Studying the Radioactivity of Local and Imported cars oil in **Baghdad using (HPGe) detector**

دراسة النشاط الاشعاعي لزيوت السيارات المحلية والمستوردة في مدينة بغداد باستخدام كاشف الجرمانيوم عالى النقاوة

ندى فرحان كاظم عمر هيثم عدنان على عبد الوهاب رضا

الجامعة المستنصر بة /كلبة العلوم / قسم الفبز باء

nadaph2020@yahoo.com omerbluesky@yahoo.com dr.ali@uomustansiriyah.edu.iq

الخلاصة

تم في هذا البحث در اسة النشاط الاشعاعي لخمسة عشر عينة من زيوت المحركات، ثمان منها محلية جمعت من محطات الوقود الموجودة في مدينة بغداد،وسبعة منها مستورَّدة من مناشىء مختلفة جمعت من الاسواق المحلية.

تم التحري عن النويدات المشعة الموجودة في العينات وحساب فعاليتها النوعية باستخدام تقنية التحليل الطيفي لاشعة كاما بواسطة منظومة كاشف الجرمانيوم عالى النقاوة(HPGe)،كما تم ايضا حساب معاملات الخطورةو عامل النوعية النسبية الذي تم حسابة لاول مرة في هذا البحث

ك مربع في معرف من . كشفت الدراسة عن وجود ثمان نويدات مشعة في العينات المدروسة هي(الرادون-222،الرصاص-214والبزموث-214) التابعة لسلسة اليورانيوم-238و (الرصاص-212، الثاليوم-208و الاكتينيوم-228) التابعة لسلسلة الثوريوم-232 بالاضافة الى البوتاسيوم -40 والسيزيوم-137.

بينت النتائج المستحصلة ان الفعالية المكافئة للراديوم تراوحت بين (Bq/l(13.72-1.73)، ومعدل جرعة كاما (0.82nG/h(6.24 ومعامل تمثيل كاما (0.0120.096-) وقيم الجرعة الفعالة السنوية المكافئة الداخلية (40.0-0.009 (0.031mSv/y)والخارجية (0.052-0.002) ومعامل الخطورة الداخلي (0.009-0.002) و الخارجي (-0.009 20.05)اما معامل النوعية النسبية فقد تراوح بين Bq/l(1.76-1.76). كما ان هناك معامل جديد قد تم حسابه لأول مرة في هذا البحث وهو الفعالية النوعية الموثرة حيث تراوحت قيمته بين

.(13.26-1.76)Bq/l

تم مقارنة معدل نتائج البحث الحالي مع معدل الحد العالمي فوجد انها ضمن الحدود المسموحه اي ان الزيوت المستخدمة في السيارات والمحركات امنة من الناحية الآشعاعية وصالحة للاستهلاك ولاتشكل خطر على عموم المجتمع و البيئة.

الكلمات المفتاحية // النويدات المشعة، كاشف الجرمانيوم عالى النقاوة، زيوت المحركات والسيارات، معاملات الخطورة الاشعاعية،معامل النوعية النسبية.

Abstract

The radioactivity of fifteen cars oil samples were be studied in this research, eight of them are local collected from the fuel station in Baghdad, the remaining seven are imported from different origins collected from local markets of Baghdad.

The specific activity of the detected radionuclides were be measured by the spectral analysis technique of gamma-ray using high purity germanium (HPGe) detector. It was also a calculation of radiation risk factors; and the specific effective activity (Aeff), which was calculated for the first time in this research.

Eight radionuclides were be detected in this research ;(²²⁶Ra, ²¹⁴Pb, ²¹⁴Bi) which belong to the uranium-238 series and (²¹²Pb, ²⁰⁸Tl, ²²⁸Ac) which belong to Th-232 series in addition to⁴⁰K and ¹³⁷Cs.

The results shown that the radium equivalent activity $(Ra_{eq})were(1.73-13.72)Bq/l$, the absorbed gamma doserate (D_y) were (0.82- 6.24) nG/h, the representative gamma index ($I_{\Box r}$)

were(0.012-0.096), the indoor annual effective dose equivalent (AEDE)_{in} were(0.004-0.031 mSv/y,the outdoor annual effective dose equivalent (AEDE)_{out} were(0.002-0.037)mSv/y, and the internal hazard index(H_{int}) (0.009-0.052), the external hazard index (H_{ext}) (00.5-0.037).

