y or a θ gs-open set containing y but not x.
- 2- θ gs-T₁ if for every pair of distinct points x and y of X, there exists a θ gs-open set containing x but not y and a θ gs-open set containing y but not x.

3- θ gs-T₂ if for each pair of distinct points x and y of X, there exist disjoint θ gs-open sets, one containing x and the other containing y.

4- θgs-Open And θgs-Closed Functions

Definition 4.1: A function $f: (X, \tau) \to (Y, \sigma)$ is said to be θ gs-open (resp., θ gs-closed) if f(V) is θ gs-open (resp., θ gs-closed) in Y for every open set (resp., closed) V in X.

Theorem 4.2: A function $f: X \to Y$ is θ gs-closed if and only if for each subset S of Y and for each open set U containing $f^{\neg}(S)$ there is a θ gs-open set V of Y such that $S \subseteq V$ and $f^{\neg}(V) \subseteq U$.

Proof: Assume that f is θ gs-closed. Let S be a subset of Y and U be an open set of X such that $S \subseteq f(U)$, that is, $f^{-1}(S) \subseteq U$. Now, U c is closed set in Y. Then $f(U^c)$ is θ gs-closed in X, since f is θ gs-closed. So, Y /f (U c) is θ gs-open in. Thus $V = Y \setminus f(U^c)$ is a θ gs-open set containing S such that $f^1(V) \subseteq U$.

Conversely, suppose that F is a closed set in X. Then $f^{-1}(Y \setminus f(F)) \subseteq X \setminus F$ and $X \setminus F$ is open. By hypothesis, there is a θ gs-open set V of Y such that $Y \setminus f(F) \subseteq V$ and $f - 1(V) \subseteq X \setminus F$ and so $F \subseteq X \setminus f^1(V)$.

Hence $Y \setminus V \subseteq f(F) \subseteq f(X \setminus f^{-1}(V) \subseteq Y \setminus V$ which implies $f(F) = Y \setminus V$.

Since $Y \setminus V$ is θ gs-closed, f(F) is θ gs-closed and thus f is θ gs-closed.

Theorem 4.3: Let $f: X \to Y$ and $g: Y \to Z$ are θ gs-closed functions and Y be $T\theta$ gs – space. Then their composition gof is θ gs-closed.

Proof: Let A be a closed set of X. Then by hypothesis f(A) is a θgs -closed set in Y. Since Y is $T\theta gs - space$, f(A) is closed in Y. Since g is θgs -closed, g(f(A)) is θgs -closed in Z. But g(f(A)) = (gof)(A). Hence g of is θgs -closed[9].

Theorem 4.4: Let $h: X \to Y$ and $k: Y \to Z$ be two functions such that

their composition koh : $X \to Z$ is θgs -closed function. Then statement holds;

If h is continuous and surjective (onto) , then k is θ gs-closed.

 θ -generalized semi-open and θ -generalized semi-closed functions .

Proof: Let A be a closed set in Y. Then $h^{-1}(A)$ is closed in X as h is continuous. Since hok is θ gs-closed and if h is surjective, $(koh)(h^{-1}(A)) = k(h (h - 1(A))) = k(A)$ is θ gs-closed in Z. Therefore k is a θ gs-closed function in X.

Theorem 4.5: For any bijection (one to one) $f: X \to Y$, the following statements are equivalent

- 1- Inverse of f is θ gs-continuous.
- 2- f is a θ gs-open function.
- 3- f is a θ gs-closed function.

Proof: $1 \rightarrow 2$ Let U be an open set of X. By assumption θ gs-continuous, $(f^{-1})^{-1}(U) = f(U)$ is θ gs-open in Y and so f is θ gs-open function.

