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Abstract 

An element x of an integral domain R is called primal if whenever x divides  a product 

a1a2 with a1 , a2∈ R, x can be written as   x = x1x2 such that xi divides ai ,i =1,2.We study 

whenin X2 primal in A + X B[X] or A + X B[[X]], when A ⊆ B be an extension of 

domains. Also we show that if A is an integral domain and S ⊆  A  a splitting 

multiplicative system, then A+XAS[X] is a semirigid GCD-domain if and only if A is 

a semirigid GCD-domain and for each two elements of S, one of them divides the other. 

Keyword: Integral Domain, Primal element, Principle ideal, Semirigid GCD- 

Domains. 

Introduction:

Let  A⊆ B be an extension of integral 

domain and X an indeterminate. In this 

paper, we study some arithmetic 

properties of the subring A +X B[X] 

(resp.A + X B[[X]]) of B [X] (resp. B 

[[X]]). According to (P. M. Cohn)(1) ,an 

element x of an integral domain R is 

called primal if whenever x divides  a 

product a1a2 with a1 , a2∈ R, x can be 

written as  x = x1x2 such that xi divides 

ai ,i =1,2 (an element whose divisors are 

primal elements is called completely 

primal). A domain R is called GCD-

Domain if every pair of elements of R 

has a greatest common divisor. Let A be 

a domain and S ⊆  A  a saturated 

multiplicative system of A. A nonzero 

element a ∈ A is said to be LCM-prime 

to S(2), if aA∩ tA = atA (equivalently tA 

: a = tA ) for each t ∈ S. S is said to be 

a splitting multiplicative system (3), if 

each nonzero element x of A can be 
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written as x = as , where a is LCM-

prime to S and s ∈  S. As in(3), an 

extension of rings A ⊆ B is called inert 

if whenever xy ∈ A for nonzero x,y ∈ 

B, then xu, yu-1∈ A for some u ∈ U(B). 

An element x of an integral domain R is 

called an extractor(4), if xR∩  yR is a 

principal ideal for each y ∈ R.                                               

      In Section 1, we prove that X is 

primal in A + X B[X] or A + X B[[X]] 

if and only if B = AS and S is good, 

where S = U(B) ∩ A ( we say that S is 

good if whenever s ∈ S, a,b ∈ A\ {0} 

and s│Aab, there exists t ∈ S such that 

t│Aa and  s│Atb). If n ≥ 2 and S = U(B) 

∩ A, we prove that Xn is primal in A + 

X B[X] or A + X B[[X]] if and only if S 

is good, AS = B ∩ Q(A) and for each b 

∈ B there exists c ∈ U(B) such that bc ∈ 

A. We also include some remarks about 

the goodness of a multiplicative system. 

      In Section 2 we study when A + X 

B[X] is a semirigid GCD-domain. We 

recall  that, according to (M. Zafrullah 

1975,1987,1988)(5,6,7), an element x of 

integral domain R is called rigid if 

whenever r,s ∈ R and r,s │ x, we have s 

│ r or r │ s . Also R is called semirigid 

if every nonzero element of R can be 

expressed as a product of a finite 

number of rigid elements. We show that 

if A is an integral domain and  S ⊆ A a 

splitting (saturated) multiplicative 

system, then A + X AS[X] is a semirigid 

GCD-domain if and only if A is a 

semirigid GCD-domain and for each 

two elements of S, one of  them divides 

the other. 

          Throughout, all rings are 

commutative with unit element and 

subrings have the same unit element. If 

A is a domain, then U(A) denotes the set 

of invertible elements of A and AS 

denotes the quotient ring of A with 

respect to the multiplicative  S. Any 

unexplained notation or terminology is 

standard as in (R. Gilmer)(8,9). 

