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Abstract: 

          In this paper, we consider the multicriteria scheduling problem on single machine 

to minimize two criteria: maximum cost function, denoted by maximum late work 

(Vmax) and maximum earliness (Emax). We propose several algorithms based on types 

of objectives function to be optimized. The solutions of the proposed procedures are 

compared with that of the optimal solutions and Pareto optimal solutions for the smaller 

instance size, these algorithms dealing with hierarchical minimization problem as well 

as simultaneous minimization problem with and without weight. Computational results 

show the usefulness of these procedures. 
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1. Introduction 
       The bicriteria scheduling problem 

has received significant attention in 

recent years (1). The basic of bicriteria 

can be stated as follows. There are n 

jobs to be processed on a single 

machine, each job i has processing time 

pi and due date di  at which ideally 

should be completed. Penalties are 

incurred whenever a job is completed 

earlier or later than it's due date. So the 

problem is a bicriteria scheduling 

problem. 

        Let Ω be a schedule, E(Ω),V(Ω) be 

functions of earliness and late work 

respectively. 

 The problem is to find a schedule Ω to 

optimize E(Ω),V(Ω) or a composite 

objective function of E(Ω) and V(Ω).       

          In the literature (3), there are 

mainly three classes of approaches that 

applicable to bicriteria scheduling 

problem. 

C1:  The hierarchical approach, one of 

the criteria (more important) regard as 

constraint (primary) criterion which 

must be satisfied and the other one 

considered as (secondary) criterion to 

optimize. 

This means optimize the primary 

criterion while breaking ties in favor of 

the schedule that has minimum 

secondary criterion (2). 

C2:  Minimizing a weighted sum of the 

bicriteria (objectives) and convert the 

bicriteria to a single criterion problem, 

several bicriteria scheduling problems 

studied belong to this class (4),(9). 

C3: One typically generates all efficient 

(Pareto optimal) schedules and select 

the one that yields the best composite 

objective function value of two criteria. 

For the bicriteria that concern the 

simultaneously minimization of (Σci 

,fmax) for 1//F(Σci ,fmax) problem in 

C3 which is solved (4) in a polynomial 

time (11) solved the 1//F(Σci ,Tmax) 

problem.    

          In this paper we will study 

bicriteria problems belong to the classes 

C1, C2 and C3. In section (2), notation, 

basic concepts and mathematical forms 

are given. In sections (3) and (4) we 

formulate the multicriteria problem 

according to the classes of the 

approaches, we propose algorithms for 

each problem and their special cases. 

Computational study for the algorithms 

is given in section (5). The conclusion 

is given in section (6). 
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2. Notation, basic concepts and 

mathematical forms 

2.1 Notation and basic concepts 

The following notation will be used in 

this paper: 

n = number of jobs.  
pi = processing time of job i.  

di = due date of job i. 

Ci = completion time of job i. 

Ei = the earliness of the job i. 

Vi= the late work penalty for job i. 

Vmax = Max {Vi}, the maximum late 

work. 

Emax= Max {Ei}, the maximum early 

work. 

fmax= Max{fi}, the maximum function. 

BAB = branch and bound. 

LB = lower bound. 

UB = upper bound. 

    In this paper, we shall use the 

following sequencing rules and 

concepts: 

MST:  Jobs are sequenced in non-

decreasing order of (Si = di - Pi ), this 

rule is well known to minimize Emax  for 

1//Emax  problem (5). 

Definition(1):   

        The term ”optimize” in a multi-

objective decision making problem 

refers to a solution around which there 

is no way of improving any objective 

without worsening at least one other 

objective (7). 

Definition(2):  

        A feasible schedule  is Pareto 

optimal, or non-dominated (efficient), 

with respect to the performance criteria 

f and g if there is no feasible schedule  

such that both f ()  f () and g ()  g 

(), where at least one of the 

inequalities is strict (11). 

Definition(3):  
         A measure performance is said to 

be regular if it is a non-decreasing 

function of job completion times. 

Example of regular measures are  ∑ 𝐶𝑖 
,Cmax ,Tmax , . . .            

Definition(4):        
         A non-regular performance 

measure is usually is not a monotone 

function of the job completion times, an 

example of such a measure the job 

earliness (8).                   

Lawler algorithm (LA):  

Step (1): let N ={1,…,n}, Ω=(∅) and M 

be the set of all jobs with no successors. 

Step (2): let j* such that fj* (ΣPi)= min{ 

fj (ΣPi)}, j∈M 

               Set N = N-{j*} and sequence 

the job j* in the last position of Ω. 

                        Modify M to represent 

the new set of the schedule jobs. 

Step (3): If N = ∅ stop, otherwise go to 

step (2). 

