Using AL-Tememe Transform to Solve System of Linear Second Order Ordinary Differential Equations With Variable Coefficients

استخدام التحويل التميمي لحل النظام الخطي للمعادلات التفاضلية الاعتيادية
من الرتبة الثانية ذات المعاملات المتغيرة

Ali Hassan Mohammed
Aabass85@yahoo.com
University of KufalFaculty of Education for Girls
Department of Mathematics

Abstract
 Our aim is to apply AL-Tememe transform to solve system of linear second order ordinary differential equations(L.O.D.E) with variable coefficients.
 هدفنا من هذا البحث هو استخدام التحويل التميمي لحل النظام الخطي للمعادلات التفاضلية الاعتيادية من الرتبة الثانية ذات المعاملات المتغيرة.

Introduction:

We will use Al-Tememe Transform ($\mathcal{T} . T$) to solve systems of linear Second order ordinary differential equations with variable coefficients. And the method summarized by taking ($\mathcal{T} . \mathrm{T}$) to both sides of the equations then we take $\left(\mathcal{T}^{-1} . \mathrm{T}\right)$ to both sides of the equations and by using partial fraction decomposition we find the values of values constants.

Definition 1: [1]

Let f is defined function at period (a, b) then the integral transformation for f whose it's symbol $F(p)$ is defined as:

$$
F(p)=\int_{\mathrm{a}}^{\mathrm{b}} k(p, x) f(x) d x
$$

Where k is a fixed function of two variables, called the kernel of the transformation, and a, b are real numbers or $\mp \infty$, such that the above integral converges.

Definition 2: [2]
The Al-Tememe transformation for the function $f(x) ; x>1$ is defined by the following integral:

$$
\mathcal{T}[f(x)]=\int_{1}^{\infty} x^{-p} f(x) d x=F(p)
$$

such that this integral is convergent , p is positive constant

Journal University of Kerbala , Vol. 15 No. 2 Scientific . 2017

Property 1: [2]

This transformation is characterized by the linear property ,that is
$\mathcal{T}[A f(x)+B g(x)]=A \mathcal{T}[f(x)]+B \mathcal{T}[g(x)]$,
Where A, B are constants ,the functions $f(x), g(x)$ are defined when $x>1$.
The Al-Tememe transform for some fundamental functions are given in table(1) [2] :

ID	Function, $\mathbf{f}(\mathbf{x}$)	$\begin{array}{r} F(p)=\int_{1}^{\infty} x^{-p} f(x) d x \\ =\mathcal{T}[f(x)] \end{array}$	Regional of convergence
1	k ; k = constant	$\frac{k}{p-1}$	$\mathrm{p}>1$
2	$x^{n}, n \in R$	$\frac{1}{p-(n+1)}$	$\mathbf{p}>\mathbf{n}+\mathbf{1}$
3	$\ln x$	$\frac{1}{(p-1)^{2}}$	$\mathrm{p}>1$
4	$x^{n} \ln x, n \in R$	$\frac{1}{[p-(n+1)]^{2}}$	$\mathbf{p}>\mathbf{n}+\mathbf{1}$
5	$\sin (a \ln x)$	$\frac{a}{(p-1)^{2}+a^{2}}$	$\begin{gathered} \mathbf{p}>\mathbf{1} \\ \mathrm{a}=\text { constant } \\ \hline \end{gathered}$
6	$\cos (\ln x)$	$\frac{p-1}{(p-1)^{2}+a^{2}}$	$\begin{gathered} \mathbf{p}>\mathbf{1} \\ \mathrm{a}=\mathrm{constant} \end{gathered}$
7	$\sinh (a \ln x)$	$\frac{a}{(p-1)^{2}-a^{2}}$	$\begin{gathered} \|\mathbf{p}-\mathbf{1}\|>\boldsymbol{a} \\ \mathrm{a}=\text { constant } \end{gathered}$
8	$\cosh (\operatorname{aln} x)$	$\frac{p-1}{(p-1)^{2}-a^{2}}$	$\underset{\mathrm{a}=\text { constant }}{\|\mathbf{p}-1\|>\boldsymbol{a}}$

table(1)
From the Al-Tememe definition and the above table, we get:

