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ABSTRACT

In this article, we study the periodic solution for a class of doubly degenerate
parabolic equation with nonlocal terms and Neumann boundary conditions. By
using the theory of Leray-Schauder degree, we obtain the existence of nontrivial
nonnegative time periodic solution.
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Neumann boundary;
Leray-Schauder degree.

1. INTRODUCTION

The goal of the present text is to consider the boundary
conditions in equations (1.1) to (1.3) for periodic
doubly degenerate parabolic equation with Neumann

boundary.
Ju
i div([7u™P~2 7 u™) = (m — ¢[u]) u,~
(x,t) € Qr 11
L=, (x,t) €00 x (0,T) 12
u(x,0) = u(x,T), x €N 1.3
Where m > 1, p > 2, the habitat 2 is a bounded

. . d
domain in R» with smooth boundary d.2, F™ denotes

the outward normal derivative on d/2. The zero-flux
boundary condition in equation (1.2) means that
no individuals cross the boundary of the habitat, Qr
= ) X (0, T). This problems is motivated by models
which have been proposed for some problems in
mathematical biology.
u(x,t) depends on both location of xand time £ and

2
the diffusion term div(|Vu|?~2 Vu), (A = Zzn=1§_xi)

The unknown function

models the tendency to avoid high density in the
habitat. As population growing is controlled by
birth, death, emigrant, immigration,
assumption of m, ®[u] hould be made to describe
the ways in which a given population grows and

and

shrinks over time.

Recently, periodic problems with nonlocal
terms have been investigated intensively by
number of researchers [1-5]. A typical model was
submitted by Allegretto and Nistri in which they
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proposed the following equations:

du
a— Au = f(xp t, a,d)[u],u)

with Dirichlet boundary conditions. Also,
according to the actual needs, many authors diverts
attention to nonlinear diffusion equations with
nonlocal terms such as the porous equation [6, 7] with

typical form:

Z—I; — Au™ + (a — Plu]u 1.4

And a class double degenerate parabolic
equation [8] with the typical from shown in equation
(1.5).

% —div(|[Vu™P2 7 u™) + (a — ®Plu) u
15

The equation (1.4) is degenerate if m > 1 and
singular if 0 < m <1. In addition, equation (1.5) is also
degenerate when u = 0, or when the gradient of u
vanishes. These degenerate equations exhibit a doubly
nonlinearity which generalize the porous medium
equation p = 2 and the parabolic p-Laplace equation m
= 1. If p=1and m =1 then equation (1.5) becomes a
nondegenerate parabolic equation and heat equation is
its special case.

By comparing the doubly degenerate parabolic
equation with Dirichlet boundary equation, the
Neumann boundary condition causes an additional
difficulty in establishing a priori estimate. On the other
hand, different form the case of Dirichlet boundary
condition, the auxiliary problem in equations (1.1) to
(1.3) is considered for using the theory of Leray-
Schauder degree. We have proved that the problem in
equations (1.1) to (1.3) admits a non-trivial
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nonnegative periodic solution as shown in the establish the necessary priori estimations of the
following theorem. solution of the auxiliary problem. Then the proof of

The rest of this article is organized as follows: the main result of this article is shown in the last
In Section 2, we present some necessary preliminaries section.

including the auxiliary problem. in section 3, we
2. Preliminaries
In this paper, we assume that:

(BL)®[.] :L2 () »>R" are the boundary conditions functional satisfying the condition:
0<ofu]<K uf,

Where K > 0 is constant independent of u, + R* =[0,+00), L: () ={ue L*(R) |[u > 0,a.e.in Q}.
T

(B2) m(x,t)eC,(Q,) and satisfies that {x € Q: le m(x,t) >0} =, where C; (Q;) denotes the set of
0

function which are continuous in (g_zx R() and of T- periodic with respect to t.

From (B2), we can see that there exist X, € 2,6 >0,m, >0 such that
1 T
T—J-m(x ,t)dt >m,, forall x € B (x,,9).