1.  Primal elements 
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     In this section we study the primality 

of Xn in domain of type  A + X B[X] or 

A + X B [[X]]. When n = 1, this 

primality forces B to be a fraction ring 

of A, that is:  

Remark 1.1. If   A ⊆ B is an extension 

of domains and X is primal in A +  X 

B[X] or A + X B[[X]], then B=AS 

where  S = U(B) ∩  A. Indeed, if R 

denotes A +  X B[X] or A + X 

B[[X]]and 0 ≠ b ∈B,  then X  divides 

(bX)2 in R. So, there exist f, g, u, v∈R, 

f(0) ≠ 0, such that X=f g and  bX=fu=gv. 

If g′ denotes the (formal) derivative of 

g, then 1=f(0)g′(0), so f(0) ∈ S and 

b=g′(0)v(0)= v(0) / f(0) ∈ AS.  

   The next result describes the primality 

of X in A + X B[X] or       A + X B[[X]]. 

When f is a nonzero power series 

(polynomial), the order of f is denoted 

by ord(f). 

Theorem 1.2: Let A be a domain and S 

⊆ A a saturated multiplicative system. 

The following assertions are equivalent: 

(a) . X is primal in A + X AS [X], 

(b) .X is primal in A + X AS[[X]], 

(c) .If s ∈ S , a,b ∈ A and s │ ab , there 

exists t ∈  S such that t │a and       

s│tb 

(let us agree to say that S is good if it 

satisfies property (c)). 

Proof: Set R = A + X AS[X] or A + X 

AS[[X]]. First, we prove that ((a) or (b)) 

implies (c). Let s ∈ S and a,b ∈ A such 

that s │A ab. Then                  X │R 

a(bX/s), so there exists t ∈ S such that 

X = t(X/t),  t│R a  and    (X/t)│R (bX/s). 

So t│A a  and s│Abt. Conversely, we 

prove, that (c) implies ((a) and (b)). 

Assume that X│Rfg with f,g∈ R\ {0} 

and ord(f) ≤ ord (g). If ord (g) ≥ 2, then 

X│R g. If ord (f) = ord(g) = 1, then 0 ≠ 

g'(0) = b ⁄ s with b ∈ A, s ∈ S, hence X 

= s(X ⁄  s) and s│Rf, (X ⁄ s) │R g (again, 

g' denotes the formal derivative of g). If 

ord (f) = 0 and ord(g) = 1, then  0 ≠f(0)     

= a ∈ A, 0 ≠ g'(0) = b⁄s with b ∈ A, s ∈ 

S and ab⁄s  ∈ A. Since S is good, there 



Sinan O. Al-Salihi                                             The primal element in integral domain 

173 
 

exists t ∈ S such that a ⁄ t , bt ⁄s  ∈ A. 

Hence X =t(X ⁄ t) and t│R f,   (X ⁄ t)│R 

g. 

Remark 1.3 : Let A be a domain and S 

⊆ A a saturated multiplicative system 

of A.  

(a). If S is a splitting multiplicative 

system, then S is good. Indeed, assume 

that s│ab with s ∈ S and a,b ∈ A. We 

can write a = a't with t ∈ S and a' LCM-

prime to S , so s│bt. 

(b). If S is consisting of (completely) 

primal elements, then S is good. Indeed, 

If s│ab with s ∈ S and a,b ∈ A, then s = 

tu (so t,u ∈ S), such that t│a and u│b , 

hence s│bt. 

(c). If A is atomic and S is good, then S 

is splitting. Indeed, it suffices to show 

that each atom a not belonging to S is 

LCM-prime to S. If b ∈ A,     s ∈ S and 

s│ab , then s│b, because S is good and 

a has only unit divisors in S. As a 

specific example, we can consider the 

atomic domain A = k[X2, XY,Y2], 

where k is a field, X,Y are 

indeterminate and S is the saturated 

multiplicative system generated by X2. 

Here the atom XY is not LCM-prime to 

S, because both X2, XY divide (XY)2 

but their product does not. 