 

2.2 The mathematical forms and 

their algorithms 

2.2.1  Hierarchical problems: 
We present the mathematical 

forms and the algorithms for generating 

solutions when one of two criteria (Emax 

, Vmax) is more important than the 

others. These hierarchical problems are 

also called secondary criteria problems 

where the secondary criteria refer to the 

less important criteria. Formulation for 

multicriteria problems is similar to that 

for the single criteria problems which 

require that the optimal value of the 

primary objective is not violated. 

Let us first consider the formulations 

for bicriteria hierarchical problems say 

1// Lex(1 ,2 ) . There are two parts of 

the formulations 

 Primary objective function (1) 

     Subject to: 

    Secondary objective function (2) 

  Secondary objective function (2) 

      Subject to: 

      Primary objective function (1) 

Hence the algorithm for solving the 

bicriteria problem needs two steps: 

Step (1): We optimize 1, followed by 

Step (2): The optimization of 2, 

subject to the primary objective value 
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(1). For our problem if Emax is more 

important than Vmax , then the  

1// Lex(Emax ,Vmax ) problem can be 

written as: 

         

 

Min Vmax 

s.t. 

 Emax = ∆, where ∆ =  Emax(MST). 

 

2.2.2  Simultaneous problems 

         There are many algorithms that 

can be used for solving multicriteria 

scheduling problems, which is to find 

the efficient solutions or at least 

approximation to it (3). The running time 

for the algorithm often increasing with 

the increase of the instance size. The 

purpose of any algorithm process is to 

find, for each instance a feasible 

solution called optimal, that minimize 

the objective function. This usual 

meaning of the optimum makes no 

sense in the multicriteria case because it 

doesn’t exist, in most of the cases, a 

solution optimizing all objectives 

simultaneously. Hence we search for 

feasible solutions yielding the best 

compromise among objectives that 

constitutes a so called efficient 

solutions set, these efficient solutions 

that cannot be improved in one 

objective without decreasing their 

performance in at least one of the 

others. It is clear that this efficient 

solutions set is difficult to find. 

Therefore, it could be preferable to have 

an approximation to that set in a 

reasonable amount of time. 

 

3. Problem formulation and analysis 

     The problem of scheduling a set N = 

{1,…,n} of n jobs on a single machine 

to minimize multicriteria may be stated 

as follows. Each job i ∈ N is to be 

processed on single machine which can 

handle only one job at a time, job i has 

a processing time pi and due date di. All 

jobs are available for processing at a 

time zero.  

       If a schedule Ω = (1,…, n) is given, 

then a completion time  Ci =∑ Pi𝑖
𝑗=1   for 

each job i can be computed and 

consequently an earliness  Ei   = max{ di 

- Ci , 0 }, Emax = max{ Ei } for each i and 

Emax
w  = max{WiEi}, where Wi is the 

important of the job i with respect to 

other jobs . The late work Vi(Ω) for the 

job i ∈ N which is amount of processing 

preformed on job i after its due date di 

is easy to compute,  

 If  Vi = 0 ,then job i  is early with 

ci  ≤ di   
 If  0 < Vi  < pi , then job i is 

partially early  

 If  Vi = pi ,then  job i is late  with 

ci ≥ di + pi     
This means that 

 Vi ={

0            if     ci  ≤ di , i = 1, … , n  
ci − di if  di < ci < di + pi i = 1, … , n 

pi      if   ci ≥ di + pi , i = 1, … , n  
  

   

Hence   Vmax
w   = max { Wi Vi }, Wi  is 

the important of job i with respect to 

other jobs. Our object is to find a 

schedule that minimizes bicriteria for 

the following problems: 

1. 1//Lex(Vmax,Emax)problem (P1) ∈C1 

2. 1//Lex(Vmax
w ,Emax)problem (P2) ∈C1  

3. 1//F(Vmax , Emax) problem (P3) ∈ C3 

4. 1//F(Emax
w ,Vmax) problem (P4) ∈ C3 

5. 1//Vmax+ Emax problem (P5) ∈  C2 

 

3.1 1//Lex(Vmax , Emax) problem (P1) 

This problem can be written as: 

Min Emax = Max { Ei } , ∀  i 

S.t   Vmax  = ∆ ,where ∆ = Vmax (LA) 

Algorithm (1) for problem (P1) 

Step(0):  Using Lawler algorithm (LA) 

to find optimal  Vmax and set  ∆ = Vmax. 

Step(1): Set  N={1,…,n},  t =  Σ pi   ∀   

i ∈ N. 

Step(2): Solve 1/ Vi ≤ ∆ /  Vmax  

problem to determine job j to be the 

job completed at time t, 

such that: 1)  Vj ≤ ∆  

                2) Sj ≥ Si ∀ j,i∈N and Vi ≤∆. 