Another factor has been calculated for the first time in this research it's the specific effective activity (A_{eff}) which is ranged between 1.76 and 13.26Bq/l.

The obtained results were compared with the worldwide average; it was within the recommended values. That mean, oils used in automobile engines are safe, valid for consumption and does not pose a danger to society and the environment.

Key words

Radionuclides, high purity germanium detector, car and engine oil, radiation risk factors, specific effective activity.

1. Introduction

The presence of naturallyoccurring radioactive material (NORM) has been known since early 1930s in petroleum tanks, in oil and gas production, and in their processing facilities [1].Petroleum is not a single chemical compound, Liquid petroleum or oil comprises a variety of liquid hydrocarboncompounds (carbon and hydrogen). There are also gaseous hydrocarbons (natural gas) [2].

Tracequantities of the radionuclides ²³⁸U,²³²Th and⁴⁰K have been present in the earth's crust since itsformation [1], Radioactive decay of ²³⁸U and ²³²Th produces several radioisotopes of different elements and of different physical characteristics with respect to their half-lives, modes of decay, and energies of emitted radiation [3].

NOR activity concentrations can vary from one facility to another depending on geological

formation and operational conditions and may also change over the lifetime of a single well[4]. In the exploration and extraction processes ofoil and gas, the natural radionuclides ²³⁸U, ²³²Th,²¹⁰Pb, ⁴⁰K,as well as the radium isotopes(²²³Ra, ²²⁴Ra,²²⁶Ra -the onlyimportant isotope of radium because its average concentration in the earth'scrust "40 Bg/kg"-and ²²⁸Ra), etc., are brought to theslurry surfaces and may contain levels of radioactivityabove the surface background [1,5]. There are several exposure pathways to humans from oilfield NORM, such as inhalation of radon gas.

The major radionuclides of concern in oil and gas NORM are ²²⁶Ra and ²²⁸Ra; these isotopes are the decay products of uranium and thorium exist in subsurface formations from which hydrocarbons are industrialized. Although Ra is mobilized in the fluids, uranium and thorium are immobile to a large extent. In addition,²¹⁰Pb and ²²²Rn particularly exist in gas processing equipment [6].

Gamma radiation emitted from (NOR), such as ⁴⁰K, and radionuclidesfrom the ²³²Tl and ²³⁸Useries and their decay, represent the main external source of irradiation to the human body. Sources of further exposure o radiation in the fields are radon inhalation, dust inhalation, groundwater ingestion, and skin beta exposure[7].

The objectives of this study, is to investigate the radionuclides and measuretheirspecific activates and to estimate the hazard indices; radium equivalent activities, absorbed gamma dose rate, representativelevel index, external and internal hazard index. The results obtained will be compared with reported values in literatures in order to confirm the radiological hazards concerning with the automobiles oil consumedin Baghdad city involving natural radionuclides present in them are safe and within the world wide range.

2. Experimental details

2.1 Collection and preparation of the Samples

Fifteen samples of several types of the oils used in the engine cars in Baghdad were be collected in this study, eight of them are local collected from the fuel stations, the remaining are imported from different origins collected from local markets.

The samples wereweighed, stored and sealed in Marinelli beakers of one liter capacity, andkept for thirteen daysin order to reach theradioactive secular equilibrium between ²²²Rn,²²⁰Rn and their respective parent nuclei, ²²⁶Ra,²²⁴Ra. before starting the investigations.

2.2 Coding the samples

The coding of the samples and the required information; date of collection, mass, types and country of origin, are listed in table (1).

Sample code	Date	Mass(gm)	Туре	Country of Origin
B1	9/9/2015	680	Kerosene	Iraq
B2	4/10/2015	746	Motor oil (Jumbo Dubai)	U.A.E
B3	4/10/2015	739	Motor oil (Furtcs)	U.A.E
B4	4/10/2015	743	Motor oil (Vulcan 330)	Iran
B5	4/10/2015	769	Motor oil (Super GT)	U.A.E
B6	8/10/2015	735	Motor oil(Fuchs)	Germany
B7	8/10/2015	782	Motor oil(Crafft)	K.S.A
B8	8/10/2015	693	Motor oil(Al Khaleej)	Kuwait
B9	8/10/2015	691	Gasoline	Iraq
B10	8/10/2015	541	Gasoline	Iraq
B11	8/10/2015	506	Gasoline	Iraq
B12	8/10/2015	715	Kerosene	Iraq
B13	8/10/2015	646	Gasoline	Iraq
B14	8/10/2015	687	Gasoline	Iraq
B15	8/10/2015	625	Gasoline	Iraq

Table1.Sample code, date of collection, mass, state, type and the country of origin.