Theorem 1:

If $\mathcal{T} f(x)=F(p)$ and a is constant, then $\mathcal{T} f\left(x^{-a}\right)=F(p+a)$.see [2]

Definition 3: [2]

Let $f(x)$ be a function where $(x>1)$ and $\mathcal{T} f(x)=F(p), f(x)$ is said to be an inverse for the Al-Tememe transformation and written as
$\mathcal{T}^{-1} F(p)=f(x)$, where \mathcal{T}^{-1} returns the transformation to the original function.

Property 2: [2]

If $\mathcal{T}^{-1} F_{1}(p)=f_{1}(x) \quad, \quad \mathcal{T}^{-1} F_{2}(p)=f_{2}(x), \ldots, \quad \mathcal{T}^{-1} F_{n}(p)=f_{n}(x)$ and $a_{1}, a_{2}, \ldots a_{\mathrm{n}}$ are constants, then
$\mathcal{T}^{-1}\left[a_{1} F_{1}(p)+a_{2} F_{2}(p)+\cdots+a_{\mathrm{n}} F_{n}(p)\right]=a_{1} f_{1}(x)+a_{2} f_{2}(x)+\cdots+a_{\mathrm{n}} f_{n}(x)$

Journal University of Kerbala , Vol. 15 No. 2 Scientific . 2017

Theorem 2: [2]

If the function $f(x)$ is defined for $x>1$ and its derivatives $f^{(1)}(x), f^{(2)}(x), \ldots, f^{(n)}(x)$ are exist then:

$$
\mathcal{T}\left[x^{n} f^{(n)}(x)\right]=-f^{(n-1)}(1)-(p-n) f^{(n-2)}(1)-\cdots
$$

$-(p-n)(p-(n-1)) \ldots(p-2) f(1)+(p-n)!F(p)$
Definition 4: [3]
A function $f(x)$ is piecewise continuous on an interval $[a, b]$ if the interval can be partitioned by a finite number of points
$a=x_{0}<x_{1}<\cdots<x_{n}=b$ such that:

1. $f(x)$ is continuous on each subinterval $\left(x_{i}, x_{i+1}\right)$, for $i=0,1,2, \ldots, n-1$
2. The function f has jump discontinuity at x_{i}, thus
$\left|\lim _{x \rightarrow x_{i}^{+}} f(x)\right|<\infty, i=0,1,2, \ldots, n-1$;
$\left|\lim _{x \rightarrow x_{i}}{ }^{-} f(x)\right|<\infty, i=0,1,2, \ldots, n$

Al-Tememe Transform Method for Solving linear Systems of Ordinary Differential Equations:

Let us consider, we have a linear system of ordinary differential equation of second order with variable coefficients which we can write it by :
$x^{2} y_{1}^{\prime \prime}+b_{1} x y_{1}^{\prime}=a_{11} y_{1}+a_{12} y_{2}+g_{1}(x)$
$x^{2} y_{2}^{\prime \prime}+b_{2} x y_{2}^{\prime}=a_{21} y_{1}+a_{22} y_{2}+g_{2}(x)$
Subject to some initial conditions $y_{1}(1), y_{1}^{\prime}(1), y_{2}(1)$ and $y_{2}^{\prime}(1)$.
Where $b_{1}, b_{2}, a_{11}, a_{12}, a_{21}$ and a_{22} are constants, y_{1}^{\prime} and $y_{1}^{\prime \prime}$ are derivatives of function $y_{1}(x)$, and y_{2}^{\prime} and $y_{2}^{\prime \prime}$ are derivatives of function $y_{2}(x)$, such that $y_{1}(x)$ and $y_{2}(x)$ are continuous functions and the $(\mathcal{T} . T)$ of $g_{1}(x)$ and $g_{2}(x)$ are known.
For solving the system (1) we take ($\mathcal{T} . \mathrm{T}$) to both sides of it , and after simplification we put $Y_{1}=\mathcal{T}\left(y_{1}\right), Y_{2}=\mathcal{T}\left(y_{2}\right), G_{1}=\mathcal{T}\left(g_{1}\right), G_{2}=\mathcal{T}\left(g_{2}\right)$ so,we get:

$$
\begin{aligned}
&(p-2)(p-1) Y_{1}-(p-2) y_{1}(1)- y_{1}^{\prime}(1)+b_{1}(p-1) Y_{1}-b_{1} y_{1}(1) \\
&=a_{11} Y_{1}+a_{12} Y_{2}+G_{1}(p) \\
&(p-2)(p-1) Y_{2}-(p-2) y_{2}(1)-y_{2}^{\prime}(1)+b_{2}(p-1) Y_{2}-b_{2} y_{2}(1) \\
&=a_{21} Y_{1}+a_{22} Y_{2}+G_{2}(p)
\end{aligned}
$$

Hence,

$$
\begin{align*}
& \left(p^{2}+c_{1} p+c_{2}\right) Y_{1}-a_{12} Y_{2} \\
= & (p-2) y_{1}(1)+y_{1}^{\prime}(1)+b_{1} y_{1}(1)+G_{1}(p) \tag{2}
\end{align*}
$$

Also,
$-a_{21} Y_{1}+\left(p^{2}+d_{1} p+d_{1}\right) Y_{2}$
$=(p-2) y_{2}(1)+y_{2}^{\prime}(1)+b_{2} y_{2}(1)+G_{2}(p)$
Where $c_{1}=b_{1}-3, c_{2}=2-b_{1}-a_{11}, d_{1}=b_{2}-3$
$d_{2}=2-b_{2}-a_{22} \quad$ and

Journal University of Kerbala, Vol. 15 No. 2 Scientific . 2017

By multiplying eq. (2) by $\left(p^{2}+d_{1} p+d_{1}\right)$ and (3) by a_{12}.
and collecting the result terms we have :

$$
\begin{equation*}
Y_{1}=\frac{q_{1}(p)}{h_{1}(p)} \quad ; \quad h_{1}(p) \neq 0 \tag{4}
\end{equation*}
$$

By similar method, we find

$$
\begin{equation*}
Y_{2}=\frac{q_{2}(p)}{h_{2}(p)} \quad ; \quad h_{2}(p) \neq 0 \tag{5}
\end{equation*}
$$

where q_{1}, q_{2}, h_{1} and h_{2} are polynomials of p, such that the degree of q_{1} is less than the degree of h_{1} and the degree of q_{2} is less than the degree of h_{2}.
By taking the inverse of Al-Tememe transform ($\mathcal{T}^{-1} . \mathrm{T}$) to both sides of equations (4) and (5) we get:
$y_{1}=\mathcal{J}^{-1}\left[\frac{q_{1}(p)}{h_{1}(p)}\right]$
$y_{2}=\mathcal{T}^{-1}\left[\frac{q_{2}(p)}{h_{2}(p)}\right]$
Equations (6) represents the general solution of system (1) which we can be written it as follows:
$y_{1}=A_{1} k_{1}(x)+A_{2} k_{2}(x)+\cdots+A_{m} k_{m}(x)$
$y_{2}=B_{1} \rho_{1}(x)+B_{2} \rho_{2}(x)+\cdots+B_{m} \rho_{m}(x)$
Where $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{m}$ and $\rho_{1}, \rho_{2}, \ldots, \rho_{m}$ are functions of x, and
$A_{1}, A_{2}, \ldots, A_{m}$ are constants, which is number equals to the degree of $h_{1}(p)$ also $B_{1}, B_{2}, \ldots, B_{m}$ are constants, which is, number equals to the
degree of $h_{2}(p)$.
To find the values of constants of $A_{1}, A_{2}, \ldots, A_{m}$ and $B_{1}, B_{2}, \ldots, B_{m}$ we used partial fraction decomposition .