Step(3):   Schedule j in the interval  

[t -  pj , t ] 

Step(4):  Set N = N – {j} , t = t -  pj  
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Step(5):  If  t > 0 , then go to step (2) 

Step(6):   Stop . 

 

 

 

Example (1): 
Consider the problem (P1) with the 

following data: 

Pi = (2, 3, 5, 7), di = (11, 7, 18, 9) and i 

= 1,2,3,4  

Lawler algorithm (LA) gives the 

sequence (2,4,1,3),with Vmax=1 &  

Emax=4 

Set ∆ = 1, we get the sequence (2,4,1,3) 

gives  Vmax = 1 &  Emax = 4. This 

sequence is optimal since the optimal 

sequence (2,4,1,3) with Vmax = 1 , Emax 

= 4  is obtained by complete 

enumeration method. 

 

3.2) 1// Lex(𝐕𝐦𝐚𝐱
𝐰 ,Emax) problem (P2) 

 This problem (P2) can be written as: 

 Min Emax = Max { Ei } , ∀  i ∈ N 

S.t   Vmax
w   = ∆ , where ∆ = Vmax

w  (LA)  

 Algorithm (2) for problem (P2) 

 

Example (2): 

Consider the problem (P2) with the 

following data: 

Pi = (4, 6, 2, 5), di = (20, 9, 4, 7), wi = 

(4, 6, 2, 5), and i = 1,2,3,4  

Lawler algorithm (LA) gives the 

sequence (4,2,3,1) 

With  Vmax
w   = 12 and Emax = 3 

Set ∆ = 12,we get the sequence (4,2,3,1) 

gives  Vmax
w   = 12 and  Emax = 3 is 

optimal, 

 

Algorithm (2) 

Step(0):  Using Lawler algorithm (LA) 

to find  Vmax
w   and set  ∆ =  Vmax

w    . 

Step(1): Set  N={1,…,n},  t =  Σ pi   ∀    

i ∈ N 

Step(2): Solve 1/ Vi
w ≤ ∆ /  Vmax

w     

problem where Vi
w = Wi Vi to 

determine job j to be the job completed 

at time t, such that: 

 1)  Wj Vj  ≤ ∆ 

2)  Sj ≥  Si ∀    j,i ∈ N  and   WiVi ≤ ∆. 

Step(3):   Schedule j in the interval  

[t -  pj , t ] 

Step(4):  Set N = N – {j} , t = t -  pj 

Step(5):  If  t > 0 , then go to step (2) 

Step(6):   Stop . 

 since  sequence (4,2,3,1) with  Vmax
w   = 

12, Emax = 3 is also obtained by 

complete enumeration method.  
 

3.3) 1//F(Vmax,Emax) problem (P3) 
          Multicriteria scheduling refers to 

the scheduling problem in which 

advantages of a particular schedule are 

evaluated using more than one 

performance criterion. Several 

scheduling problem considering the 

simultaneous minimization of various 

forms of sum completion time, earliness 

and tardiness costs have been studied in 

the literature (6), also solves  1//F(fmax , 

gmax ) and solves the general problem 

1//F(
1

maxf ,...., max

kf ) , K is finite integer 

number and each one of these functions 

is assumed to be non-decreasing in the 

job completion time. Now consider the 

multicriteria problem 1//F (Vmax ,Emax ) 

in which Emax is not  non_decreasing in 

job completion time. This problem 

belongs to C3 and is written as: 

Min {Vmax , Emax } 

s.t. 

Vi =Min {Pi, Ti}, i=1,… , n 

Ei ≥ di - Ci , i=1,…, n 

Ei ≥ 0 , i=1,…, n 

Ti ≥ Ci - di , i=1,…, n 

Ti  ≥ 0 , i=1,…, n 

 The following algorithm (3) is used to 

solve the problem (P3) 

 

Algorithm(3) 

Step(0): Determine the point 

(Vmax
∗ ,Emax) and (Vmax ,Emax

∗ ) by 

solving 1/ /Vmax 

by Lawler  algorithm  (LA) and 1//Emax 

by  MST rule. Let SE be the set of 

efficient (Pareto) solutions, set SE 

={(Vmax
∗  , Emax) , (Vmax ,Emax

∗ ) } if each 

point is not dominated by the other. 

Step(1): Set ∆ =  Vmax (MST) 
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Step(2):  Solve 1/ Vi ≤ ∆ /  Vmax  

problem by using Lawler algorithm 

(break tie to schedule the job j  last  

with maximum  Sj = dj -  pj ; let (Vmax
L  , 

Emax
L )  denote the outcome.   

Add (Vmax
L  , Emax

L ) to the set of Pareto 

optimal points (SE), unless it is 

dominated by the previously obtained 

Pareto optimal points. 

If SUM is greater than  Vmax
L  + Emax

L  

then set SUM=Vmax
L  +Emax

L . 