2.3 High purity germanium (HPGe)detector

The oil samples were analyzed by gamma spectrometryof high purity germanium (HPGe) detector, of semiconductor type (p-type),Ge,3"x3" crystal diameter,operation voltage 3600 volt D.C, relativeefficiency 20% and peak/Compton ratio of 52:1at 1.33MeV (Co-60), No. of channels was 16.400ch.A software program called MAESTRO- version(7.1) was used to accumulate and measure the data.The detector was shielded with lead blokes of 10 cm thick to reduce the background radiation effect.

The Fifth Scientific Conference of the College of Science University of Kerbala 2017

The efficiency calibration achieved by placed a Marinelli beaker(1000cm³) of a standard mixed element of ten radionuclideson the crystal detectorfor(86.400s =2hr),the radionuclides in the beaker are (²⁴¹Am,¹⁰⁹Cd ,¹³⁹Ce,⁵⁷Co,⁶⁰Co,¹³⁷Cs,¹¹³Sn,⁸⁵Sr,⁸⁸Yand²⁰³Hg). The efficiency calibration curve drawn between energy and efficiency is shown in fig.1.

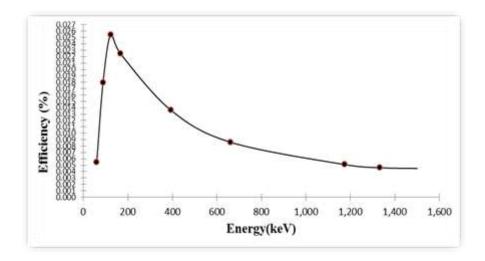


Figure 1.Efficiency calibration curve of (HPGe) detector using standard mixed source.

The efficiency of each radioisotopes detected in this research were identify from the efficiency calibration curve of the detector and listed in addition to their half-lives, energy, and abounds in table (2).

Series	Isotope	Half-life	E _γ (keV)	$I_{\gamma}(E_{\gamma})$ %	Efficiency (%)
²³⁸ U	²²⁶ Ra	1600 y	186.21	3.64	0.0219
²³⁸ U	²¹⁴ Pb	26.80 m	295.21	19.20	0.0196
²³² Th	²¹² Pb	10.64 h	238.63	43.50	0.0173
²³⁸ U	²¹⁴ Pb	26.80 m	351.92	35.10	0.0150
²³² Th	²⁰⁸ Tl	3.07 m	583.19	30.58	0.0096
²³⁸ U	²¹⁴ Bi	19.90 m	609.32	44.60	0.0093
	¹³⁷ Cs	30 y	661.61	87.50	0.0086
²³² Th	²²⁸ Ac	6.13 h	911.16	26.60	0.0069
	⁴⁰ K	$1.28 \times 10^{9} y$	1460.80	10.67	0.0049

Table 2.radionuclides, gamma energies used in the research, abounds and efficiency.

2.4 Specific activitycalculations:

Thespecific activates of the detected radionuclides were calculated by putting the Marinelli beaker of the samples on the crystal detector for (7200s=2hr) from the following equation [8]:

$$A_{i}(E_{\gamma}) = \frac{N}{\mathcal{E}. I_{\gamma}. M. t_{c}} \qquad \dots (1)$$

Where $A_i(E_{\gamma})$ is the specific activity of the radionuclides, N is the net area under the peak, t_c is the counting life time, I_{γ} is the abundance at energy E_{γ} , \mathcal{E} is the detection efficiency at energy E_{γ} , (M) is the mass of the oil sample in (liter).

The background correction was accomplished by measure the counts when placed an empty Marinelli beaker on the detector crystal for the same period of time of the samples.