0

Since the equation (1.1) is degenerate at points where u =0, the problem (1.1)-(1.3) has no classical solutions in
general, so we focus on the discussion of weak solution in the sense of the following

. 1%
essin I [mxtydt >y,
0

xeQ

Where A, is the first eigenvalue of the Laplacian equation on T with zero boundary and ¢ (X) be the corresponding

eigenfunction.

Since the regularity follows from a quite standard approach, we focus on the discussion of weak solutions in the
following sense.

Definition 1 A function u is said to be a weak solution of the problem (1.1) - (1.3), if

uel”@;)NC; @Q;)u™ eL?(O,T WL (Q)NC; (Q;) and u satisfies

JJ u S8 4fvun [ VUV o (m - gulug)ixd 0. (1)
QT

Forany @ e C1(Q,) with ¢(x,0) = p(x,1).
In order to use the theory of Leray-Schauder degree, we introduce a map by considering the following auxiliary
problem

a;tg —div((|A(ug)Vug ? +g)p%Vug)+gug =(m-@[u,Jul, (xt)eQ;, (24)

ou,
p =0, (2.3)
u,(x,0)=u_(x,T) (2.4)

Where s* = max {0,s} and A(u,)=mu Z"l +¢,¢ is a sufficiently small positive constant , The desired solution will

be obtained as the limit point of the solutions of the problem (1.1)-(1.3). In the following, we introduce a map by the
following problem

ou .
¢ _div ((A(u )Vu
p ((A@,)Vu,

p-2
2

2+g)

Vu, )+eu, =f, (x,t)eQ;, , (2.5)

2
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5(;5 0, (x,1)edQx(OT), (2.6)
u,(x,0)=u_(x,T), X €Q, (2.7)
Then we can define amap u, =Gf with can see that the nonnegative solution of problem (1.1)-
GC.©O C @.)b ving classical (1.3) is also a nonnegative solution solves

: — .by applying classica

r Q1) r (Qr ). by applying ! u, =G(m-®[u_Ju;) . So we will study the

estimated (see [9]), we can know that |U,[|... . | I existence of the nonnegative fixed points of the map
bounded by ||f.., , and u, is Holder continuous in u, =G((m-®[u,])u;) instead of the nonnegative

lution of problem (1.1)-(1.3).
Q; . Then by the Arzela-Ascoli theorem, the map G is solution of problem (1.1)-(1.3)

compact. So the map is a compact continuous map. Let

f(u)=(m-®[u_Ju’) where u; =max{u,,0} we

3. Proof of the main results :First, by the same way as in [5], we can get the non-negativity of the solution of
problem (2.2)-(2.4) .

Lemma 1 If a nontrivial function u, €C ((1) solves u, =G((m—®[u_J)u;) , then

u (x,t)=0 VxteQ;

In the following, by the Moser iterative technique, we will show the priori estimate for the upper bound of
nonnegative periodic solution of problem (2.5)-(2.7). Here and below we denote by ||||p (L< p <o) then LP(QY)
norm.

Lemma 2 Let u_(X,t) be a nontrivial periodic solution which solves u, =T (L, o f(u,)), o €[0,1] and then there
exists a positive constant K independent of o and ¢ , such that

u |l <k, (3.1)
Where u_(t) =u_(.,t).

Proof: suppose U, is a nontrivial periodic solution, Multiplying Equation (2.5) by u’ where (s> 0) and integrating

over Q) , we get
p

1 d o1 sp’mP m(p-2)rssd o1

ma ug(t)||s+1+[m(p_2)+s+1]p V(US P (t)) Snm(x’t) L= (Qx(0,T)) ug(t)”sﬂ
p
Where (a(x,t)-®[u,]<Mu,) and M =SUP a(x.t) Q,
(x)
p

d s+1 Sppmp_l np-rs4 s+1
—u @+ Vi, * @) <M(s+D|u_(t 3.2
al O o gy rorp [ " O SMEDOL (3.2)
And hence:

d s+1 mip-2)rsil " s+1
i ug(t)||s+l+C Vu, * @) <C(s+21) ug(t)||s+l, (3.3)

p
Where C is a positive constants independent of u_,k and m .
Assume that |u,,(t)|| #0 and set
m(p-2)+s+1

s, =p“+m __P_ a, = p(sy +1) u t)=u, * () where (k =0,1..)

