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Abstract:

In this paper, we consider the multicriteria scheduling problem on single machine
to minimize two criteria; maximum cost function, denoted by maximum late work
(Vmax) and maximum earliness (Emax). We propose several algorithms based on types
of objectives function to be optimized. The solutions of the proposed procedures are
compared with that of the optimal solutions and Pareto optimal solutions for the smaller
instance size, these algorithms dealing with hierarchical minimization problem as well
as simultaneous minimization problem with and without weight. Computational results

show the usefulness of these procedures.
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1. Introduction

The bicriteria scheduling problem
has received significant attention in
recent years ). The basic of bicriteria
can be stated as follows. There are n
jobs to be processed on a single
machine, each job i has processing time
pi and due date di at which ideally
should be completed. Penalties are
incurred whenever a job is completed
earlier or later than it's due date. So the
problem is a bicriteria scheduling
problem.

Let Q be a schedule, E(Q2),V(Q) be
functions of earliness and late work
respectively.

The problem is to find a schedule Q to
optimize E(Q),V() or a composite
objective function of E(Q) and V(Q).
In the literature @, there are
mainly three classes of approaches that
applicable to bicriteria scheduling
problem.
C1: The hierarchical approach, one of
the criteria (more important) regard as
constraint (primary) criterion which
must be satisfied and the other one

considered as (secondary) criterion to
optimize.

This means optimize the primary
criterion while breaking ties in favor of
the schedule that has minimum
secondary criterion @,

C2: Minimizing a weighted sum of the
bicriteria (objectives) and convert the
bicriteria to a single criterion problem,
several bicriteria scheduling problems
studied belong to this class “©®),

C3: One typically generates all efficient
(Pareto optimal) schedules and select
the one that yields the best composite
objective function value of two criteria.
For the bicriteria that concern the
simultaneously minimization of (Zc;
,fmax) for 1//F(Zci ,fmax) problem in
C3 which is solved ® in a polynomial
time @Y solved the 1//F(Zci ,Tmax)
problem.

In this paper we will study
bicriteria problems belong to the classes
C1, C2 and C3. In section (2), notation,
basic concepts and mathematical forms
are given. In sections (3) and (4) we
formulate the multicriteria problem
according to the classes of the
approaches, we propose algorithms for
each problem and their special cases.
Computational study for the algorithms
is given in section (5). The conclusion
is given in section (6).
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2. Notation, basic concepts and

mathematical forms

2.1 Notation and basic concepts
The following notation will be used in
this paper:

n = number of jobs.

pi = processing time of job i.

di = due date of job i.

Ci= completion time of job i.

Ei = the earliness of the job i.

Vi= the late work penalty for job i.
Vmax = Max {Vi}, the maximum late
work.

Emax= Max {Ei}, the maximum early
work.

fmax= Max{fi}, the maximum function.
BAB = branch and bound.

LB = lower bound.

UB = upper bound.

In this paper, we shall use the
following  sequencing rules and
concepts:

MST: Jobs are sequenced in non-
decreasing order of (Si = dj - Pi ), this
rule is well known to minimize Emax for
1//Emax problem ©.

Definition(1):

The term “optimize” in a multi-
objective decision making problem
refers to a solution around which there
is no way of improving any objective
without worsening at least one other
objective O,

Definition(2):

A feasible schedule o is Pareto
optimal, or non-dominated (efficient),
with respect to the performance criteria
fand g if there is no feasible schedule ©
such that both f () <f (c) and g (n) < g
(o), where at least one of the
inequalities is strict @),

Definition(3):

A measure performance is said to
be regular if it is a non-decreasing
function of job completion times.

Example of regular measures are ). Ci
yCmaX ,Tmax y roe
Definition(4):

A non-regular  performance
measure is usually is not a monotone
function of the job completion times, an
example of such a measure the job
earliness ®.

Lawler algorithm (LA):
Step (1): let N ={1,....n}, Q=(@) and M
be the set of all jobs with no successors.
Step (2): let j* such that fjx (XPi)= min{
fi ZPi)}, JEM

Set N = N-{j*} and sequence
the job j* in the last position of Q.

Modify M to represent

the new set of the schedule jobs.
Step (3): If N = @ stop, otherwise go to
step (2).