2.4.1 The specific effective activity (A_{eff})

The specific effective activity (A_{eff}) was calculated by equation (2) ,were A_{Ra} , A_{Th} and A_k are specific activities of 226 Ra, 232 Th and 40 K in (Bq/kg) or (Bq/l) .(1.31) and (0.085) are weighted coefficients for 232 Th and 40 K, respectively[9]. $A_{eff} = A_{Ra} + 1.31 A_{Th} + 0.085 A_{K} \qquad \dots (2)$

2.5Calculation of the Radiation Hazard Indices

Theradiological hazard indices were be calculated for each samples as follows:

2.5.1 Radium equivalent activity index (Ra_{eq})

Its estimate that (1Bq/kg of 226 Ra), (1.43Bq/kg of 232 Th) and (0.077Bq/kg of 40 K) produce the

same γ -ray dose [10]. It is calculated by equation (3),

 $Ra_{eq} = A_{Ra} + 1.43 A_{Th} + 0.077 A_{K} \dots (3)$

Where A_{Ra} , A_{Th} and A_{K} are the activity concentration of ²²⁶Ra, ²³²Th and ⁴⁰K, respectively.

2.5.2Gamma absorbed dose rate (\mathbf{D}_{γ})

It is the absorbed dose rate at a height of 1 m above the ground surface due to natural radioactivity. It refers to the radiation hazardto people from the steel slug in building materials, and calculated with equation (4) [11],

 $D_{\gamma} = 0.462C_{Ra} + 0.621C_{Th} + 0.0417 C_{K}(nGy/h)....(4)$ Where C_{Ra} , C_{Th} and C_{K} are the activity concentrations of ²²⁶Ra, ²³²Th and ⁴⁰K respectively[8].

2.5.3 Representative gamma level index $(I_{\gamma r})$

Another radiationhazard index defined by equation (5) where, C_{Ra} , C_{Th} and C_{K} are the activity concentrations of ²²⁶Ra, ²³²Th and⁴⁰K inBq/kg, respectively [8,12].

 $I_{\gamma r} = (1/150)C_{Ra} + (1/100)C_{Th} + (1/1500)C_k \qquad \dots (5)$

The safety value for this index is ≤ 1

2.5.4 Annual effective dose equivalent (AEDE)

The annual effective dose equivalent received by a member is calculated from gamma absorbed dose rate by applying dose conversion factor of (0.7 Sv/Gy) and the occupancy factor for indoor and outdoor which is 0.8(19/24), and 0.2(5/24) respectively. It is determined with equations(6) and (7) respectively [8].

 $(AEDE)_{in} = D\gamma (nGy/h) \times 8760 h/y \times 0.7 Sv/Gy \times 0.8 \times 10^{-6} \dots (6)$

 $(AEDE)_{out} = D\gamma (nGy/h) \times 8760 h/y \times 0.7 Sv/Gy \times 0.2 \times 10^{-6}...(7)$

2.5.5External (H_{ext}) and internal hazard indices (H_{int})

External and internal radiation hazards due to ⁴⁰K, ²³²Th, and ²²⁶Ra are denoted by H_{ext} is defined by the following expressions in equations (8) and (10)[12]:

 $H_{(ext)} = A_{Ra}/370 + A_{Th}/259 + A_k/4810 \le 1$ (8) $H_{(int)} = A_u / 185 + A_{Th} / 259 + A_k / 4810 \le 1$ (9)

3.Results and discussion

Eight radionuclides were be detected in the examined oil samples they are ;(226 Ra, 214 Bi, 214 Pb) which are the decay products of the 238 U Series, (212 Pb, 208 Ti, 228 Ac) which are the decay products of 232 Th series, the single radionuclides 40 K and the artificial 137 Cs.

The numbers of radionuclides in the samples are varying from 6 radionuclides in samples B5 and B8 to 2radionuclides in sample B7.some radionuclides can have highest specific activity in some samples and below the detection limits(B.L.D) in other samples. The radionuclide (K-40) appeared in all samples with average specific activity (6.10±2.47) Bq/l, the artificial radionuclide ⁷Cs was observed in 7 samples.

The comparison between the calculated specific activity values and the word wide average values recommended by (UNSCEAR) mention that our results werebelow theselevels [14,15]. Three chosen spectrums of samples B1, B7 and B8 were shown below in figures (2),(3) and (4), B1 have the highest specific activity, B7 have the lowest number of nuclides, and B8have the highest number of nuclides.

The detected radionuclides, their specific activity, the chains that decayed them, the minimum, maximum and the average values of the oil samples were listed in table (3). The specific effective activity (A_{eff}) of ²³⁸U, ²³²Th and ⁴⁰K radionuclides for all the samples

were calculated from equation (2) and listed in table (4).

The diagram of the specific effective activities (A_{eff}) of the oil samples shown in figure (5) clear the variation of the specific activity in these sample.

