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Abstract

The aim of the paper is to classify certain geometric structures, called arcs. The main computing

tool is the mathematical programming language GAP. In the plane PG (2,17), the important

arcs are called complete and are those that cannot be increased to a larger arc. So far, all arcs

up to and including size eight have been classified, as have complete 10-arcs, 11-arcs, 12-arcs,

13-arcs and 14-arcs. In the plane of order seventeen, the maximum size is eighteen. Each of

these arcs gives rise to an error-correcting code that corrects the maximum possible number of

errors for its length.
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1. INTRODUCTION:

A projective plane is an incidence

structure of points and lines with
the following properties.
e Every two points are
incident with a unique line.
e Everytwo lines are incident
with a unique point.
e There are four points, no

three collinear.

A Desarguesian projective plane
PG(2,q) has as points one-dimensional
subspaces and as lines two-dimensional

subspaces of a three-dimensional vector
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space over the finite field IF, of q elements.
A k-arc in PG(2,q) is a set of k points no
three of which are collinear. A k-arc is
complete if it is not contained ina (k + 1)-
arc. A (k;3)-arcin PG(2,q) is aset of k
points in which no four points but some
three points are collinear.

The main aims of this paper is to
classify arcs of all sizes in projective plane
PG(2, q), and classify those arcs which are
contained in a conic, each of these arcs
gives rise to an error-correcting code that
corrects the maximum possible number of

error for its length.
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Arcs in PG(2,q) for
2,3,4,5,7,8,9,11,13
classified; (1).

We are looking at the plane of order

q:

have been

seventeen, as it is the next in the sequence.
A brief history, associated to any topic in
mathematics is its history. Arcs were first
introduced by (2) in connection with
designs in statistics. Further development
began with (3); he showed that every (q +
1)-arc in PG(2, q) is a conic. An important
Ball, Blokhuis and

Mazzocca showing that maximal arcs

result is that of

cannot exist in a plane of odd order. (4)
found important applications of curves over
finite fields to coding theory. As geometry
over a finite field, it has been thoroughly
studied (5).
An (n,M,d), code C is a set of M words,
each with n symbols taken from an alphabet
of size g, such that any two words differ in
at least d places. A code (n, M, d), has the
following desirable properties:

e Small n: fast transmission;

e Large M: many messages;

e Large d: correct many errors.

If the code is linear, it can more easily be
used for encoding and decoding; in this
case, M = q* for some positive integer k,
the dimension of the code, and C is called
an [n, k, d]4 code. The main Coding Theory

problem is to find codes optimizing one
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parameter with the other two fixed.
Mathematically, such a code can also be
viewed as a set of n pointsin PG(k —1,q)
with at most n — d points in a subspace of

dimension k — 2 for more details see (1),

(6), (7). (8), (9).

2. PREVIOUS RESULTS
Definition(2.1):The set denoted by Fp,

with P prime, consists of the residue classes
of the integers modulo P under the natural

addition and multiplication.

Definition(2.2):Given a homogenous

polynomial F in three variables x,, xq, x,
over [F,, a curve F is the set F = v(F) =
{(P(X):F(X) = 0}
Where P(X) is the point of PG(2,q)
represented by X = (x;, X1, X3).
If F has degree three, that is,
F = agxo? + a;x;2 + ayx,?
+ byxox, + bixoxs
+ box1x3,

Then F is called a quadric. For g odd, the

discriminant of a quadric F is the
determinant D =|b, 2a,; by A
by by 2a,

quadric F is non-singular if its discriminant

D is non-zero.

Definition(2.3): A conic € is a non-

singular quadric F.

Definition(2.4): An [n, k,d], code C is

a subspace of V(n,q) = (F,)", where the
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dimension of C is dim C =k, and the
minimum distance is d(C) =d = min
d(x,y).

Definition(2.5): For any [n, k,d], code

wehaved <n—k + 1.

Definition(2.6): Let 2 be a root of f

which irreducible polynomial . Then f is
primitive if the smallest power s of A such
that A5 = 1iss = q™ — 1. Itis subprimitive
if the smallest power s of A such that A° €
Fyiss=q" '4+-+qg+1

Definition(2.7): Denote by S and $* two

subspaces of PG(n,K), A projectivity
B:S — S™ isabijection given by a matrix T,
necessarily non-singular, where P(X*) =
P(X)B iftX* = XT,witht € K. Write 8 =
M(T); then § = M(AT) forany A1in K. The
group of projectivities of PG(n,K) is
denoted by PGL(n + 1,K).

Definition(2.8): A group G acts on a set

Aifthereisamap AXG — A suchthat given
g, g’ elements in G and 1 its identity, then
a. x1=x,
b. (xg)g' = x(gg') for any x
in A.

Definition(2.9): The orbit of x in A

under the action of G is the set xG =
{xglg € G}.
Definition(2.10): The stabilizer of x in

A under the action of G is the group

G, ={g € G|xg = x}.
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Definition(2.11): Let K be a k -arc and
P apoint of PG(2,q)\K. Then if exactly i

bisecants of K pass through P, then P is
said to be a point of index i. The number

of these points is denoted by c;.