Let ∆ =  Vmax
L  – 1 if ∆ > 0 repeat step 

(2), otherwise go to step (3). 

Step(3):  The Pareto optimal set SE 

has been obtained and  SUM which is 

the minimum of values for the Pareto 

points in the set SE. 

Step(4): Stop. 

 

Example (3): 

Consider the problem (P3) with the 

following data: 

Pi = (10,3,1,5,7), di = (16,7,9,8,11) and 

i = 1,2,3,4 ,5 

MST gives the schedule (4,5,2,1,3) 

with Emax
∗  = 3 & Vmax = 9;  ( 

Vmax,Emax
∗ ) = (9,3).  

Lawler algorithm gives the schedule 

(5,1,4,2,3) with Emax =4 & Vmax
∗   =5 ; 

(Vmax
∗  , Emax) = (5,4). Set SE= 

{(9,3),(5,4)} & SUM = 9, set  ∆ = 9 we 

get the schedule (4,5,2 ,1,3) which gives 

Emax = 3 & Vmax = 9, then the set SE 

remains the same Let ∆ = 9-1=8, we get 

the schedule (4,2,1,5,3) gives Emax =3 & 

Vmax =7;   ( Vmax, Emax) = (7, 3). Then 

the set SE = {(7, 3), (5, 4)}. Let ∆ = 7-

1= 6, we get the schedule (4,5,1,2,3) 

gives Emax = 3 & Vmax = 6; ( Vmax, Emax) 

= (6,3). Then the set SE = {(6,3), (5,4)}. 

Let ∆ = 6-1= 5, we get the schedule 

(5,1,4,2,3) gives Emax = 4 & Vmax =5; ( 

Vmax, Emax) = (5, 4),then the set SE 

remains the same. Let ∆ = 5-1= 4, There 

is no Vj ≤ ∆, then we stop. The Set of 

efficient solutions is SE = {(6,3), (5,4)}. 

& SUM = 9. This set is the set of all 

efficient which is given by complete 

enumeration method. 

          Note that algorithm (3) does not 

find all the efficient solutions, but it 

finds most of them as shown in the 

following example. 

Example (4):  

Consider the problem (P3) with the 

following data: 

Pi = (7, 14, 3, 1), di = (16, 20, 8, 2) and 

i = 1,2,3,4  

The algorithm (3) gives 

SE={(7,4),(3,8),(5,5)}, but the 

exact set of efficient solutions 

which is obtained by complete 

enumeration method is 

SE = {(7, 4), (3, 8), (5,5) , (4,6)}, 

 

Note: We can use BAB method to find 

the set of all efficient solutions. 

 

 

3.4) 1//F(𝐄𝐦𝐚𝐱
𝐰 , Vmax ) problem(P4) 

     This problem is denoted by: 

Min {Emax
w  , Vmax} 

St: 

Vi =min { Pi , Ti }             i=1,…,n 

Wi Ei ≥ Wi (di - Ci)           i=1,…,n 

Wi Ei ≥ 0                          i=1,…,n 

Ti ≥ Ci - di                                     i=1,…,n 

Ti ≥ 0                               i=1,…,n 

The following algorithm (4) is used to 

solve the problem (P4): 

 

Algorithm(4) 

Step(0): Determine the point 

(Emax
w  , Vmax

∗ ) and (Emax
w∗  ,Vmax) by 

solving 1/ / Vmax by Lawler  algorithm  

(LA) and 1/ / Emax
w  by WMST rule. Let 

SE be the set of efficient (Pareto) 

solutions, set SE ={(Emax
w  , Vmax

∗ ) 

,(Emax
w∗  ,Vmax )}.  

Step(1): Set ∆ =  Vmax (WMST) 

 Step(2):  Solve 1/ Vi ≤ ∆ /  Vmax  

problem by using Lawler algorithm 

(break tie to schedule the job j  last  

with maximum  SjWj= (dj -  pj)Wj; let   

(Emax
w(L)

, Vmax
L  )  denote the outcome. 

Add (Emax
w(L)

, Vmax
L  ) to the set of Pareto 

optimal Points (SE), unless it is 

dominated by the previously obtained 

Pareto optimal points. 
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Let ∆ =  Vmax
L  – 1 if ∆ > 0 repeat step 

(2), otherwise go to step (3). 

Step(3):  The Pareto optimal set SE 

has been obtained  with values for the 

Pareto points. 

Step(4): Stop. 

 

Note since the 1//Emax
w  problem cannot 

always solved to optimality by WMST 

{SiWi= (di -pi)Wi} rule, hence the 

algorithm (4) does not gives the set of 

all efficient solutions. 