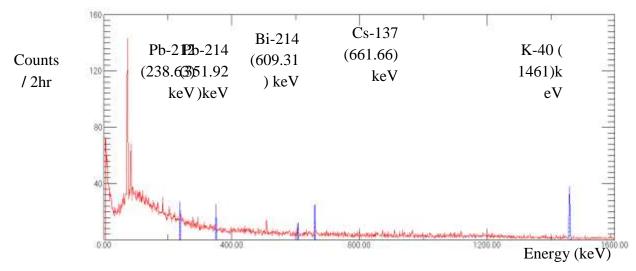


Figure 2.Gamma-rays spectrum for sample (B1).

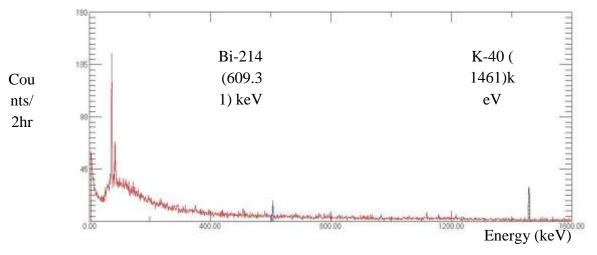


Figure 3.Gamma-rays spectrum for sample (B7).

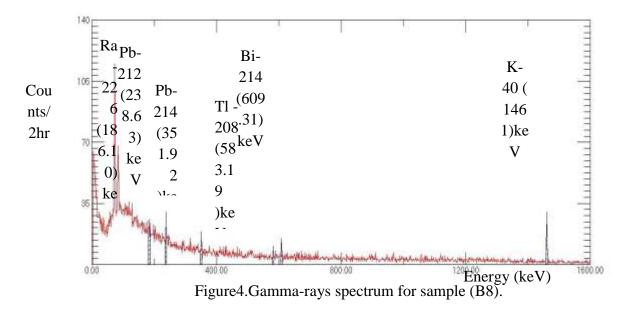


Table 3.The specific activities of the detected radionuclides.

Sample code	Specific activity of the detected radionuclides (Bq/l)									
		238U- Series	5	232Th-Series			K-40	Cs-137	Nuclides	
	Ra-226	Bi-214	Pb-214	Pb-212	TI-208	Ac-228			No.	
B1	B.D.L	3.22	1.95	2.80	B.D.L	B.D.L	8.14	1.27	5	
B2	B.D.L	B.D.L	2.30	B.D.L	B.D.L	B.D.L	9.96	0.99	3	
B3	0.14	4.87	2.35	B.D.L	B.D.L	B.D.L	1.50	0.37	5	
B4	0.54	4.45	1.05	B.D.L	B.D.L	1.23	12.07	B.D.L	5	
B5	1.32	B.D.L	5.62	4.84	B.D.L	0.36	15.32	0.36	6	
B6	0.31	B.D.L	1.66	B.D.L	B.D.L	B.D.L	14.32	0.63	4	
B7	B.D.L	4.60	B.D.L	B.D.L	B.D.L	B.D.L	4.61	B.D.L	2	
B8	0.19	2.88	0.60	2.30	2.04	B.D.L	6.40	B.D.L	6	
B9	2.50	2.13	2.63	B.D.L	B.D.L	B.D.L	5.77	B.D.L	4	
B10	B.D.L	B.D.L	1.44	B.D.L	B.D.L	B.D.L	3.72	0.68	3	
B11	2.31	4.23	0.77	5.34	B.D.L	B.D.L	1.87	B.D.L	5	
B12	B.D.L	B.D.L	0.73	2.91	B.D.L	2.40	2.56	B.D.L	4	

The Fifth Scientific Conference of the College of Science University of Kerbala 2017

B13	0.47	B.D.L	B.D.L	2.47	B.D.L	B.D.L	1.93	0.77	4
B14	B.D.L	4.62	3.02	B.D.L	B.D.L	B.D.L	1.52	B.D.L	3
B15	B.D.L	3.13	1.16	2.16	B.D.L	B.D.L	1.79	B.D.L	4
Min.	B.D.L	B.D.L	B.D.L	B.D.L	B.D.L	BDL	1.50	B.D.L	2
Max.	2.50	4.87	5.62	5.34	2.04	2.40	15.32	1.27	6
Ave.	0.52±0.47	2.28±1.16	1.69±1.30	1.52±1.23	0.14±0.10	0.27±0.22	6.10±2.47	0.34±0.23	
worldwide		50 [14]			50 [14]		500[14]	14.8[15]	
Ave.									