2.2 The mathematical forms and
their algorithms

2.2.1 Hierarchical problems:

We present the mathematical
forms and the algorithms for generating
solutions when one of two criteria (Emax
, Vmax) iS more important than the
others. These hierarchical problems are
also called secondary criteria problems
where the secondary criteria refer to the
less important criteria. Formulation for
multicriteria problems is similar to that
for the single criteria problems which
require that the optimal value of the
primary objective is not violated.
Let us first consider the formulations
for bicriteria hierarchical problems say
1/ Lex(y 1,y 2) . There are two parts of
the formulations
e Primary objective function (y 1)

Subject to:
Secondary objective function (y 2)

e Secondary objective function (y 2)

Subject to:

Primary objective function (y 1)
Hence the algorithm for solving the
bicriteria problem needs two steps:
Step (1): We optimize y 1, followed by
Step (2): The optimization of 1y 2,
subject to the primary objective value
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(y1). For our problem if Emax is more
important than Vmax , then the

1l LeX(Emax Vmax ) problem can be
written as:

Min Vmax
s.t.
Emax = A, where A = Emax(MST)

2.2.2 Simultaneous problems

There are many algorithms that
can be used for solving multicriteria
scheduling problems, which is to find
the efficient solutions or at least
approximation to it ®. The running time
for the algorithm often increasing with
the increase of the instance size. The
purpose of any algorithm process is to
find, for each instance a feasible
solution called optimal, that minimize
the objective function. This usual
meaning of the optimum makes no
sense in the multicriteria case because it
doesn’t exist, in most of the cases, a
solution optimizing all objectives
simultaneously. Hence we search for
feasible solutions vyielding the best
compromise among objectives that
constitutes a so called efficient
solutions set, these efficient solutions
that cannot be improved in one
objective without decreasing their
performance in at least one of the
others. It is clear that this efficient
solutions set is difficult to find.
Therefore, it could be preferable to have
an approximation to that set in a
reasonable amount of time.

3. Problem formulation and analysis

The problem of scheduling a set N =
{1,...,n} of n jobs on a single machine
to minimize multicriteria may be stated
as follows. Each job i €N is to be
processed on single machine which can
handle only one job at a time, job i has
a processing time p;j and due date di. All
jobs are available for processing at a
time zero.

If a schedule Q =(1,..., n) is given,
then a completion time Ci=Y’_; Pi for
each job i can be computed and
consequently an earliness Ei = max{ di
-Ci, 0}, Emax=max{ E; } foreachiand
Efax = max{WiEi}, where W; is the
important of the job i with respect to
other jobs . The late work Vi(Q2) for the
job i € N which is amount of processing
preformed on job i after its due date di
is easy to compulte,

e If Vi=0,thenjobi isearlywith

(o] < di

e If 0<Vi<npi,thenjobiis

partially early

e If Vi=npi,then jobiislate with

¢ = d; + p;
This means that
0 if ¢ <d,i=1,..,n
Vi={g—djif dj<¢ <d;j+p;ji=1,..,n
pi if ¢g=di+p;,i=1,..,n

Hence Vgax =max { Wi Vi}, Wi is
the important of job i with respect to
other jobs. Our object is to find a
schedule that minimizes bicriteria for
the following problems:
1//Lex(Vmax,Emax)problem (P1) eC1
1//Lex(Vyax,Emax)problem (P2) eC1
U/IF(Vmax , Emax) problem (P3) € C3
UIF(EXax,Vmax) problem (P4) € C3
1//\/max+ Emax problem (P5) € C2

SAEN A .

3.1 1//Lex(Vmax , Emax) problem (P1)
This problem can be written as:
Min Emax: MaX{Ei },V |
St Vmax =A ,Where A= Vmax (LA)
Algorithm (1) for problem (P1)
Step(0): Using Lawler algorithm (LA)
to flnd Optlma| Vmax and set A = Vmax.
Step(1): Set N={1,....n}, t= Xpi V
i €N.
Step(2): Solve 1/ Vi < A/ Vmax
problem to determine job j to be the
job completed at time t,
such that: 1) V< A

2) Sj = SiVj,ieN and Vi <A.
Step(3): Schedule j in the interval
[t- pj.t]
Step(4): SetN=N-{j},t=t- p;
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Step(5): If t>0, then go to step (2)
Step(6): Stop .