 

Example (5): 
Consider the problem (P4) with the 

following data: 

Pi = (7, 3, 2, 7), di = (15, 9, 4, 16), Wi = 

(6, 3, 12, 1) and i = 1,2,3,4 

The WMST gives the sequence (4, 2, 3, 

1) with Emax
w  = 9 & Vmax = 4, (Emax

w∗  

,Vmax) = (9,4) and Lawler algorithm 

(LA) gives the sequence (2, 1, 4, 3) with 

Emax
w  = 30 & Vmax

∗   = 2 , (Emax
w  , Vmax

∗  ) 

= (30, 2). 

Then SE = {(9, 4),(30, 2)}. 

Set ∆ = Vmax (WMST) = 4, we get the 

sequence (4, 2, 3, 1) gives  Emax
w  = 9 & 

Vmax = 4, (Emax
w  ,Vmax) = (9, 4),then the 

set SE remains the same. 

Set ∆ = 4-1=3, we get the sequence (4, 

2, 1, 3) gives  Emax
w  = 9 & Vmax = 2, 

(Emax
w  ,Vmax) = (9, 2). Then SE = {(9, 

2)}.  

Set ∆ = 1, There is no Vj ≤ ∆, then we 

stop. The set of efficient solutions is SE 

= {(9, 2)}. 

 

4.  1\\(Vmax+Emax) problem(p5): 

      The aim for problem (P5) is to find 

a processing order σ of the jobs on a 

single machine to minimize the sum of 

maximum earliness and the maximum 

late work (i.e. to minimize 

Vmax()+Emax(), S where S is the 

set of all feasible solutions). It is clear 

that the problem (P5) is a special case of 

the problem (P3).  

        In this section we decompose the 

1//Vmax+ Emax problem into two 

subproblems with a simpler structure. 

For this problem let: 

M=minσS{Vmax(σ)+ Emax(σ)}. 

The problem (P5) can be decomposed 

into two subproblems (SP1) and (SP2). 

M1 = min {max {V(i)}}.                                

s.t  

  

 

   

       

        





































n,...,1i           ,c pd     if                 p

n,...,1i      ,ipd c d    if        d- c

n,...,1i                ,d c           if                      0

v

iσiσiσiσ

σiiσiσiσiσ

iσiσ

iσ      

     … (SP1) 

  𝑉𝜎(𝑖)=min{ 𝐶𝜎(𝑖)-𝑑𝜎(𝑖), 𝑃𝜎(𝑖)},  i 

=1,…,n                 

 

M2 = min { max{E(i)}}.                                

s.t. 

E(i)=d(i)-C(i), i=1,…,n                 … 

(SP2) 

E(i) ≥ 0  , i = 1,…,n                  

 

4.1 Derivation of Lower Bound (LB) 

for Problem (P5) 
       The lower bound (LB) is based on 

decomposing problem (P5) into two 

subproblems (SP1) and (SP2). Then 

calculate M1 to be the minimum value 

for (SP1) and M2 to be the minimum 

value for (SP2) then applying the 

following theorem:    

 

Theorem (1):  

M1+M2≤ M where M1, M2, and M are 

the minimum objective function values 

of (SP1), (SP2), and (P5) respectively (1). 

To get a lower bound LB for the 

problem (P5): 

        For the subproblem (SP1) we 

compute M1 to be a lower bound by 

sequencing the jobs using Lawler's 

algorithm (LA) to find the minimum 

maximum late work Vmax  .        

       For the subproblem (SP2) we 

compute M2 to be a lower bound by 

sequencing the jobs by MST order (i.e 

sequencing the jobs in non- decreasing 

order of Si = di - Pi) to find the minimum 
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maximum early job Emax, then applying 

theorem (1) to obtain: 

  LB= M1+M2 

4.2  Heuristic Method to Calculate 

Upper Bound (UB) for the problem 

(P5) 

      A simple heuristic is obtained by 

sequencing the jobs using Lawler's 

algorithm (LA) to find  Vmax
∗  and Emax , 

then   

UB1 =  Vmax
∗  (LA) + Emax (LA). 

UB2  is obtained by ordering the jobs in 

MST order, that is, sequencing the jobs 

i,(i=1,…,n) in non-decreasing order of 

Si = di - Pi to find Emax
∗  and  Vmax ,then 

UB2  = Vmax (MST)+ Emax
∗  (MST). 

Then UB = min {UB1, UB2}. 

 

4.3 Branch and bound (BAB) 

method 
          Our BAB method based on 

forward sequencing branching rule for 

which nodes at level k of the search tree 

corresponding to initial partial sequence 

in which jobs are sequenced in first k 

positions. The LB at any node is the cost 

of scheduling jobs (this cost depends on 

the objective function) and the cost of 

unsequenced jobs (this cost depends on 

derived lower bound (LB)). At any level 

of the BAB method, if a node has     LB 

≥ UB, then this node is dominated. 

