Solving Free Boundary Problem in Hydrodynamic Lubrication by Variational Methods

Adnan Yassean Na'ma
Dept. of Mathematics, College of Education , University of Thi-Qar .

Abstract

In this Paper, we will find variational formulation free boundary problem in hydrodynamic lubrication infinite Journal Bearing, after that we solve the direct problem to find pressure function $\boldsymbol{p}(\boldsymbol{t})$ numerically by variational methods .

1. Introduction: A Jornal Bearing consists of a rotating cylinder which is separated from a " bearing surface " by a thin film of lubricating fluid (see fig. 1). The fluid is fed in at \mathbf{A} and flows out at \mathbf{B}. The width of the film is smallest at \mathbf{C}, and we set $t=\theta / \theta_{C}$ where θ is as show in fig. 1 .

Between \mathbf{C} and \mathbf{B}, the width of the film increases so that the pressure in the lubricating fluid may be expected to decrease. We assume that for $t=\tau$ the pressure becomes slow that the fluid vapofrizes. The point $t=\tau$, the interfase between the two phases of the fluid, is called the free boundary. Colin W. Cryer [1] used Finite difference method to solve this problem by interest from method of Christopherson. Also Giovawni Cimatti [2] trying to fined variational formulation of lubrication problemand fined solve this problem in tectangular region. We might of studies the problem of lubrication in [3] and solution this problem in rectangular region .In this paper we try to solution this problem in one dimention .

FIGURE 1
2. Mathematical formulation : The mathematical problem can now formulated by Pinkus and Sternlicht (see [1]) :

Problem 1. Find a function $p(t)$ and a constant τ such that $\boldsymbol{p} \in \boldsymbol{C}[0, \boldsymbol{T}] \cap \boldsymbol{C}^{(2)}(\mathbf{0}, \tau)$, and

$$
\begin{align*}
& \delta \mathrm{p}(\mathrm{t})=\frac{\mathrm{d}}{\mathrm{dt}}\left[\mathrm{~h}^{3}(\mathrm{t}) \frac{\mathrm{dp}}{\mathrm{dt}}\right]-\frac{\mathrm{dh}}{\mathrm{dt}}=0 \quad 0<\mathrm{t}<\tau \tag{1.1}\\
& \mathrm{p}(\mathrm{t})=0, \quad \tau \leq \mathrm{t} \leq \mathrm{T} \tag{1.2}\\
& \mathrm{p}(0)=0, \tag{1.3}\\
& \frac{\mathrm{~d}}{\mathrm{dt}} \mathrm{p}(\tau(=0 \tag{1.4}
\end{align*}
$$

where $\boldsymbol{p}(\boldsymbol{t})$ is proportional to the fluid pressure, while Eq.(1.1) is Reynold's equation for the pressure in a lubricating film. In order to define the problem 1, we must to know that the width of the film $\boldsymbol{h}(\boldsymbol{t})$ satisfy certain conditions: $\boldsymbol{h} \in \boldsymbol{C}^{(1)}[0, \boldsymbol{T}]$ and that

$$
\begin{array}{ll}
\mathrm{h}(\mathrm{t})>0, & \mathrm{t} \in[0, \mathrm{~T}] \\
\frac{d h}{d t}<0, & \mathrm{t} \in(0,1), \\
\frac{\mathrm{dh}}{\mathrm{dt}}>0, & \mathrm{t} \in(1, T) \\
h(T) \geq \mathrm{h}(0) & \tag{1.7}
\end{array}
$$