p—2' “m(p-2)+s, +1’
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Then o, < p, M, = p**+m, .
For convenience, we denote by C a positive constant independent of u_,k and m , which may take different values .
From (3.3) we obtain

SO +c v Ol <6+ juOl (3.4)
We can using the Gagliardo-Nirenberg inequality, we have

|u @, < PIvu O lu I, (35)
With

_(p-Dm,+p N
“ m,+2 (p-1N +2

€(0,2).
By inequalities (3.4)-(3.5) and the fact that [u, ()], =|u, ,(t)]"", we obtain the following differential inequality:

d “ I “
g MOl <o O o O o +C 6 +Du O

0-1)
— Q1p

<—C |u, (t)||9 u, 1(t)|| +C (s, +D[u O] -

1
Let
é:k = max{l, SUp”uk (t)”ak }
t
We have
o (M, +1) Pp_a(m+l) (o= 1)a
k-1p

i||uk(t)||zk <[u [, ™* Clu®[] ™* &L " +C(s, +1)lu, ©"3 (3.6)
dt K K

By young's inequality
@
ab S ’ap + qu ,

Where p >1,q >La>0,b>0,<>0 and il+i'=1. set

P q

o 1 09, ,
a=u, (t)”:: 2, b=s +1 . =%§k—lg ;
p'=1, = p(s, +1) —s, —2= sy +D( +P)(P —DN +2_Sk _2,

o0 N ((p—Ds, +p)
Then we obtain
o P_a (M +1) (H—l)a LS %am i

(5 +D)Ju, O < ||u O ™? &¢ T HCs D E, T (37)

Here we have used the fact that p'=1, >r >1 for some r independent of k. in fact, it is easy to verify that

I!Iml = 400,
Donate
(p -DI, b _1_9 P, 4
kK — 1 k — ’
I, -1 6 1, -1
And combining (3.7) with (3.6) we have
oy (M +1) C oy oy (M +1) 0—1)
IIUk(t)II * < Ju @, ™ {—||u @ ™ &4 T +C(s +DELI (3.8)

38
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Then

0‘ o _a(m+l) (-1 1,

d m+ m +
(m+2) Ju O <Clu, O], ™7 &1

A1p

+C(m, +2)* &X,. (3.9)

From the periodicity of u, (t) , we know that there exists t, at which |u, (t)|| reaches its maximum and thus the
2

left hand of (3.9) vanishes. Then we obtain
0D,

Ju ®l, <{Clm, +2) & ¢ “"]}“k

Where
p_agm+D) ol
0 m, +2 m, +2

o =

Therefore we conclude that

me+2 (=0 (M +2)ay 4,

Ju, (t)|| <{C(m, +2)* fk o “p}“k ={C(m, +2)%}u £ GV

m, +2 a, m, +2

Since —X - = , and ¢, are bounded, we get
(1, -)° 1-6o, «l,
(1_€)ak71p
”uk(t)”ak <Cp g ffomd
. . . m, +2 L
Where «'>1 is a positive constant independent of k, as ¢, :M < p implies that
m.+p

1-6 1-0
( )“k—lp (L=0) 4 <p and & _, >1, then we have
(p-6x,)  (p-6p)

Ju, 0, <cAr,

Or
Infu, @), <& <InC+kinA+pIng, .,

Where A = p“' >1. Thus

Inju, ()], <InCZp +p“tIné+In A(Z(k—])p )

j=0
<P =DINC+p Iné+ F(K)InA
Or
pkig P

Ju, ®, ., <{C P &7 A (k)3™ "
Where

k —p(k +1)—p*“*+2p*
(p-1)? '
Letting k — oo , we obtain
Jlu), <C&M < C(max{l,SLth||u(t)||2}) s (3.10)

f (k)=

On the other hand, it following from (3.3) with m=0 that
d
E”u ®)]; +C,|vu 0]} <C, Ju ©|; (3.11)

By Holder's inequality and sobolev's theorem, we have

39
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ju@)], <[z > Ju®)], <ClQfz+ [Vu@®)], (3.12)
Combined with (3.11) , it yields

d

O +CuVu @) <C. O (3.13)
By young's inequality, it follows that

d

d_t”u ©[; +C,|[Vu@)|} <C, (3.14)

Where C, (i =1,2) are constant independent of u. Taking the periodicity of u into account, we infer from (3.14) that
lu)], <C.