(d). S is good if and only if for each a ∈ 

A, aAS∩ A = ∪tϵs, t│a (a ⁄ t)A. Indeed, to 

see that the condition is necessary, let x 

∈ aAS∩ A. Then, there exists s ∈ S , b ∈ 

A such that sx = ab, hence x = ab ⁄ s, so 

there exists        t ∈ S such that a ⁄ t, tb ⁄ 

s  ∈ A, therefore x = (a ⁄ t)(bt ⁄ s) ∈ (a ⁄ 

t)A. Conversely, if a, b ∈ A, s ∈ S such 

that x = ab ⁄ s  ∈  A, then sx = ab ∈    

aAS∩ A, so there exist t ∈ S with t│a 

and c ∈ A such that x = (a ⁄ t)c, whence 

(ab) ⁄ s = (a ⁄ t)c, therefore bt ⁄ s = c ∈ A. 

(e). Consequently, S is splitting if and 

only if S is good and every nonzero a 

∈A has a divisor t ∈ S , such that any 

other divisor w ∈ S of a divides t. 

(f). Let T be the m-complement of S (4). 

Then , cf. (10) each nonzero prime ideal 

P disjoint of S contains an LCM-prime 
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to S element if and only if the saturation 

of ST is A \ {0} (that is, for each 

nonzero x, there exists x' in A, s ∈ S, t 

∈ T such that xx' = st). If S is good and 

every prime ideal P disjoint of S 

contains an LCM-prime to S element, 

then S is splitting. Indeed, if x is a 

nonzero element of A, then xx' = st for 

some     x' ∈ A, s ∈ S , t ∈ T .So s │xx' 

and, since S is good, w│x and s│wx' for 

some w ∈ S. Now since T is saturated 

and t = (x ⁄ w)(wx' ⁄ s), x ⁄ w ∈ T , so x = 

w(x ⁄ w). That is S is splitting.  

Corollary 1.4: Let A be a domain and 

S a saturated multiplicative system. 

Then X is completely primal in A + X 

AS[X] or A + X AS[[X]] if and only if S 

is consisting of (completely) primal 

elements of A. 

Proof: Let R denote A + X AS[X] or A 

+ X AS[[X]]. Notice that, if s ∈ S, s is 

primal in A if and only if s is primal in 

R . Indeed, if s is primal in A and s │R 

fg,  f,g∈ R, then s│A f(0)g(0), hence s 

can be written as s = tu with t,u∈ S such 

that t│A f(0), u│A g(0), thus t│R f and 

u│R g. Since the divisors of X in R are 

of type s or X ⁄ s with s ∈ S and since R 

has an automorphism sending X ⁄ s, the 

assertion of Corollary 1.4  follows from 

Remark 1.3 (b). 

The next result describes the primality 

of Xn in A + X B[X] or A + X B[[X]], 

when n≥ 2. Here, if B is a domain and 

b ∈ B, b U(B) = { bw; w ∈ U(B)}. 

Theorem 1.5: Let A ⊆  B be an 

extension of domains, S = U(B) ∩  A 

and K the quotient field of A. Let R 

denote A +  X B[X] or A + X B[[X]]. 

The following statements are 

equivalent: 

(a). X2 is primal in R, 

(b). Xn is primal in R for some n ≥ 2, 

(c). Xn is primal in R for each  n ≥ 2, 

(d). b U(B) ∩ A ≠ ∅ for each b ∈ B is 

good and AS = B ∩ K,  

(e). b U(B) ∩ A ≠ ∅ for each b ∈ B and 

whenever a ∈  A , b ∈  B are nonzero 

elements such that ab ∈ A, there exists t 

∈ S  such that at-1,  bt∈ A. 
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Remark 1.6: Let A ⊆  B be an 

extension of domain. If condition (d) of 

Theorem 1.5  holds, then A ⊆ B is an 

inert extenstion. Indeed, let        b1 , b2∈ 

B\ {0} such that b1b2 = a ∈ A. Since b1 

U(B) ∩  A = ∅ , there exists u ∈  U(B) 

such that a' = b1u
-1∈ A. Therefore a = 

b1b2 = (b1u
-1)( b2u) = a'(b2u). Since (d) 

holds, there exists t ∈ S such that  b1 u
-1 

t-1 =b1 (ut)-1∈ A and b2 (ut) ∈ A. 