The conditions (1.5)-(1.7) ensure that there exists a unique solution to problem 1[1] . Now, we give some of important definitions :
Definition 2.1[4]: A set \boldsymbol{A} is said to be convex if for any $\boldsymbol{u}, \boldsymbol{v} \in \boldsymbol{A},(\mathbf{1}-\boldsymbol{\alpha}) \boldsymbol{u}+\boldsymbol{\alpha} \boldsymbol{v} \in \boldsymbol{A}$, where $\alpha \in(0,1)$.
Definition 2.2 [4]: A functional \boldsymbol{F} is called convex function if \boldsymbol{F} defines on the convex set \boldsymbol{A}.
Definition 2.3 [3]: A bilinear form, defined on a given two linear spaces \boldsymbol{U} and \boldsymbol{V} is a functional $\boldsymbol{G}(\boldsymbol{u}, \boldsymbol{v})$, which linear in both \boldsymbol{u} and \boldsymbol{v}, where u and v are elements of \boldsymbol{U} and \boldsymbol{V} respectively.
Definition 2.4 [3]: Let $\boldsymbol{G}(.,$.$) be a bilinear form , then \boldsymbol{G}(.,$.$) is said to be symmetric if$ $\boldsymbol{G}(\boldsymbol{u}, \boldsymbol{v})=\boldsymbol{G}(\boldsymbol{v}, \boldsymbol{u})$ for all $\boldsymbol{u} \in \boldsymbol{U}$ and $\mathbf{v} \in \mathbf{V}$.
Definition 2.5 [5]: The bilinear form $\boldsymbol{G}(.,):. V x \boldsymbol{V} \boldsymbol{\rightarrow}$ is called \boldsymbol{V}-elliptic if $\mathrm{G}(\mathrm{v}, \mathrm{v}) \geq \alpha\|\mathrm{v}\|^{2}$, $\alpha \geq 0$ and for all $v \in V$.
Definition 2.6 [5]: The bilinear form $\boldsymbol{G}(.,$.$) is bounded if G(u, v) \leq \mu\|u\| \nu \|$ for all $\boldsymbol{u} \in \boldsymbol{U}$, $v \in V$, where $\mu \in \boldsymbol{R}$.

3.Variational inequalities formulation for boundary value problem

A variational inequality is usually posed with respect to a Hilbert space \boldsymbol{V} with dual space \boldsymbol{V}^{*}, a non-empty closed convex set \boldsymbol{K} in \boldsymbol{V}, a bilinear form $\boldsymbol{a}(.,$.$) on \boldsymbol{V} \times \boldsymbol{V}$ and an element $f \in V^{*}[2]$. The basic idea of the subject of variational inequality is to find $\boldsymbol{u} \in \boldsymbol{K}$, such that $\boldsymbol{a}(\boldsymbol{u}, \boldsymbol{v}-\boldsymbol{u}) \geq(f, v-\boldsymbol{u})$, for all $v \in \boldsymbol{K}$.

Lions and Stampacchia in 1967 [3] introduced one of the foundamental theorems in this field, which is :

Theorem 2.1 [3]: If (.,.) is \boldsymbol{V}-elliptic, then variational inequality $\boldsymbol{a}(\boldsymbol{u}, \boldsymbol{v}-\boldsymbol{u}) \geq(\boldsymbol{f}, \boldsymbol{v}-\boldsymbol{u})$ for every $\boldsymbol{v} \in \boldsymbol{K}$ has a unique solution.

Now, we can find the functional \boldsymbol{J}, which represent the variational formulation the problem $\boldsymbol{L}(\boldsymbol{u})=\boldsymbol{f}$ by depending on the next theorem, when \boldsymbol{L} be a linear operator .

Theorem 2.2 [4]: Assume \boldsymbol{K} is a non-empty closed subset of the Hilbert sbace \boldsymbol{V} $, \boldsymbol{a}(.,):. \boldsymbol{V} \times \boldsymbol{V} \rightarrow \boldsymbol{R}$ is a bilinear, symmetric, bounded and \boldsymbol{V}-elliptic, $\boldsymbol{f} \in \boldsymbol{V}^{*}$, let :

$$
J(v)=\frac{1}{2} a(v, v)-(f, v), \mathrm{v} \in \mathrm{~V}
$$

then there exists a unique $\boldsymbol{u} \in \boldsymbol{K}$, such that : $J(v)=\inf _{v \in K} J(v)$ which is also the unique solution of the variational inequalities:
$u \in K, a(u, v-u) \geq(f, v-u)$, for each $v \in K$ or $u \in K, a(u, v)=(f, v)$ for each $v \in K$
Now, we can use the theorems in above to find a variational formulation of the problem 1 .