Example (1):
Consider the problem (P1) with the

following data:

Pi=(23,57),di= (11,7 18, 9) and i
=1,234

Lawler algorithm (LA) gives the
sequence (2,4,1,3),with Vmax=1 &
Emax=4

Set A =1, we get the sequence (2,4,1,3)
gives Vmax =1& Emax = 4, Th|S
sequence is optimal since the optimal
sequence (2,4,1,3) with Vimax = 1, Emax
= 4 is obtained by complete
enumeration method.

3.2) 1/l Lex(Vpax,Emax) problem (P2)
This problem (P2) can be written as:
Min Emax=Max {Ei},V i €N

St Viax =A, where A=V, (LA)
Algorithm (2) for problem (P2)

Example (2):
Consider the problem (P2) with the

following data:
Pi=(4,6,2,5),di=(20,94,7),w=
(4,6,2,5),andi=1,234

Lawler algorithm (LA) gives the
sequence (4,2,3,1)

With Vn“l/ax =12 and Emax =3

Set A= 12,we get the sequence (4,2,3,1)
gives V.. =12 and Emax = 3 is
optimal,

Algorithm (2)
Step(0): Using Lawler algorithm (LA)

to find ViY,x and set A= V.«
Step(1): Set N={1,....n}, t=Xpi V
€N

Step(2): Solve 1/ V¥ < A/ Viiax
problem where V¥ = W; Vi to
determine job j to be the job completed
at time t, such that:

1) WjVj <A

2) Sj= Siv jieN and WiVi<A.

Step(3): Schedule j in the interval

[t- p.t]

Step(4): SetN=N-{j},t=t- p;
Step(5): If t>0, then go to step (2)
Step(6): Stop .

since sequence (4,2,3,1) with V., =
12, Emax = 3 is also obtained by
complete enumeration method.

3.3) 1//[F(Vmax,Emax) problem (P3)
Multicriteria scheduling refers to
the scheduling problem in which
advantages of a particular schedule are
evaluated using more than one
performance criterion. Several
scheduling problem considering the
simultaneous minimization of various
forms of sum completion time, earliness
and tardiness costs have been studied in
the literature ©, also solves 1//F(fmax ,

gmax ) and solves the general problem

ur(E L F X ) Kis finite integer

number and each one of these functions
is assumed to be non-decreasing in the
job completion time. Now consider the
multicriteria problem 1//F (Vmax ,Emax )
in which Emax is not non_decreasing in
job completion time. This problem
belongs to C3 and is written as:

Min {Vmax , Emax }

s.t.

Vi=Min {P;, Ti}, i=1,... ,n
Ei>di-Ci,i=l,...,n

Ei=0,i=1,....,n

Ti=Ci-di,i=l,...,n

Ti =20,i=1,...,n

The following algorithm (3) is used to
solve the problem (P3)

Algorithm(3)
Step(0): Determine the point

(Vinax:Emax) and (Vmax ,Efax) by
solving 1/ /Vmax

by Lawler algorithm (LA) and 1//Emax
by MST rule. Let SE be the set of
efficient (Pareto) solutions, set SE
={(Viax » Emax) , (Vmax ,Emax) } if €ach
point is not dominated by the other.
Step(1): Set A= Vmax (MST)
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Step(2): Solve 1/ Vi < A/ Vmax
problem by using Lawler algorithm
(break tie to schedule the job j last
with maximum Sj=d;- pj; let (Vi ,
EL.x) denote the outcome.
Add (VL. , EL..) to the set of Pareto
optimal points (SE), unless it is
dominated by the previously obtained
Pareto optimal points.
If SUM is greater than V%L . +EL ..
then set SUM=VL_. +EL ..
Let A= VL. . —1if A> 0 repeat step
(2), otherwise go to step (3).
Step(3): The Pareto optimal set SE
has been obtained and SUM which is
the minimum of values for the Pareto
points in the set SE.

Step(4): Stop.