Lemma(2.12): The constants c; of a k —

arc K in PG (2, q) satisfy the following
equations with the summation taken 0 to n
for which ¢; # 0:

Yei=q*+q+1—k, 1
Yic,=k(k—1)(qg—1)/2, .. 2
Yi(i—1c¢/2=k(k—1)(k—2)(k—
3)/8.

3. Results and Applications

3.1 The algorithm to calculate k-
arcs, k < 18

The strategy to compute the complete k-
arcs is the following.

e The way of calculating ¢, for
(k — 1)-arcs is by listing the
points not on the bisecants of
the (k — 1)-arcs.

e The points represented by the
number c, are separated into
orbits.

e The k-arcs are constructed by
adding one point from each
orbit.

e Foragiven k-arc K, the set S of
points not on the bisecants of K

is found.
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e If S is empty, then K is
complete. Otherwise K is
incomplete.

e All possible k-arcs from a
given (k — 1)-arcs are listed.

e The next step is to select the
non-identical complete k-arcs
among the total number
constructed.

e Calculate the transformations
between them. By use of The
Fundamental Theorem  of
Projective Geometry, there is a
unique projectivity of PG(2,q)
transforming four points no
three on a line to any other four
points no three on a line. Two
k-arcs K; and K, are equivalent
if K, = K, and B is given by
amatrix T and § = M(T) with
M(AT) = M(T) , A € F{,{0}.

3.2 Preliminary to PG(2,17)
In PG(2,q), the projective plane of order
17,6, = 18, 6, = 307, where

On = IPG(n, )| = (@"* = 1)/(q — 1);
Hence we have 307 points, 307 lines, 18
points on each line and 18 lines passing
through each point.

0 1 0
Let P, = (1,0,0),andT=( 0 0 1 |be
14 1 0

anon-singular matrix such that the points of

PG(2,17) are generated as following. P; =
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P,TY, i=0,..,306, such P, = (1,0,0),
P, = (0,1,0), P, = (0,0,1), ..., P3ps =
(16,0,0). We will write the points of
PG(2,17) in numeral forms as follows:
P, =1i,i=0,..,306, P3p;,~P,.The lines of
PG(2,17) are as follows:

£, ={0,1,3,45,58,62,73,96,110,122,142,
149,178,196,267,277,286,302},

¢, ={1,2,4,46,59,63,74,97,111,123,143,
150,179,197,268,278,287,303},

230, = {306,0,2,44,57,61,72,95,109,121,
141,148,177,195,266,276,285,301}.

3.3 Stabilizer of the frame

The stabilizer of any 4-arc is the group of
24 projectivities found by shifting the 4-arc
to its 24 permutations. The frame points in
PG(2,17) are 0,1,2,253. The two
projectivities

01 0
g1=<1 0 O> and g2 =

0 0 1

0 16 O
0 0 16| which generate S,, the
1 1 1

stabilizer of the frame, partitions the points
in PG(2,17) into 21 disjoint orbits.
3.4 The 5-arcs
Let K beak-arcin PG(2,q). For k = 4, the
equations in Lemma (2.12) become
co=(q—2)(q—3),
¢ = 6(q —2),

C2:3;
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Another way to calculate c, is by listing the
points not on the bisecants of the 4-arc. The
points represented by the number ¢, are

separated into orbits. Then 5-arcs are

constructed by adding one point from each

orbit. This gives the following result.

Theorem 1: In PG(2,17) there are

precisely four projectively distinct 5-arcs,

given in Table 1.

Symbol 5-arc Stabilizer
4, | {0.1,2,253,6} Z,
4, | {01,2,253,7} Z,
A {0,1,2,253,9} Z,
A, 140,1,2,253,11} Z,

Table 1: The distinct 5-arcs

3.5 The 6-arcs
The number of the points on the bisecant of
any 5-arc is L(5,q) = 10q — 20; that is,
150 for g = 17. Hence there are 307-
150=157 points of the plane not on the
bisecant of any of the four 5-arcs. Let K be
a k-arc in PG(2,q). For k=5, the
equations in Lemma (2.12) become
co=0@—-H@-5 +1,

Another way to calculate c, is by listing the
points not on the bisecants of the 5-arc. The
points represented by the number ¢, are
separated into orbits. Then 6-arcs are
constructed by adding one point from each
orbit. For a specific 5-arc, points of index
zero are divided into orbits by the stabilizer
of that 5-arc. The points of index zero for
every 5-arc as a humber of orbits with the
size of the orbits in brackets are given in
Table 2.

Orbits

36(4),6(2),1(1)

72(2).13(1)

72(2).13(1)

c; = 10(q — 4),
c, = 15;
5-arc | ¢,
A, | 157
A, | 157
A; | 157
A, | 157

72(2).13(1)

Table 2: The orbits

So far, the number of 6-arcs constructed is
295. The the

transformations between the 6-arcs is by

method to compute

use of The Fundamental Theorem of
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Projective Geometry. This gives the

following result.
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Theorem 2: In PG(2,17) there are numbers of 6-arcs and their stabilizers are
precisely 74 projectively distinct 6-arcs, the given in Table 3.