4.The variational formulation of the problem 1 .

The solution of the mathematical model, which is defined by eqs (1.1)-(1.4) depending a function $p(t) \in C[0, T] \cap C^{(2)}(0, \tau)$.

The cavitation conditions (1.2)-(1.4) ensure non-negative pressure and the conditions (1.5)-(1.6) on width of the film $\boldsymbol{h}(\boldsymbol{t})$, all these conditions makes $\boldsymbol{p}(\boldsymbol{t})$ satisfies the inequalities:
$\left.\begin{array}{l}-\frac{d}{d t}\left[h^{3}(t) \frac{d p}{d t}\right]+\frac{d h}{d t} \geq 0 \\ p\left\{-\frac{d}{d t}\left[h^{3}(t) \frac{d p}{d t}\right]+\frac{d h}{d t}\right\}=0\end{array}\right\}$
in the domain $\mathbf{C}[\mathbf{0}, \mathbf{T}] \cap \mathbf{C}^{(\mathbf{2})} \mathbf{(0 , \tau)}$.
To find $p(t)$ such that the equations (1.1) and (4.1) are satisfies. Consider $\boldsymbol{C}^{(2)}[0, T]$ and $\boldsymbol{H}[0, \boldsymbol{T}]$ with inner product
$(u, v)=\int_{0}^{\mathrm{T}} \mathrm{uvdt} \quad$ and $\quad \mathrm{a}(\mathrm{u}, \mathrm{v})=\int_{0}^{\mathrm{T}} \mathrm{h}^{3}\left(u_{t} v_{t}\right) d t$
Where the associated norms an : $|u|^{2}=(u, u)$ and $\|\mathrm{u}\|^{2}=a(u, u)$
Denoted by $\boldsymbol{H}^{*}[0, T]$ the subspace of $\boldsymbol{H}[\mathbf{0}, \boldsymbol{T}]$, whose elements \boldsymbol{v} satisfy conditions (1.1) to (1.4). Let \boldsymbol{K} be a closed convex set of $\boldsymbol{H}^{*}[0, \boldsymbol{T}]$, defined by: $\boldsymbol{K}=\left\{\boldsymbol{v} \in \boldsymbol{H}^{*}[0, \boldsymbol{T}]: \boldsymbol{v} \geq \mathbf{0}\right.$ in $[0, T]\}$

If $\boldsymbol{p}(\boldsymbol{t})$ is a solution of (1.1) and (4.1), then $\boldsymbol{p} \in \boldsymbol{K}$ for every $\boldsymbol{v} \in \boldsymbol{K}$, we have :

$$
\mathrm{a}(\mathrm{p}, \mathrm{v}-\mathrm{p})=\int_{0}^{\mathrm{T}} \mathrm{~h}^{3}\left\{p_{t}(v-p)_{t}\right\} d t
$$

We can easily prove that $\boldsymbol{a}(.,$.$) is a bilinear, symmetric, bounded and elliptic form . Also$ we get :

$$
\begin{equation*}
a(p, v-p) \geq(f, v-p), \text { for every } \mathrm{v} \in \mathrm{~K} \text { where } \mathrm{f}=\frac{\mathrm{dh}}{\mathrm{dt}} \tag{4.2}
\end{equation*}
$$

Thus., by Lions-Stampacchia theorem, (4.2) has unique solution .
Consider the functional : $J(p)=\frac{1}{2} a(p, p)-(f, p)$
The equivalent minimization statement is $J(p) \leq J(v)$, for all $\mathrm{v} \in \mathrm{K}$, by using theorem (2.2), (2.1) and (4.3) has a unique solution , which is the same solution of (4.2), thus : $J(p)=\frac{1}{2} \int_{0}^{T}\left\{h^{3} \frac{d}{d t^{2} p}-\frac{d h}{d t} p\right\} d t$
Could be regarded as the variational formulation of infinite Journal Bearing problem .