Example (3):
Consider the problem (P3) with the

foIIowing data:

=(10,3,1,5,7), di = (16,7,9,8,11) and
| =1234,5
MST gives the schedule (4,5,2,1,3)
with E;knax =3 & Vmax =9; (
Vmax,E:nax) = (913)
Lawler algorithm gives the schedule
(5,1,4,2,3) with Emax =4 & Vpax =5 ;
(Vhax » Emax) = (5/4). Set SE=
{(9,3),(5,4)} & SUM =9, set A=9we
get the schedule (4,5,2 ,1,3) which gives
Emax =3 & Vmax = 9, then the set SE
remains the same Let A = 9-1=8, we get
the schedule (4,2,1,5,3) gives Emax =3 &
Vmax :7, ( Vmax, Emax) = (71 3) Then
the set SE = {(7, 3), (5,4)}. Let A=7-
1= 6, we get the schedule (4,5,1,2,3)
giveS Emax =3 & Vimax = 6, ( Vmax, Emax)
= (6,3). Then the set SE = {(6,3), (5,4)}.
Let A = 6-1= 5, we get the schedule
(5,1,4,2,3) gives Emax = 4 & Vmax =5; (
Vimax, Emax) = (5, 4),then the set SE
remains the same. Let A=5-1=4, There
IS no Vj < A, then we stop. The Set of
efficient solutions is SE = {(6,3), (5,4)}.
& SUM = 9. This set is the set of all
efficient which is given by complete
enumeration method.

Note that algorithm (3) does not
find all the efficient solutions, but it
finds most of them as shown in the
following example.

Example (4):
Consider the problem (P3) with the
following data:

=(7,14,3,1), di= (16, 20, 8, 2) and
|—1234
The algorithm (3) gives
SE={(7,4),(3,8),(5,5)}, but the
exact set of efficient solutions
which is obtained by complete
enumeration method is
SE={(7,4), (3,8),(55), (4,6)},

Note: We can use BAB method to find
the set of all efficient solutions.

3.4) 1//IF(Emax, Vmax ) problem(P4)
This problem is denoted by:

Min {Emax J Vmax}

St:

Vi=min { Pi, Ti } 1=1,...,n
Wi Ei= Wi (di - Ci) i=1,...,n
WiEi=0 1=1,...,n
Ti>Ci-di i=1,...,n
Ti=>0 i=1,...,n

The following algorithm (4) is used to
solve the problem (P4):

Algorithm(4)

Step(0): Determine the point

(Emax rV;lax) and (Emax ,Vmax) by
solving 1/ / Vmax by Lawler algorithm
(LA) and 1/ / E.x by WMST rule. Let
SE be the set of efficient (Pareto)
solutions, set SE ={(E¥ax » Vmax)

(Emax ,Vmax )}

Step(1): Set A = Vmax (WMST)
Step(2): Solve 1/ Vi < A/ Vmax
problem by using Lawler algorithm
(break tie to schedule the job j last
with maximum S;Wj= (dj - pj)W;; let
(EY® YL Y denote the outcome.

max’

Add (EX®) vk ) to the set of Pareto
optimal Points (SE), unless it is
dominated by the previously obtained

Pareto optimal points.
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Let A= VL., —1if A> 0 repeat step

(2), otherwise go to step (3).
Step(3): The Pareto optimal set SE
has been obtained with values for the
Pareto points.

Step(4): Stop.

Note since the 1//E}y ., problem cannot
always solved to optimality by WMST
{SiWi= (di -pi)Wi} rule, hence the
algorithm (4) does not gives the set of
all efficient solutions.

Example (5):
Consider the problem (P4) with the

following data:
Pi=(7,3,2,7),di=(15,9, 4, 16), W; =
(6,3,12,1)andi=1,2,34

The WMST gives the sequence (4, 2, 3,
1) Wlth Egax = 9 & Vmax = 4, (E%;X
Vmax) = (9,4) and Lawler algorithm
(LA) gives the sequence (2, 1, 4, 3) with
E%ax =30 & Vr;ax =2, (E},nvax er;aX )
= (30, 2).

Then SE = {(9, 4),(30, 2)}.

Set A = Vmax (WMST) = 4, we get the
sequence (4, 2, 3, 1) gives Ef.. =9 &
Vmax = 4, (Efax »Vmax) = (9, 4),then the
set SE remains the same.

Set A = 4-1=3, we get the sequence (4,
2,1,3)gives Efax =9 & Vmax = 2,
(E%ax ,Vmax) = (9, 2) Then SE = {(9,
2)}.