Example(1):For solving the system
$x^{2} y_{1}^{\prime \prime}-x y_{1}^{\prime}=-y_{1}+y_{2}+x^{-3} \quad ; y_{1}(1)=0, y_{1}^{\prime}(1)=0$
$x^{2} y_{2}^{\prime \prime}+7 x y_{2}^{\prime}=y_{1}-9 y_{2}+x \quad ; y_{2}(1)=0, y_{2}^{\prime}(1)=0$
Sol:
We take Al-Tememe transform to both sides of above system and we get:

$$
\begin{align*}
& (p-2)(p-1) Y_{1}-(p-2) y_{1}(1)-y_{1}^{\prime}(1)-(p-1) Y_{1}+y_{1}(1) \\
& =-Y_{1}+Y_{2}+\frac{1}{p+2} \quad ; p>-2 \tag{7}\\
& (p-2)(p-1) Y_{2}-(p-2) y_{2}(1)-y_{1}^{\prime}(1)+7(p-1) Y_{2}-7 y_{2}(1) \\
& \quad=Y_{1}-9 Y_{2}+\frac{1}{p-2} \quad ; p>-2
\end{align*}
$$

After simplification eq. (7) and eq. (8) we get

$$
\begin{align*}
& (p-2)^{2} Y_{1}-Y_{2}=\frac{1}{p+2} \tag{9}\\
& (p+2)^{2} Y_{2}-Y_{1}=\frac{1}{p-2} \tag{10}
\end{align*}
$$

By multiplying eq. (9) by $(p+2)^{2}$ and eq. (10) by 1 we get:

$$
\begin{aligned}
& (p-2)^{2}(p+2)^{2} Y_{1}-(p+2)^{2} Y_{2}=(p+2) \\
& -Y_{1}+(p+2)^{2} Y_{2}=\frac{1}{p-2}
\end{aligned}
$$

we get :

$$
Y_{1}=\frac{1}{(p-2)\left(p^{2}-5\right)}
$$

and

$$
Y_{2}=\frac{1}{(p+2)\left(p^{2}-5\right)}
$$

Therefore, after using \mathcal{T}^{-1}. T we get:
$y_{1}=\mathcal{T}^{-1}\left[\frac{A_{1}}{p-2}+\frac{B_{1} p+C_{1}}{p^{2}-5}\right]$
$y_{2}=\mathcal{T}^{-1}\left[\frac{A_{2}}{p+2}+\frac{B_{2} p+C_{2}}{p^{2}-5}\right]$
And after using partial fractions decomposition we get the equations:

$$
\begin{gathered}
A_{1}+B_{1}=0 \\
-2 B_{1}+C_{1}=0 \\
-5 A_{1}-2 C_{1}=1
\end{gathered}
$$

And hence,
$A_{1}=-1, B_{1}=1, C_{1}=2$
$\Rightarrow y_{1}=-x+x^{-1} \cosh \sqrt{5} \ln x+\frac{2 \sqrt{5}}{5} x^{-1} \sinh \sqrt{5} \ln x$
$A_{2}+B_{2}=0$
$2 B_{2}+C_{2}=0$
$-5 A_{2}+2 C_{2}=1$
Also we get:
$A_{2}=-1, B_{2}=1, C_{2}=-2$
$\Rightarrow y_{2}=-x^{3}+x^{-1} \cosh \sqrt{5} \ln x-\frac{2 \sqrt{5}}{5} x^{-1} \sinh \sqrt{5} \ln x$
Example (2): For solving the system
$x^{2} y_{1}^{\prime \prime}+x y_{1}^{\prime}=y_{2}+x^{-2}$
$y_{1}(1)=0, y_{1}^{\prime}(1)=0$
$x^{2} y_{2}^{\prime \prime}+5 x y_{2}^{\prime}=y_{1}-4 y_{2}+\ln x$
$y_{2}(1)=0, y^{\prime}{ }_{2}(1)=0$