Which together with (3.10) implies (3.1). The proof is completed.
Corollary 1 There exists a positive constant R independent of €, such that

deg(l -G (L (m —P[u,]u;),Bg,0) =1,
Where B is a ball centered at the origin with radius R in L (Q; ).
Proof it follows from Lemma 2 that there exists appositive constant R independent of &, such that
u, #G(a(m-®d[u_Ju)), Vu, € 0By, o <[0,1].
So the degree is will defined on B . from the homotopy invariance of the Leray-schauder degree and the existence
and uniqueness of the solution of G(1,0) , we can see that
deg(1—G((m—®[u,u}), By, 0) = deg(l- G (1L, o(m—[u,u;), B, 0)
=deg(1-G (1,0),B;,0) =1.
The proof is completed.
Lemma 3 There exist a constants I >0 and & > 0, such that no non-trivial solution u, of the equation,

G((m—®[u,u;) satisfy

0<[t ]y, =T

Proof By contradiction , let u,, be a non-trivial solution of u, =G((m—®[u,] u;) satisfying 0<|| u, <r,

¢2

u,

&

¢ ou,
Lj IEdtdx+ Lj ((B(u,)Vu,

L (Qr)

For any given ¢(x) €C, (Q2), multiplying (2.5) by and integrating over Q; =B (x,)x(0,T ), we obtain:

24 g)%z B(ug)VugV(ﬁ—z))dtdx (3.15)

< [[ ¢ (m—&—®[u])dtdx.
o3
Due to the periodicity of u, with respect t we have
2 T
jjﬁ%dtdx =I¢ZIMdtdx =0. (3.16)
o U, ot 5 oo ot

The second term on the left —hand side in (3.15) can be rewritten as

[[(B W)V,
Qr

2 P2 @
+¢&) 2 B(ug)VugV(u—)dtdx

40
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= [[«(Bw,)vy,
Qr

)2 B U VUV uﬂ))dtdx

4 Vo+ V(i) ¢))dtdx
u u

& &

p-2
“+£) 2 B(u,)Vu,(

= [[(BW,)vu,
Qr

") B (ugwuﬁ)(ugw—us(uﬂ»)dtdx

= [[«Bw,)Vy,
Qr

+ j j (B u,)vu,| +g)p7_25 (ug)VUSV(uﬂ)dtdx (3.17)

QF &

p-2
“+£) 2 B(u,)|V4| dtdx

= [[(Bw,)Vy,
Qr

(B 0 B0, vo-u.5 v o
Qr e

2 p2 2
+¢) 2 B(u,)|Vg| dtdx

= [[«(BW,)Vu,
Qr

v

)| dtdx
u£

, b2
+€) 2 B,

[ (B w,)Vy,
Qr
Thus:

[[B vy,

*

Qr

<[[(Bw,)Vy,
Qr
Combining (3.16) with (3.15)(3.18) , we obtain

[[# (m —&—fu,Ddtdx < [[((B,)Vu,

< Q
Let 1 be the first eigenvalue of the p-Laplacian equation on Q with zero boundary condition and ¢ (X ) be the

2 b2 @’
+&) 2 B(ug)VugV(u—))dtdx (3.18)

p-2
“+8) 2 B(,)|V4| dtdx

p-2
“+&) 2 B(u,)|Vg[ dtdx (3.19)

corresponding eigenfunction, we have:
[Vl dx =[] dx (3.20)
Q Q

From theorem 5.1 and also some remarks in [[10].pp.238, 243], it follows that there exists a constant y = (N ,P)
such that

sup  [B(u,)Vvy,

[0 &)+Q( 0.2 P)