Set A= 1, There is no Vj < A, then we
stop. The set of efficient solutions is SE

={(9, 2)}-

4. 1\\(Vmax+Emax) problem(p5):
The aim for problem (P5) is to find
a processing order o of the jobs on a
single machine to minimize the sum of
maximum earliness and the maximum
late  work (i.e. to  minimize
Vmax(G)'I‘Emax(G), ceS where S is the
set of all feasible solutions). It is clear
that the problem (P5) is a special case of
the problem (P3).
In this section we decompose the
1/NVmaxt Emax problem into two

subproblems with a simpler structure.
For this problem let:
M:minceS{Vmax(G)+ Emax(G)}.

The problem (P5) can be decomposed
into two subproblems (SP1) and (SP2).
M1 = min {max {Vs)}}.

s.t

0 if c, . <d

Voiy =1Cofy By 1T oy <Coy <G+, 1=Lol

P i Oy + o S oy i=1..n

... (SP1)
Vo@y=min{ Cs(1)-ds iy, Po(iy} |
=1,...,n

M2 = min { max{Ec()}}.
s.t.

Es(iy=ds(i)-Co(i), I=1,...,n
(SP2)

Eosi)>0 ,i=1,...,n

4.1 Derivation of Lower Bound (LB)
for Problem (P5)

The lower bound (LB) is based on
decomposing problem (P5) into two
subproblems (SP1) and (SP2). Then
calculate My to be the minimum value
for (SP1) and M2 to be the minimum
value for (SP2) then applying the
following theorem:

Theorem (1):
M1+M2< M where M1, My, and M are

the minimum objective function values
of (SP1), (SP2), and (P5) respectively .
To get a lower bound LB for the
problem (P5):

For the subproblem (SP1) we
compute My to be a lower bound by
sequencing the jobs using Lawler's
algorithm (LA) to find the minimum
maximum late work Vmax .

For the subproblem (SP;) we
compute M to be a lower bound by
sequencing the jobs by MST order (i.e
sequencing the jobs in non- decreasing
order of S;j = d - P;) to find the minimum

ofi) < o) I=L..n
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maximum early job Emax, then applying
theorem (1) to obtain:
LB= Mi1+M;

4.2 Heuristic Method to Calculate
Upper Bound (UB) for the problem
(P5)

A simple heuristic is obtained by
sequencing the jobs using Lawlers
algorithm (LA) to find V.. and Emax ,
then
UB1= Vjyax (LA) + Emax (LA).

UB: is obtained by ordering the jobs in
MST order, that is, sequencing the jobs
i,(i=1,...,n) in non-decreasing order of
Si=di-Pito find E.x and Vmax ,then
UB2 = Vmax (MST)+ Ef.x (MST).
Then UB = min {UB1, UB2}.

4.3 Branch and bound (BAB)
method

Our BAB method based on
forward sequencing branching rule for
which nodes at level k of the search tree
corresponding to initial partial sequence
in which jobs are sequenced in first k
positions. The LB at any node is the cost
of scheduling jobs (this cost depends on
the objective function) and the cost of
unsequenced jobs (this cost depends on
derived lower bound (LB)). At any level
of the BAB method, if anode has LB
> UB, then this node is dominated.

If the branching ends at a complete
sequence of jobs then this sequence is
evaluated, and if its value is less than
the current (UB), this (UB) is reset to
take that value. The procedure is then
repeated until all nodes have been
consider by using back tracking
procedure. Backtracking procedure is
the movement from the lowest level to
the upper level in the BAB method. The
(UB) at the end of this procedure is the
optimum for our scheduling problem
(P5). Hence by using BAB method we
get at least one optimal solution. It is
clear that the BAB method is improved
by using efficient (LB), good (UB) and
dominance rule. If it can be shown that
an optimal solution can be always

generated without branching from a
particular node of the search tree, then
that node is dominated and can be
eliminated. Dominance rules usually
specify whether a node can be
eliminated before its (LB) is calculated.
Clearly,  dominance rules are
particularly useful when a node can be
eliminated which has a (LB) that is less
than the optimal solution.
Example (6):
Consider the problem (P5) with the
following data:
Pi=(2,5,7,64),di=(6 21, 10,9)and i
=1,234

Lawler's algorithm gives a
schedule (4, 3, 1, 2) where V.« =2
and Emax =5, then UB1= Vr;ax (LA)
+ Emax (LA) = 2+5 =7
And MST rule gives a schedule (3, 1, 4,
2), where Vmax (MST) =4 &
E;knax (MST) :3, then UBZ = Vmax
(MST) +E}ax (MST) =443 =7
Hence the minimum upper bound is
UB=min {UBy, UB2} =7
LB1 = Vyax (LA) = 2 & LB2 = Efux
(MST) =3
ILB =LB1+ LB, =2+3=5

We now give the BAB tree algorithm
to find optimal solution for (P5)
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Note:
If MST rule gives (Vmax,Enax) and
Lawler  algorithm  (LA)  gives
(V;laX,Emax) and Emax = Emax and
Vmax=Vmax then there exists an optimal
solution with value (V},ax sEmax)-

The first result for dominance
rule is given next.