Proof of Theorem 1.5:For a nonzero f ∈ 

R, let α(f) denote the first nonzero 

coefficient of f. In order to show that (e) 

implies (d), let a,b ∈ A and s ∈ S , such 

that s│A ab. By the second condition of 

(e) applied for     b ⁄ s ∈ B, there exists t 

∈ S such that at-1∈ A, bt ⁄ s ∈ A. Let b = 

c ⁄ a ∈ B, where a,c ∈ A are nonzero. So 

ba = c  ∈ A, hence , by (e), there exists 

t ∈ S such that bt ∈ A, thus b ∈ AS . The 

inclusion AS ⊆  B is obvious. 

Conversely, let a ∈ A, b ∈B be nonzero 

elements such that c = ab ∈A . Then b = 

c ⁄ a ∈ K ∩ B = AS . So there exist s ∈ 

S, d ∈ A such that            b = d ⁄ s. Since 

S is good, there exists t ∈S such that at-

1∈A  and bt = ( d ⁄ s)t ∈ A.  

(b) ⇒ (e). In order to see that the second 

part of (e) holds, let a ∈ A,        b ∈ B 

nonzero elements such that ab = c ∈ A. 

Then Xn│R a( bXn), , so Xn = fg, a = ff' 

, bXn = gg'  for  some  f, f', g' ∈  R of 

order 0 and g ∈ R of order n. Then t = 

α( f ) ∈ S, because α( f )α( g ) = 1. Also 

a = α( f )α( f' ), so t│Aa, and b = α( g )α( 

g' ) , hence bt = α( g' ) ∈ A. To show the 

first part of (e), let 0 ≠  b ∈  B. Then 

Xn│R (bXn) (bX),so Xn = fg, bXn = ff' , 

bX = gg', for some f , f' , g , g' ∈ R. Then 

1 = α ( f )α( g ) and b = α (f )α( f' ) = α 

(g)α( g' ) with α( f' ) ∈ A or α( g' ) ∈ A. 

Hence α( f ),α( g ) ∈ U ( B) and of the 

elements bα( f ),  bα( g),  belongs to A. 

(a) ⇒ (e) can be proved similarly. (c) ⇒ 

(b) and (c) ⇒ (a) are trivial . (e) ⇒ (c). 

Assume that f , g ∈  R are nonzero, 

Xn│Rfg and ord(g) = j ≥  ord(f) = i . 

Obviously, if  j ≥ n + 1, then Xn│R g. 

We consider the following three cases. 
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If  i= 0 and         j = n, then α ( f ) ∈ A , 

α( g ) ∈ B and  α ( f )α( g ) ∈ A. By (e), 

there exists t ∈ S such that t-1α( f ), tα( 

g) ∈ A. Hence Xn = t( t-1Xn) with t│R f 

and t-1Xn│R g , because t divides each 

nonconstant monomial in f. If  i+ j = n   

and i≥1, then α ( f ),α( g ) ∈ B and α ( f 

),α( g ) ∈  A . By Remark 1.6  there 

exists w ∈ U (B) such that wα( f ) ∈ A 

and  w-1α( g ) ∈ A. Hence Xn = ( w-1Xi)( 

wXj) with w-1Xi│R f and wXj│R g. If 

i+j≥n+1 and  i ≥ 1, then J≥ 2 and α ( f 

),α( g ) ∈ B . By (e), there exists c ∈ 

U(B) that such α( f )c∈ A. Hence Xn = 

(c-1Xi)(cXj-1) with c-1Xi│Rf and cXj-

1│Rg. 

Example 1.7: (i).Let A be a domain and 

S ⊆ A a multiplicative system. In A + X 

AS [X], X is primal if and only if X2 is 

primal . 

(ii).Let K be a field and A a subring of 

K. Then X2 is primal in A + X K[X], but 

X is primal in A + X K[X] if and only if 

K = Q(A). For instance, in the ring Z + 

X R[X], X2 is primal, but X is not 

primal. 

(iii). X2 is not primal in Z + X 

Z[√2][X]. 