Sol: We take Al-Tememe transform to both sides of above system and we get :
$(p-2)(p-1) Y_{1}-(p-2) y_{1}(1)-y_{1}^{\prime}(1)+(p-1) Y_{1}-y_{1}(1)$
$=Y_{2}+\frac{1}{p+1}$
$(p-2)(p-1) Y_{2}-(p-2) y_{2}(1)-y_{1}^{\prime}(1)+5(p-1) Y_{2}-5 y_{2}(1)$
$=Y_{1}-4 Y_{2}+\frac{1}{(p-1)^{2}}$
After simplification eq. (11) and eq. (12) we get

$$
\begin{align*}
& (p-1)^{2} Y_{1}-Y_{2}=\frac{1}{p+1} \quad ; \quad p>-1 \tag{13}\\
& (p+1)^{2} Y_{2}-Y_{1}=\frac{1}{(p-1)^{2}} \quad ; \quad p>1 \tag{14}
\end{align*}
$$

By multiplying eq. (13) by $(p+1)^{2}$ and eq. (14) by 1 we get:

$$
\begin{aligned}
(p-1)^{2}(p+1)^{2} Y_{1}-(p+1)^{2} Y_{2} & =(p+1) \\
-Y_{1}+(p+2)^{2} Y_{2} & =\frac{1}{(p-1)^{2}}
\end{aligned}
$$

we get:

$$
Y_{1}=\frac{p^{3}-p^{2}-p+2}{p^{2}(p-1)^{2}\left(p^{2}-2\right)}
$$

and

$$
Y_{2}=\frac{p+2}{p^{2}(p+1)\left(p^{2}-2\right)}
$$

Therefore, after using $\mathcal{T}^{-1} . T$ and partial fractions decomposition we get:
$y_{1}=\mathcal{T}^{-1}\left[\frac{A_{1}}{p}+\frac{B_{1}}{p^{2}}+\frac{C_{1}}{p-1}+\frac{D_{1}}{(p-1)^{2}}+\frac{E_{1} p+F_{1}}{p^{2}-2}\right]$
$A_{1}+C_{1}+E_{1}=0$
$-2 A_{1}+B_{1}-C_{1}+D_{1}-2 E_{1}+F_{1}=0$
$-A_{1}-2 B_{1}-2 C_{1}+E_{1}-2 F_{1}=1$
$4 A_{1}-B_{1}+2 C_{1}-2 D_{1}+F_{1}=-1$
$-2 A_{1}+4 B_{1}=-1$

$$
-2 B_{1}=2
$$

Hence,
$A_{1}=-3 / 2, B_{1}=-1, C_{1}=0, D_{1}=-1, E_{1}=3 / 2 \quad, F_{1}=2$
$\Rightarrow y_{1}=-3 / 2 x^{-1}-x^{-1} \ln x-\ln x+3 / 2 x^{-1} \cosh \sqrt{2} \ln x+\sqrt{2} x^{-1} \sinh \sqrt{2} \ln x$
By the same method we find:
$A_{2}=1 / 2, B_{2}=-1, C_{2}=-1, \quad D_{2}=1 / 2, E_{2}=0$
$\Rightarrow y_{2}=1 / 2 x^{-1} \cosh \sqrt{2} \ln x+1 / 2 x^{-1}-x^{-1} \ln x-x^{-2}$

REFERENCES

[1]. Gabriel Nagy , " Ordinary Differential Equations " Mathematics Department, Michigan State University,East Lansing, MI, 48824.October 14, 2014.
[2]. Mohammed, A.H. ,AtheraNemaKathem, " Solving Euler's Equation by Using New Transformation", Karbala university magazine for completely sciences, volume (6), number (4), (2008).
[3]. William F. Trench , " Elementary Differential Equations " Trinity University, 2013.