Lemma (1):

If there exist a job i with max (S;) and
min (Vi(t)), t=X;en P; then there
exists on optimal schedule in which
job i issequenced last for 1//Vmax+
Emax problem.

Proof:

Suppose we sequence the jobs in
MST rule (i.e non_decreasing of S;)
to minimize Emax , then job i is
sequence last with minimum E; ,since
it has maximum S;.

Now if we use Lawler's algorithm
(LA) to minimize Vmax , then we find
job i is sequence last because it has a
minimum late work Vi .Hence there

exist an optimal schedule for 1/Vmaxt+ _

Emax problem in which job i is
sequenced last.

Note: Problem reduction for problem
(P5)

In the case of our problem
1//Vmaxt Emax , there exists n! possible
orders of the jobs. We try to reduce the
size of the problem by finding the job
which succeeds all other jobs in an
optimal schedule. Such a job is
removed and hence the number of
possibilities is reduced if lemma (1)
above is satisfied. When no further
progress can be made with reduction
condition we use BAB method to find
optimal solution.

Note that sometimes special cases
for NP-hard scheduling problem which
is satisfying some conditions make the
problem easily solvable.

Some Special case for 1//Vmax+ Emax
problem(P5)

Case (1)
The problem (P5) is solved for

special case, if di =d Vv i then there
exists an optimal schedule o obtained
by Lawlers algorithm (LA) in which
d<Ci< - < Cp where Ci, Cn are
minimum  completion time and
maximum completion time
respectively:

Proof: We have three positions for d; =
d to be considered:

(1) Ci<d < Cy then there exists an
optimal schedule with value Vmax+
Emax = Viax +d—C1 where V.«
obtained by using Lawler's algorithm.
(2) d<Ci1 <...<Cy thenthere exists
an optimal schedule with value Vmax+
Emax = Viax T 0 <Vijux +d-Cp
where V;;. obtained by using Lawler's
algorithm.

(3) C1 < ... <Cy < dthen there exists
an optimal schedule with value Vmax+
Emax = d — Cl > V;;lax

Hence Lawlers algorithm gives
minimum V.« for Vimax+ Emax .

5. Experimental Results

Experimental Results of algorithm
(3) and BAB for the problems (P3) and
(P5) respectively. Table (1) shows the
results of applying algorithm (3) in
order to get a set of efficient solutions
and minimum sum of Vmax and Emax for
the problem (P3), on samples of
different jobs with 5 experiments for
each. The results of efficient solutions
compared with the results obtained
from complete enumeration method
(CEM), which generates all solutions
forn< 7.
Table (1) the set of efficient solutions