(iv). If A' ⊆  B is an extension of 

domains such that bU(B) ∩ A' ≠ ∅ for 

each b ∈ B, then X2 is primal in A + X 

B[X], where A = Q(A') ∩  B. Indeed, 

Q(A) ∩  B = A, whence U(B) ∩ 

A=U(A). 

        We recall that an element x of 

integral domain in R is said to be an 

extractor if Rx ∩  Ry is principal for 

each y ∈  R\ {0}. Obviously each 

extractor is primal. By (D. D. Anderson 

et al 1995, Theorem 4.1)(4)if x is an 

extractor, then so is every divisor of x. 

By the proof of [T. Dumitrescu, 

Proposition 2.11](11), a completely 

primal element x is an extractor if and 

only if for each y, the elements x.y have 

a maximal common divisor 

(abbrev.MCD), that is, a common 
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divisor z such that x ⁄ z  and y ⁄ z are 

relatively prime. 

Proposition 1.8: Let A be a domain and 

S ⊆ A a saturated multiplicative system 

of A. Then X is an extractor in A + X 

AS[X] or A + X AS[[X]] if and only if S 

is splitting and consists of extractors. 

Proof:Let R denote A + X AS[X] or A + 

X AS[[X]]. Assume that X is an 

extractor in R. By the above remark, the 

elements of S are extractors in R, hence 

extractors  in A. By Remark 1.3 (b), S 

is good. Let a ∈ A be nonzero and f = 

GCDR(X,a). Then f(0) = t ∈  S and if 

w│Aa with w ∈ S, then w│R a , X, so 

w│R t, hence w│A t . By Remark1.3(e), 

S is splitting. 

Conversely, assume that S is splitting 

and consists of extractors. By Corollary 

1.4,, X is completely primal in R. So, by 

the remarks made before Proposition 

1.8, it suffices to see that X, f have an 

MCD, for each nonzero f ∈  R. If a = 

f(0) ≠ 0, a can be written a = bs with s 

∈ S and b LCM-prime to S. Thus s is an 

MCD of X and f in R. If ord(f) = 1, say 

f = (a ⁄ t)X +c2X
2 + c3X

3 + ...  with a ∈ 

A, t ∈ S, we write again a = bs with s ∈  

S and b LCM-prime to S. Since s,t are 

extractors, there exists w ∈S such that 

(s,t)v =Aw. Then (w⁄ t)X is an MCD of 

X and f in R. 

Corollary 1.9: Let A be a domain and 

S ⊆ A a saturated multiplicative system 

of A. Then A + X AS[X] is GCD-

domain if and only if X is an extractor 

in A + X AS[X] and AS is a GCD-

domain. 

Proof: Apply proposition 1.8(8,12) 

2.   SEMIRIGID GCD-DOMAINS 

     Let R be an integral domain. We 

recall that a element x ∈ R is said to be 

rigid, if whenever r,s ∈ R and r,s │x, we 

have r│s or s│r . so an irreducible 

element is obviously rigid ( we recall 

that a nonzero nonunit x ∈ R is called 

irreducible if  whenever y ∈ R and y│x, 

we have y│1 or x│y. Then R is called 
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semirigid if every nonzero element of R 

can be expressed as a product of a finite 

number of rigid elements. So, each 

atomic domain, that is a domain in 

which every nonzero nonunit element is 

a product of irreducible elements, is 

semirigid. 

Lemma 2.1: Let A be a domain, S ⊆ A 

a saturated multiplicative system and R 

= A + x AS[X]. 

(a). X is rigid in R if and only if for 

every r,s∈ S, r│A s or s│A r . If X is rigid 

in R and s ∈ S, then X ⁄ s is rigid in R. 

(b). A nonzero element a ∈ A is rigid in 

A if and only if a is rigid in R. 

Proof:Is a consequence of the following 

remarks. The set of all divisors of X in 

R is S ∪  { X ⁄ s ; s ∈  S } and any 

nonzero a ∈ A has the same divisors in 

A and R. Also if  b,c ∈ A, then b│A c if 

and only if b│R c. When s ∈ S, R has an 

A-algebra automorphism sending X 

into X ⁄ s . 