- $2 \rightarrow 3$: Let F be a closed set of X. Then F C is open in X. By assumption $f(F^C)$ is θ gs-open in Y, that is, $f(F^C) = (f(F))^C$ is θ gs-open in Y and therefore f(F) is θ gs-closed in Y. Hence f is θ gs-closed.
- $3 \rightarrow 1$: Let F be a closed set in X. By assumption f (F) is θ gs-closed in Y. But f (F) = $(f^{-1})^{-1}(F) = f$ (F) is θ gs-closed and therefore inverse image of f is θ gs-continuous[9].

Example 4. 6: Let $X = Y = \{a, b, c\}$, $\tau 1 = \{X, \phi, \{a\}, \{b\}, \{a, b\}\}$ and $\tau 2 = \{Y, \phi, \{a\}, \{b, c\}\}$. We have θ gs-closed sets in X are $\{X, \phi, \{a\}, \{b, c\}\}$ and θ gs-closed sets in Y are $\{Y, \phi, \{a\}, \{b, c\}\}$.

Theorem 4.7: Let $f: X \rightarrow Y$ be a contra θ gs-continuous onto. Then the property hold: If X is θ gs-closed compact, then Y is compact.

Proof: Let $\{V\alpha: \alpha \in I\}$ be an open cover of Y. Since f is contra θ gs-continuous, then $\{f^1(V\alpha): \alpha \in I\}$ is θ gs-closed cover of X. Since X is θ gs-closed compact, there exists a finite subset Io of I such that $X = \bigcup \{f^1(V\alpha): \alpha \in I_0\} \{f^1(V\alpha): \alpha \in I_0\}$

 $\alpha \in I_0$ }. Since f is surjective, $Y = \bigcup \{f^1(V\alpha): \alpha \in I_0\}$, which is finite subcover of Y. Therefore Y is compact.

References:

- [1] N. Levine, 1970, Generalized closed sets in topology, Rend. Circ. Math. Palermo, 19, pp. 89-96.
- [2] S. P. Arya and T. Nour,1990, Characterizations of s-normal spaces, Indian J. Pure Appl. Math., 21, pp. 717-719.
- [3] J. Dontechev and H. Maki,1999, On θ -generalized closed sets, Internat. J. Math. and Math. Sci. 22, pp. 239-249.
- [4] J.L. Kelley, 1955, General Topology, D. Van Nostrand/company, Inc. Princetion, New York.
- [5] S. G. Crossely and S.K. Hildbrand,1971, On semi-closure, Texas J. Sci, 22, pp. 99- 112.
- [6] Govindappa Navalagi and Md. Hanif Page,2007, On-\thetags- Neighbiurhoods, accepted for publication, Indian Journal of Mathematics and Mathematical Sciences, Vol. 2, 2.
- [7] N. V. Velicko, 1968, On H-closed topological spaces, Amer. Math. Soc. Transl., 78, pp. 103-118.
- [8] Govindappa Navalagi and Md. Hanif Page,2009, On some separation axioms via θgs open sets, accepted for publication, Indian Journal of, Mathematics and Mathematical Sciences, Journal of Mathematics, Vol. 28.
- [9] Md. Hanif Page ,2014, Contra θ gs -continuous functions ,International Journal of Mathematics Trends and Technology Vol. 5 January http://www.ijmttjournal.org. page17.

(Contra θ gs) بعض الخواص للدوال المغلقة من النوع (θ gs) تاريخ الاستلام θ 3/24 تاريخ الاستلام 2016/3/24

منتهى خضير عباس الكلية التقنية الوسطى الكلية التقنية الادارية /بغداد , الجامعة التقنية الوسطى

المستخلص:

في هذا البحث سنقدم بعض الخواص لأنواع جديدة من الدوال المغلقة ، تسمى عكس الدوال المغلقة من النوع θ gs في الفضاءات التبولوجية بالاعتماد على أنواع من المجموعات المغلقة تدعى الدوال المغلقة من (Contra θ gs) مع بعض المبر هنات والامثلة لهذه الدوال.

(Contra θgs) من الدوال المغلقة ، الدوال المغلقة ، الدوال المغلقة من النوع الدوال المغلقة من (Contra θgs)

mathematical Classification QA 440-699