5. Numerical Solution of the Problem

The variational formulation (4.4) with the boundary conditions (1.2)-(1.4) is so difficalt to solve analytically using principle or other analytical methods, therefore direct methods are required to solve this problem. To find the solution p which is the critical point of functional (4.4), the Rits method [6] will used. The procedure utilized here, can be described in below .

Let the solution $\boldsymbol{p}_{\boldsymbol{a}}=\boldsymbol{u}$ is approximate by a linear combination of elements of a complete sequence of functions $\{\varphi(t)\}$ defined over the interval $[\boldsymbol{0}, \boldsymbol{T}]$ and each function satisfying the before conditions. In other words : $\mathrm{u}(\mathrm{t})=\sum_{i=1}^{n} a_{i} \varphi_{i}(t)$ where $\boldsymbol{a}_{\boldsymbol{1}}, \boldsymbol{a}_{2}, \ldots, \boldsymbol{a}_{\boldsymbol{n}}$ cofficients to determined. These functions can be defined as follows:

$$
\begin{equation*}
u(t)=t(\tau-t)^{2}\left[a_{0}+a_{1} t+a_{2} t^{2}+a_{3} t^{3}\right] \tag{5.2}
\end{equation*}
$$

Substituting then above function $\boldsymbol{u}(\boldsymbol{t})$ in the functional \boldsymbol{J} defined by Eq. (4.4), and after carrying out the integration using Gaussian quadrate integration method [4] of degree 7 , the functional \boldsymbol{J} becomes a function of the real variables $\boldsymbol{a}_{\boldsymbol{0}}, \boldsymbol{a}_{\boldsymbol{1}}, \boldsymbol{a}_{2}$ and $\boldsymbol{a}_{\boldsymbol{3}}$.

Thus, the variational formulation is equivalent to the unconstrainted non-linear minimizing problem of the functional $J\left(a_{0}, a_{1}, a_{2}, a_{3}\right)$.

Hook and Jeeves minimization method [6] have been successfully used to solve the problem, after assuming that the film thickness :

$$
h(t)=1+0.01 \cos (t)
$$

where 0.01 equals to eccentricity ration. The approximate values of the coefficients $\boldsymbol{a}_{\boldsymbol{0}}$, $\boldsymbol{a}_{1}, \boldsymbol{a}_{2}$ and \boldsymbol{a}_{3} in approximate solution Eq. (5.2) are tabulated below:
$a_{0}=0.4, a_{1}=0.7, a_{2}=1.69$ and $a_{3}=0.9$.

6. References

1. Colin W. Cryer , 1971 ," The Method of Christopherson for Solving Free Boundary Problems for Infinite Journal Bearings by Means Of Finite Differences ," Mathematics of Computation, Vol.25,No.115,PP.435-443.
2. Adnan Yaseen Na'ma ,"Application of Nonlinear Inverse Problems in the Finite Journal Bearing Problem , 2002, " Sc. M. Thesis ,College of Education/Ibn AlHaitham, University of Baghdad .
3. Lions, J. L., and Stampacchia, G., 1967, "Variational Inequalities", Communications on Pure and Applied Mathematics, Vol.xx, pp.493-519
4. Atkinson, K. and Han, W., 2001 ," Theorical Numerical Analysis ",Springer , New York .
5. Boas, M. L., 1983, "Mathematical Methods in the Physical Sciences", $2{ }^{\text {nd }}$ Edition, John Wiley and Sons, Inc., U.S.A.
6. Bunday, B. D., 1984, "Basic Optimization Methods", Edward Arnold, London.