        If the branching ends at a complete 

sequence of jobs then this sequence is 

evaluated, and if its value is less than 

the current (UB), this (UB) is reset to 

take that value. The procedure is then 

repeated until all nodes have been 

consider by using back tracking 

procedure. Backtracking procedure is 

the movement from the lowest level to 

the upper level in the BAB method. The 

(UB) at the end of this procedure is the 

optimum for our scheduling problem 

(P5). Hence by using BAB method we 

get at least one optimal solution. It is 

clear that the BAB method is improved 

by using efficient (LB), good (UB) and 

dominance rule. If it can be shown that 

an optimal solution can be always 

generated without branching from a 

particular node of the search tree, then 

that node is dominated and can be 

eliminated. Dominance rules usually 

specify whether a node can be 

eliminated before its (LB) is calculated. 

Clearly, dominance rules are 

particularly useful when a node can be 

eliminated which has a (LB) that is less 

than the optimal solution. 

Example (6):  
Consider the problem (P5) with the 

following data: 

Pi = (2, 5, 7, 4), di = (6, 21, 10, 9) and i 

= 1,2,3,4 

        Lawler's algorithm gives a 

schedule (4, 3, 1, 2) where  Vmax
∗  = 2 

and    Emax   = 5, then UB1 =  Vmax
∗  (LA) 

+ Emax (LA) = 2+5 = 7 

And MST rule gives a schedule (3, 1, 4, 

2), where Vmax (MST) =4 & 

 Emax
∗  (MST) =3, then UB2 = Vmax 

(MST) + Emax
∗  (MST) = 4+3 = 7 

Hence the minimum upper bound is 

UB= min {UB1, UB2} = 7 

LB1 = Vmax
∗  (LA) = 2 & LB2 =  Emax

∗  

(MST) = 3 

ILB = LB1+ LB2 = 2+3 = 5 

 

   We now give the BAB tree algorithm 

to find optimal solution for (P5) 

 

 
 

 

            

       1        2        3        4 

                                                         

 

 

       2    3     4                 1   2       4 

 

 

                                                  

         

 

2     4        2        3                          1      2 
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8 7 5 
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Note: 

If MST rule gives (Vmax,Emax
∗ ) and 

Lawler algorithm (LA) gives 

(Vmax
∗ ,Emax) and  Emax  =  Emax

∗  and 

Vmax=Vmax
∗  then there exists an optimal 

solution with value (Vmax
∗  ,Emax

∗ ). 

          The first result for dominance 

rule is given next. 

 

Lemma (1):  

If there exist a job i with max (Si) and 

min (Vi(t)), t=∑ 𝑃𝑖𝑖∈𝑁   then  there 

exists  on optimal schedule  in which  

job i  is sequenced  last for  1//Vmax+ 

Emax  problem.  

Proof:  

    Suppose we sequence the jobs in 

MST rule (i.e  non_decreasing of  Si) 

to minimize Emax , then job i  is 

sequence last with minimum Ei  ,since 

it  has maximum Si . 

        Now if we use Lawler's algorithm 

(LA) to minimize Vmax , then we find 

job i  is sequence last because it has a 

minimum late work  Vi .Hence  there 

exist an optimal schedule for 1//Vmax+ 

Emax problem in which job i  is 

sequenced last. 

 

Note:  Problem reduction for problem 

(P5)  

        In the case of our problem 

1//Vmax+ Emax  , there exists n! possible 

orders of the jobs. We try to reduce the 

size of the problem by finding the job 

which succeeds all other jobs in an 

optimal schedule. Such a job is 

removed and hence the number of 

possibilities is reduced if lemma (1) 

above is satisfied. When no further 

progress can be made with reduction 

condition we use BAB method to find 

optimal solution. 

       Note that sometimes special cases 

for NP-hard scheduling problem which 

is satisfying some conditions make the 

problem easily solvable. 

 

Some Special case for 1//Vmax+ Emax  

problem(P5) 

Case (1) 

      The problem (P5) is solved for 

special case, if  di = d ∀ i  then there 

exists an optimal schedule  𝜎 obtained 

by Lawler's algorithm (LA)  in which  

d <C1< ⋯ < Cn where C1, Cn  are  

minimum completion time and 

maximum completion time 

respectively: 

Proof: We have three positions for di = 

d to be considered: 

(1)   C1< d < Cn     then there exists an 

optimal schedule with value Vmax+ 

Emax = Vmax
∗  + d – C1   where Vmax

∗   

obtained by using Lawler's algorithm. 

(2)  d < C1  < … < Cn     then there exists 

an optimal schedule with value Vmax+ 

Emax  = Vmax
∗   + 0   < Vmax 

∗  + d - C1  

where Vmax
∗   obtained by using Lawler's 

algorithm. 