      Let A be a domain and S ⊆  A a 

saturated multiplicative system. In   [D. 

Costa et al. ,  Theorem 1.1](12), is show 

that A + X AS[X] is a GCD-domain if 

and only if A is a GCD-domain and S is 

splitting. Our next result characterizes 

the semirigid GCD-domain of type A + 

X AS [X]. 

Theorem 2.2: Let A be a domain and S 

⊆  A a splitting ( saturated) 

multiplicative system. Then A + X 

AS[X] is a semirigid GCD-domain if 

and only if A is a semirigid GCD-

domain and for every s,t∈ S, s│A t or 

t│A s . 

Proof: Set R = A + X AS[X]. Using 

Lemma 2.1, and the comments above, it 

suffices to show that R is semirigid 

provided A is a semirigid GCD-domain 

and X⁄s is rigid in R for each s ∈ S. We 

use freely Lemma  2.1. Let  f  ∈ R be a 

nonzero polynomial of minimal degree  

among all nonzero polynomials of R 

which cannot be written as product of 
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rigid elements of R. Then any divisor of 

f in R is constant or have the same 

degree with f. Since a rigid element of 

A is still rigid in R, it follows that f ∉ A. 

If f(0) = 0, then f = ( X ⁄ s )a for some s 

∈  S and a ∈  A. This contradicts  the 

choice of f because X ⁄ s is rigid and A 

semirigid. If f(0) ≠ 0, then factoring out 

from f an appropriates element of A, we 

may assume that  

f = a0 + ( a1 ⁄ s )X + ... + ( an ⁄ s )Xn 

with  ai∈ A, s ∈ S and GCD( a0 , ⋅⋅⋅ an ) 

= 1. Moreover, since S is splitting, we 

may assume  that a0 is LCM-prime to S. 

Then f has no nonunit  factor in A, thus 

f is irreducible, a contradiction. 

    There is as certain resemblance 

between the proofs of  Theorem 2.2 and 

[T. Dumitrescu, Corollary 1.8](11). 

Corollary 2.3: If A is a semirigid GCD-

domain, so is the polynomial ring A 

[X]. 

Corollary 2.4:[M. Zafrullah, Example 

4] (6). If  V is a valuation domain with 

quotient field K, then V + X K[X] is a 

semirigid GCD-domain. 

Corollary 2.5: If A is a semirigid GCD-

domain and p ∈ A a prime element such 

that ∩n≥1p
nA = 0, ( e.g. if A is a factorial 

domain and p ∈ A a prime), then A + X 

A[1 ⁄ p][X] is a semirigid GCD-domain. 

Proof: The saturated multiplicative 

system generated by p is splitting cf(3). 

Example 2.6: Iterating the preceding 

corollary, we obtain successively that 

the following rings are semirigid GCD-

domains  

A1 = Z+ X Z[1⁄ 2][X1],  A2 = A1 + X2 

A[1⁄ 3][X2],⋅⋅⋅ , 

An = An-1 + Xn An-1[1⁄ pn-1][Xn ], 

Where pn is the nth prime number. 

Indeed, if  q is a prime distinct from p1 

, p2 , ⋅⋅⋅ ,pn , then  

An ⁄ qAn≃ ( An-1 ⁄ qAn-1 )[Xn] ≃⋅⋅⋅≃ ( Z 

⁄ qZ)[ X1 , X2 , ⋅⋅⋅,Xn ] and 
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∩k≥1q
k An⊆∩k≥1q

k Z[1⁄ p1 , 1⁄ p2 , ⋅⋅⋅, 1⁄ 

pn ][ X1 , X2 , ⋅⋅⋅,Xn ] = 0 . 
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             x                   R                    x                a1  a2       a1,  a2     R  

            x          x=x1  x2            xi       ai        i=1,2               .x2                         

    A+xB[x]        ,A+xB[[x]]          A  ⊆ B                                                 A      

        A  ⊆ S      ,                    A+AS[x] -     GCD                              A -     GCD 

                        S.                   