= 1

2 P

=C(N1p,fo,ao,m)[ ] IB(ug)Vug"dtdxj Al[ij "
[(% )+ Q1. P)] 2\ 4y

p+6

Forany (X;,t)) € Qi a1y =% (T,3T),[(%), t,) +Q(ry, P)] and p =min {T,—“%r‘)} On the other hand, by (2.2)
22

with (2.4) , we have
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[[1B,)vu, ] didx < max|a(x O[] Qul™ +u[*)dtax .
Qr Qr
So
i
= C(N, Pty ag, ) ([ QU™ +uPydte n 2| 2o |
sup p.1y, o,ulﬂ A 2\ 2

[ 6)+Q 2 )]
Which implies

m+1

|Bu,)Vu,

1 2 yop
ey < CAUl g, U L“(Q))Ai(a)

Open Access

Where C is a constant independent of €, from ¢ € (0, %) we have B(g)=mu" ™ +g<mr™* +% By the

approximating process, we can let ¢ = ¢, is the positive eigenfunction of the first eigenvalue 14 ,then we

Il dm oo, Daox

B (Xq, r )x(0,T)

-2
< [ (euave et B
B (Xq, r)><(0T)
m+l a, p-2 1
< jj (C(r 7 +n)" " A be 2 )(mr™ 4 20) [ o (3.21)
B(Xp, 4 )%(0,T) H Bs (%)
On the other hand

j j #2(a— & —D[u])dtdx

> ([ ¢ (m—z—k |ul.)dtdx (3.22)

;

> [ #fm-z—k]ul.)dtdx

B (Xo) 0

>T (my—e—kr?[Q [ gdx.
Bs(Xo)

Where €2 denotes the Lebesgue measure of the domain €2 , and then we obtain
m+1 p-2

m, <&+kr?|Q+(C, (r 2 +r)"? /\% + e 2 )(mr™? +%). (3.23)
Obviously if we let
1
r<min{m- Myy; 1 - 3.24
{ ( ) 5 ( iC )" } (3.24)
We can get
g <0 (B p %, Gy 3%

4 ‘4 4 4 4

This inequality does not hold. Therefore there exists one positive constant r > 0, such that no nontrivial solution u_ of

the equation G ((m —®[u_ Ju; <r

il (Qr)
Thus we complete the proof.

Corollary 2 There exists a small positive constant I which is independent of ¢ and satisfies r < R such that
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deg(l ~G (L (m —fu,Ju;,B,,0)=0,
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Where B, is a ball centered at the origin with radius I in L*(Q; ) .

Proof same way for lemma 3, we can see that there exists a positive constant 0 <r <R

independent of &, such that:

u, #G(z,(m-®[u,]) u’ +1-1),vu_ €B,, 1 [0,1].

Thus the degree is well defined on B, , By Lemma 3, we can easy to infer that u =G (0,(m —®[uJu™) admits no

solution in B, , Then by homotopic invariance of the Leray-schauder degree , we get
deg(l -G, (m—-D[u,] u;),B,,0)=deg(1-G(0,(m—-D[u,] u; +1),B,,0) =0.

The proof is completed.

Now we show the proof of the main result of this paper.

Theorem 1 if assumption (B1),(B2) hold then the
problem (1.1)-(1.3) admits a nontrivial nonnegative

periodic solution U, .

Proof Using corollaries 1 and 2 , we have

deg(1-G(f (),I,0)=1,

Where I'=B; \B,,B, is aball centered at the origin

with radius € L*(Q; ) , R and r are positive

constants and R > r . By the theory of the Leray-
Schauder degree and Lemma 1, we can conclude that
problem (2.2)-(2.4) admits a nontrivial nonnegative

periodic solution U, By Lemma 3 and a similar
method to that in [11], we can obtain

au,
ot

Combining with the regularity results [10] a similar
argument to that in [11], we can prove that the limit
function of is nonnegative nontrivial periodic solution
of problem (1.1)-(1.3).

[Vu,| <C, <C

L @)
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