(3)  C1  < … < Cn  <  d then there exists 

an optimal schedule with value Vmax+ 

Emax = d – C1 > Vmax
∗    

Hence Lawler's algorithm gives 

minimum Vmax
∗    for Vmax+ Emax  .  

 

5. Experimental Results 

      Experimental Results of algorithm 

(3) and BAB for the problems (P3) and 

(P5) respectively. Table (1) shows the 

results of applying algorithm (3) in 

order to get a set of efficient solutions 

and minimum sum of Vmax and Emax   for 

the problem (P3), on samples of 

different jobs with 5 experiments for 

each. The results of efficient solutions 

compared with the results obtained 

from complete enumeration method 

(CEM), which generates all solutions 

for n ≤  7. 

Table (1) the set of efficient solutions 

obtained by algorithm (3) and 

complete enumeration method 

n EX 
Efficient solution ( Emax , Vmax) 

Algorithm (3) CEM SUM 

  

 3 

1 (2,2) , (1,3) (2,2) , (1,3) 4 

2 (2,4) (2,4) 6 

3 (3,3) , (2,6) (3,3) , (2,6) 6 

4 (2,5) (2,5) 7 

 4 1 (3,6) , (2,8) (3,6) , (2,8) 9 
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2 (1,3) (1,3) 4 

3 (3,4) , (2,6) (3,4) , (2,6) 7 

4 (2,4) (2,4) 6 

5 (6,5) (6,5) 11 

 5 

   

2 (0,4) (0,4) 4 

3 (3,4) (3,4) 7 

4 (3,9) , (0,10) 
(3,9) , 

(0,10) 
10 

5 (0,7) (0,7) 7 

1 (2,3)  , (0 4) (2,3)  , (0 4) 4 

  6 

2 (1,5) (1,5) 6 

3 (3,1) (3,1) 4 

4 (8,0) (8,0) 8 

5 (2,6) , (1,8) (2,6) , (1,8) 8 

2 (0,4) (0,4) 4 

   

7 

1 (3,7) , (0,8) (3,7) , (0,8) 8 

2 (3,8) (3,8) 11 

3 (0,5) (0,5) 5 

4 (10,0) (10,0) 10 

5 (3,7) , (2,8) (3,7) , (2,8) 10 

 

 

   

8 

1 (3,7) , (1,8)  9 

2 (3,5) , (2,6)  8 

3 (3,6) , (2,7)  9 

4 (7,4) , (3,8)   11 

5 (3,5)  8 

  9 

1 (2,8) , (1,9)  10 

2 (3,7) , (1,8)  9 

3 (0,7)  7 

4 (15,0)  15 

5 (13,1)  14 

10 

1 (13,5)  18 

2 (2,5) , (1,8)  7 

3 (0,9)  9 

4 (17,2)  19 

5 (2,9) , (3,7)  10 

 

 

11 

1 (3,7)  10 

2 (6,8)  14 

3 (0,6)  6 

4 (0,8)   8 

5 (1,8) , (0,9) , (3,7)  9 

 

 
12 

1 (3,7)  10 

2 (2,4)  6 

3 (4,6)  10 

4 (3,6) , (2,8)  9 

5 (2,6) , (0,8) , (3,5)  8 

 

 
13 

1 (14,5)  19 

2 (3,6)  9 

3 (1,6) , (0,7)  7 

4 (32,0)  32 

5 (7,8) , (1,9)  10 

 

 

14 

1 (0,9)  9 

2 (0,10)  10 

3 (3,9)  12 

4 (17,4)  21 

5 (8,5)  13 

 
15 

1 (18,3)  21 

2 (14,4)  18 

3 (3,9)  12 

4 (16,2) , (14,4)  18 

5 (8,1)  9 

16 

1 (3,8) , (1,9)  10 

2 (4,6) , (1,7)  8 

3 (3,8) , (2,9)  11 

4 (0,10)  10 

5 (3,7) , (0,8)  8 

17 

1 (21,5) , (0,10)  10 

2 (7,8) , (0,9)  9 

3 (3,7)  10 

4 (2,10)  12 

5 (8,6) , (2,7)  9 

19 

1 (23,1)  24 

2 (9,4)  13 

3 (25,0)  25 

4 (3,10)  13 

5 (3,9) , (0,10)  10 

 

Notes: 

1) The results for n>7 for complete 

enumeration cannot be obtained. 

 2) The minimum SUM = Emax+Vmax for 

n≤7 for the algorithm(3) is the same as 

in complete enumeration method. 

         Table (2) shows the results of 

applying BAB method on different 

values of n of problem (P5) to get 

minimum sum of Vmax and Emax  . 