Table 4.The specific effective activities of ²³⁸U, ²³²Th, ⁴⁰K radionuclides.

Sample code	²³⁸ U (Bq/l)	²³² Th(Bq/l)	⁴⁰ K (Bq/l)	A _{eff} (Bq/l)
B1	3.22	2.80	8.14	7.58
B2	2.30	B.D.L	9.96	3.15
B3	4.87	B.D.L	1.50	5.00
B4	4.45	1.23	12.07	7.09
B5	5.62	4.84	15.32	13.26
B6	1.66	B.D.L	14.32	2.88
B7	4.60	B.D.L	4.61	4.99
B8	2.88	2.300	6.40	6.44
B9	2.63	B.D.L	5.77	3.12
B10	1.44	B.D.L	3.72	1.76
B11	4.23	5.34	1.87	11.38
B12	0.73	2.91	1.87	4.70
B13	0.47	2.47	1.93	3.87
B14	4.62	B.D.L	1.52	4.75
B15	3.13	2.16	1.79	6.11
Min.	0.47	B.D.L	1.50	1.76
Max.	5.62	5.34	15.32	13.26
Ave.	3.12±1.70	1.60±0.90	6.05±2.27	5.74 ±2.32

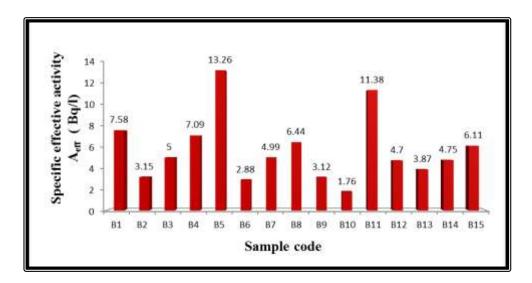


Figure 5. Specific effective activity (A_{eff}) .

The Fifth Scientific Conference of the College of Science University of Kerbala 2017

The hazard indices; Radium Equivalent Activity(Ra_{eq}), absorbed gamma dose rate (D_{γ}), representative gamma index ($I_{\gamma r}$), annual effective dose equivalent(AEDE), external hazard index (H_{ext}), internal hazard index (H_{int}) were be calculated and listed in table (5).Theaverage and the highest values of the radiation hazard indices are under the world wide average values [14, 16]as clear in table (5).

Samples	Ra _{eq} (B	D_{γ}	Annual effective dose Equivalent (mSv/y)		$I_{\gamma r}$	Hazard index	
code	q/l)	(nGy/h)	(AEDE) _{in}	(AEDE) _{out}		H _{int}	H _{ext}
B1	7.85	3.57	0.017	0.009	0.055	0.030	0.021
B2	3.07	1.48	0.007	0.002	0.022	0.015	0.008
B3	4.99	2.31	0.011	0.003	0.033	0.027	0.013
B4	7.14	3.32	0.016	0.017	0.050	0.031	0.019
B5	13.72	6.24	0.031	0.008	0.096	0.052	0.037
B6	2.76	1.36	0.007	0.010	0.021	0.012	0.007
B7	4.95	2.32	0.019	0.020	0.034	0.026	0.013
B8	6.66	3.03	0.015	0.026	0.046	0.026	0.018
B9	3.07	1.46	0.007	0.012	0.021	0.015	0.008
B10	1.73	0.82	0.004	0.023	0.012	0.009	0.005
B11	12.01	5.35	0.026	0.007	0.083	0.044	0.032
B12	5.04	2.22	0.012	0.014	0.035	0.016	0.014
B13	4.15	1.83	0.009	0.032	0.029	0.012	0.011
B14	4.74	2.20	0.013	0.021	0.032	0.025	0.013
B15	6.36	2.86	0.019	0.037	0.044	0.026	0.017
Min.	1.73	0.82	0.004	0.002	0.012	0.009	0.005
Max.	13.72	6.24	0.031	0.037	0.096	0.0522	0.037
Ave.	5.88	2.69	0.014	0.016	0.041	0.024	0.017
Worldwide	370	55[14]	20[14]	1[14]	1	<1[16]	1[16]
Ave.	[14]				[15]		

Table 5.Radiation hazard indices of samples.