obtained by algorithm (3) and

complete enumeration method

] ex Efficient solution ( Emax , Vimax)
Algorithm (3) CEM SUM
1 | 22,13 22),13) |4
2 | @4 (2.4) 6
3 [3 [ (33,26 (33),(26) | 6
4 | @25) (2.5) 7
4 |1 | 36,28 (36),(28 |9
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2 [@3) 13) 4 4 | (2,10) 12
5 (8,6), (2,7) 9
3 (3.4),(2,6) (3,4),(2,6) 1 23.0) 21
4 (2,49 (2,4 6 2 (94 13
5 | (65) ©5) 11 19 i gf’lgg fg
204 04) 4 5 [ (39),(0.10) 10
3 (3,4) (3,4) 7
* 14 |e9.00 | B 10 Notes:
i (g? = <<2>,;) - Z 1) The results for n>7 for complete
3 51:53 — Eljsg — 5 enumeration cannot be obtained.
3 | (3.1 ) 4 2) The minimum SUM = Emax+Vmax for
614 |80 (8,0) 8 . .
5 (26) (8) 2.6 @8 |3 (137 for the algorlthm'(3) is the same as
2 | (04) (0,4) 4 in complete enumeration method.
; 8840'8) gg'(oﬁ) fl Table (2) shows the results of
3 (05 05 5 applying BAB method on different
. (05) (05) pplying
g %07’0) - (;)07,0) - 18 values of n of problem (P5) to get
T 5317215118; R 5 minimum sum of Vmax and Emax .
ERNEEND) 5 Table (2): The optimal solution for the
3 | 36),@7) 5 1/ Vmax+ Emax
R E | BA E | BA E | BA
8 S B 1 " x s "I x| 8 ]|"|x B
> 35) 8 1 4 1 9 1 6
1 (2,8), (1.9 10
5 3.7), (L8) 9 2 6 2 4 2 4
9 [3 (07 7 3| 3 6 .43 7 |53 7
4 | (15,0) 15
) (131) 1 4 7 4 6 4 10
1 (13,5) 18 5 4 5 11 5 7
2| (25),(18) 7
10 [3 [(09 9 1 4 1 8 1 9
4 1172 19
5 29). G 10 2 6 2 11 2 7
1 137D 10 6| 3 4 7| 3 5 8| 3 9
2 | (68) 14
11 3 | (06) 6 4 8 4 10 4 11
4 | (08) 8
5 | (18),(09),3.7) 9 S| 8 > S| 8
1 (3'7) 10 1 10 1 18 1 10
2 | (24 6
12 3 (4,6) 10 2 9 2 7 2 14
4| (36).(28) 9 SRR NEEEE N EREE
5 | (2,6),(08),(35) 8 0 1
1 | (14,5 19 4 15 4 19 4 8
2 | (36) 9 5 14 5 10 5 9
131 3 |(@6),07 7
4 | (32,0) 32 1| 10 T | 19 1 9
5 E7,3;,(1,9) 10 K 6 K 9 L2 10
1 0,9 9
2 | (0,10) 10 2 3 10 3 3 7 . 3 12
14 3 (3,9) 12 4 9 4 32 4 21
4 | 174 21 5 8 5 | 10 5 13
5 | (85) 13
1 (1&3) 21 1 21 1 10 1 9
2 | (144 18 2 | 18 2 8 2 9
15 3 | B9 12 s v e o B 10
g gel,)Z),(MA) 198 ® 4 18 ° 4 10 ! 4 12
1 [ (38).09) 10 59 58 53
2 | (46), (17 8 1 24
16 | 3 | (38), 29 11 13
4 | (0,10) 10 1
5 [ 37,08 8 o1 31 B
1 | (215),(0,10) 10 7 | 13
17 | 2 | (7.8),(09) 9 5 10
3 | 37) 10
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Note: In table (2) BAB means the
optimal sum of Vmax+ Emax for (P5)
The best sum of Vmax and Emax for
problem (P3) obtained from algorithm
(3) results are compared with the BAB
method results for different number of
jobs, five experiment for each number
of jobs for problem (P5) are given in
table (3).

Table (3): Comparison of results of
minimum SUM of algorithm (3) with
the results of BAB method .

E BA BA
n n
B B

n

| & w| M Rl X
~| ~N| of o »
S
a| & w| o Rl X M
o| N & ©
al & wf ) R X m
S

o

gl & w| M| -

| o & o »
~

gl & w| N e
3
©

g & w| N|
©

i
o

gl & w| o Rl gl & W MR g A | M e
~

gl Bl W N R O B W N R O | W[ N
=
N

A B W N O B W N R O B W N R O W N
o]

6. Conclusions
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From our Computational results we
conclude that:

1) The number of efficient solutions
(points) of algorithm (3) is less than
the number of jobs n.

2) Algorithm (3) can find most of
efficient points and this clear from
the results of Table (3) from the 80
test problems for n = 3,4,...,19 only
for n = 8, the experiment (2) gives
SUM = 8 and the exact SUM =7
which is obtained by BAB method
and n=17,the experiment (1) gives
SUM =10 and the exact SUM =9
which is obtained by BAB method.

3) The algorithm (3) can be used for
solving problems of the form 1//
F(Vmax, Fmax)-

4) The problem (P5) can be solved by
using BAB method to get optimal
solution for n < 19. Since the
problem (P5) is a special case of
problem (P3), hence the algorithm
(3) can be used to find near optimal
solutions without using BAB
method and in reasonable time for

large n.
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