Table (2): The optimal solution for the  

1// Vmax+ Emax 

n 
E

X 

BA

B 
n 

E

X 

BA

B 
n 

E

X 

BA

B 

3 

1 4 

4 

1 9  1 6 

2 6 2 4  2 4 

3 6 3 7 5 3 7 

4 7 4 6  4 10 

5 4 5 11  5 7 

6 

1 4 

7 

1 8 

8 

1 9 

2 6 2 11 2 7 

3 4 3 5 3 9 

4 8 4 10 4 11 

5 8 5 10 5 8 

9 

1 10 

1

0 

1 18 

1

1 

1 10 

2 9 2 7 2 14 

3 7 3 9 3 6 

4 15 4 19 4 8 

5 14 5 10 5 9 

1

2 

1 10 

1

3 

1 19 

1

4 

1 9 

2 6 2 9 2 10 

3 10 3 7 3 12 

4 9 4 32 4 21 

5 8 5 10 5 13 

1

5 

1 21 

1

6 

1 10 

1

7 

1 9 

2 18 2 8 2 9 

3 12 3 11 3 10 

4 18 4 10 4 12 

5 9 5 8 5 9 

1

9 

1 24       

2 13       

3 25       

4 13       

5 10       
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 Note: In table (2) BAB means the 

optimal sum of Vmax+ Emax for (P5)       

The best sum of Vmax and Emax   for 

problem (P3) obtained from algorithm 

(3) results are compared with the BAB 

method results for different number of  

jobs, five experiment for each number 

of jobs for problem (P5) are given in 

table (3). 

 

Table (3): Comparison of results of 

minimum SUM of algorithm (3) with 

the results of BAB method . 

n 
E

X 

BA

B 
n 

E

X 

BA

B 
n 

E

X 

BA

B 

3 

1 4 

4 

1 9 

5 

1 6 

2 6 2 4 2 4 

3 6 3 7 3 7 

4 7 4 6 4 10 

5 4 5 11 5 7 

6 

1 4 

7 

1 8 

8 

1 9 

2 6 2 11 2 7 

3 4 3 5 3 9 

4 8 4 10 4 11 

5 8 5 10 5 8 

9 

1 10 

1

0 

1 18 

1

1 

1 10 

2 9 2 7 2 14 

3 7 3 9 3 6 

4 15 4 19 4 8 

5 14 5 10 5 9 

1

2 

1 10 

1

3 

1 19 

1

4 

1 9 

2 6 2 9 2 10 

3 10 3 7 3 12 

4 9 4 32 4 21 

5 8 5 10 5 13 

1

5 

1 21 

1

6 

1 10 

1

7 

1 9 

2 18 2 8 2 9 

3 12 3 11 3 10 

4 18 4 10 4 12 

5 9 5 8 5 9 

1

9 

1 24       

2 13       

3 25       

4 13       

5 10       

 
  

6. Conclusions 

     From our Computational results we 

conclude that: 

1) The number of efficient solutions 

(points) of algorithm (3) is less than 

the number of jobs n. 

2) Algorithm (3) can find most of 

efficient points and this clear from 

the results of Table (3) from the 80 

test problems for n = 3,4,…,19 only 

for n = 8, the experiment (2) gives 

SUM = 8 and the exact SUM = 7 

which is obtained by BAB method 

and n=17,the experiment (1) gives 

SUM =10 and the exact SUM =9 

which is obtained by BAB method. 

3) The algorithm (3) can be used for 

solving problems of the form 1// 

F(Vmax, Fmax). 

4) The problem (P5) can be solved by 

using BAB method to get optimal 

solution for n ≤ 19. Since the 

problem (P5) is a special case of 

problem (P3), hence the algorithm 

(3) can be used to find near optimal 

solutions without using BAB 

method and in reasonable time for 

large n. 
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 حل مسائل الجدولة ذات دوال هدف متعددة
 كرار فتاح عبد الرزاقو              طارق صالح عبد الرزاق

 الجامعة المستنصرية -كلية العلوم -قسم الرياضيات
 الخلاصة

في هذه الأطروحة اقترحنا خوارزميات لمسألة متعددة المعاييرعلى ماكنة واحده لتصغير معيارين : تكلفة        
نقترح عدة خوارزميات تعتمد على أنواع من الاهداف تعمل  الأعمال المتأخره التعاظمية ودالة التبكير التعاظمية. 

المقترحة مع الحلول المثلى والحلول باريتو الأمثل لحجم  على الوجه  الأمثل. تتم مقارنة الحلول من الإجراءات
صغير على سبيل المثال،هذه الخوارزميات تتعامل مع مسألة التصغير الهرمي وكذلك مسالة الأهداف المتساويه 

 من حيث الاهمية في وقت واحد مع وبدون وزن. تظهر النتائج الحسابية فائدة هذه الإجراءات.