4.Conclusions

- 1. Eight radionuclides were detected in the selected examined samples includes; three radionuclides (Ra-226, Bi-214, Pb-214) belong to uranium-238 series, three radionuclides (Pb-212, Tl-208, Ac-228) belong to thorium-232 series, the single radionuclide K-40, and the artificial radionuclide Cs-137 which appeared in sevensamples (B1,B2,B3,B5,B6,B10,B13).
- 2. The average values of the specific activities of the radionuclides in addition to the highest values were under the worldwide average recommended by (UNSCEAR).
- 3. The values of the six radiation hazard indices were be less than the recommended values given by worldwide average.
- 4. The addition values calculated in this research considered that radiation dose of theoil aresafe for consumers.

5. References

- 1. S. Shawkya, H. Amera, A.A. Nadab, T.M. Abd El-Maksoudb, N.M. Ibrahiem."Characteristics of NORM in the oil industryfrom Eastern andWestern deserts of Egypt" Applied Radiation and Isotopes(2001) 55, 135–139.
- 2. C. C. Iwuji ,O. C. Okeke, B. C. Ezenwoke, C. C. Amadi, H. Nwachukwu "Earth Resources Exploitation and Sustainable Development: Geological and Engineering Perspectives"Engineering (2016) 8, 21-33.
- 3. Safety report series no.43 "radiation protection and the management of radioactive waste in the oil and gas industry" IAEA (2003).
- 4. N. A. Mansour, T. S. Ahmed, M. Fayez-Hassan, Nabil M. Hassan1, M.A. Gomaaand A. Ali"Measurements of Radiation Level around the Location of NORM in Solid Wastes at Petroleum Companies inEgypt" Journal of American Science (2012) 8(6).
- 5. F.S. Al-Saleh, G.A. Al-Harshan"Measurements of radiation level in petroleum products and wastes in Riyadh City Refinery" Journal of Environmental Radioactivity (2008) 99, 1026-1031.
- 6. G. Bassioni ,F. Abdulla ,Z.Morsy Nabil El-Faramaw "Evaluation of Naturally Occurring Radioactive Materials (NORMs) in Inorganic and Organic Oilfield Scales from the Middle East" Arch Environ ContamToxicol (2012) 62, 361–368.
- A.J. Pereira, M.M. Godinho, L.J. Neves "on the influence of faulting on small-scale soil-gas radon variability: a case study in the Iberian uranium province. J Environ Radiaoact. (2010) 101(10): 875–882.
- 8. N. F. Kadhim, O. H.Adnan "Measurement of natural radioactivity in Al-Dora Refinery by using (HPGe) detector" Advances in Applied Science Research(2016) 7(4):197-208.
- 9. Sarhosh OD "Hygienic evaluation Radiation contamination of Technology equipment for oil and gas companies complex of Poltava region", Technical report, Ukraine (2007) 49,300-306.
- 10. D. Amrani, M. Tahta'An on-belt elemental analyser for the cement industry" Appl. Radiat.andIso.(2001)54: 687.
- 11. A.T. Al-Kinani, M. Hushari, I.A. Alsadig and Huda Al-Sulaiti" Measurements of Recycling Steel Slug at Qatar Steel Using Low-level Gamma-ray Spectrometry and Calculation of Risk Factors", Donnish Journal of Research in Environmental Studies (2015) 2(4): 028-036.
- 12. M.N. Alam, M.I. Chowdhury, M. Kamal, S. Ghose, M.N. Islam, M.N. Mustafa, M.M.H. Miah, M.M. Ansary " The ²²⁶Ra, ²³²Th and ⁴⁰K activities in beach sand minerals and beach soils of Cox's Bazar, Bangladesh "Journal of Environmental Radioactivity 46 (1999) 243-250.
- 13. A. S. Alaamer"Assessment of Human Exposures to Natural Sources of Radiation in Soil of Riyadh, Saudi Arabia" Turkish J. Eng. Env. Sci.(2008)32, 229-234.
- 14. (UNSCEAR), United Nations Committee on the Effect of Atomic Radiation: Sources and NCRP. "Exposure of the population in the United States and Canada from natural background radiation". NCRP report no. 94. National Council on Radiation Protection and Measurement, Bethesda, Maryland, (1994).
- 15. (UNSCEAR) United Nations Scientific Committee on the Effect of Atomic Radiation, Report to the General Assembly. "Sources and effects of Ionizing Radiation", New York (1993).
- (UNSCEAR) United Nations Scientific Committee on the Effects of Atomic Radiation. "Exposures from Natural radiation sources", 2000 Report to General Assembly, Annex B, New York, (2000).