Stabilizer | I |Zy |Z3 | Zy | ZyXZ, | S3|S4 | Dg | Ay

Number |32 16| 9 | 3 2 7111113

Table 3: The stabilizers of 6-arcs

3.6 The 6-arcs on a conic

The ten distinct hexads (An unordered set
of six points) on PG(1,17) can be mapped
to ten distinct 6-arcs on a conic. If the points
U, = (1,0,0),U; = (0,1,0),U, = (0,0,1)
are on the conic, then the general equation
of the conic reduces to the following:

x0x1 + aoxoxz + a1x1x2 = 0

coefficients of the equations of the conic
containing the respective four 5-arcs

{Uo, Uy, Uz, U3, Us3,{Uo, Uy, Uy, Us, Us},

{Uo, Uy, Uz, U3, Ug}, {Uy, Uy, Uy, Us, U7},
Where

U;=01,1,1),U0, = (—-8,-6,1),Us =
(-84,1),U, = (—8,-5,1),U, =
(-7,6,1).

Therefore, (ag, ag) = Substituting the point of each 6-arc in the
(-7,6),(-3,2),(-2,1),(=54) are the corresponding conic shows the ten 6-arcs
on a conic as given in Table 4.
Symbol Conic 6-arc Stabilizer
B, XoX1 — 7XoX, + 6x7x, | {0,1,2,253,6,13} Z,
B, XoX1 — 7XoX, + 6x7x, | {0,1,2,253,6,41} I
B; XoX1 — 7XoX, + 6x7x, | {0,1,2,253,6,84} Z,
B, XoX1 — 7XoX, + 6x7x, | {0,1,2,253,6,269} S,
B: XoX1 — 3%oX, + 2xyx, | {0,1,2,253,7,23} Z,
Bg XoX1 — 3%oX, + 2xyx, | {0,1,2,253,7,33} | Z,%XZ,
B, XoX1 — 3%oX, + 2x1x, | {0,1,2,253,7,98} Z,
Bg XoX1 — 3XoX, + 2x;x, | {0,1,2,253,7,153} | Z,XZ,
By XoX; — 2X0X, + x1x, | {0,1,2,253,9,235} D
Bio | xox1 — 5x¢x, + 4x,x, | {0,1,2,253,11,182} S

Table 4: The distinct 6-arcs on a conic

3.7 The 7-arcs
Let K beak-arcin PG(2,q). For k = 6, the
equations in Lemma (2.12) become

COZ(CI—7)2+6—C3,
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¢, =3{5(q — 7) + c3},
Cy = 3{15 - C3};
The constant c;and hence ¢y, c; and c,are

calculated. Another way of calculating c is
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by listing the points not on the bisecants of
the 6-arc. The points represented by the
number c, are separated into orbits. Then 7-
arcs are constructed by adding one point
from each orbit. This gives the following

result.

Theorem 3: In PG(2,17) there are

precisely 733 projectively distinct 7-arcs,
the numbers of 7-arcs and their stabilizers

are given in Table 5.

Stabilizer | I

Z;

S3 | Z3

Number | 644

75

2 |12

Table 5: The stabilizers of 7-arcs

3.8 The 7-arcs on a conic
The ten distinct heptads (An unordered set
of seven points) on PG(1,17) can be

mapped to ten distinct 7-arcs on a conic.

Substituting the points of each 7-arc in the
corresponding conic shows the ten 7-arcs

on a conic as given in Table 6.

Symbol Conic 7-arc Stabilizer
Cy XoX1 — 7XoXy + 6Xx1x, | By U {41} |
C, XoX1 — 7XgX, + 6x1%, | By U {84} Z,
Cs XoX1 — 7Xgx, + 6x1%, | By U {152} Z,
Cy XoX1 — 7XgX, + 6x1%, | By U {167} Z,
Cs XoX1 — 7XgXy + 6Xx1%, | By U {175} I
Ce XoX1 — 7XoXy + 6X1x, | B, U {84} I
(o XoX1 — 7XgX, + 6X1X, | B, U {167} Z,
Cg XoX1 — 7XgX, + 6X1X, | B, U {175} Z,
Co XoX1 — 7XgX, + 6Xx1x, | B, U {205} Z,
Cio XoX1 — 3XoXy + 2x1x, | Bs U {33} Z,

Table 6: The distinct 7-

3.9 The 8-arcs
Let K beak-arcin PG(2,q). Fork = 7, the
equations in Lemma (2.12) become
co = (@ —10)% + 20 — c3,
c1 = 3{7(q — 11) + c3},
c; = 3{35 —c3};
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arcs on a conic

The constant c;and hence ¢y, c; and c,are
calculated. Another way of calculating c is
by listing the points not on the bisecants of
the 7-arc. The points represented by the
number c, are separated into orbits. Then 8-

arcs are constructed by adding one point
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from each orbit. This gives the following

result.

Theorem 4: In PG(2,17) there are

precisely 5441 projectively distinct 8-arcs,

the numbers of 8-arcs and their stabilizers

are given in Table 7.

Stabilizer | I Zy, | Z,

Dy |Dg|Z,XZy | Zg X Z,

Number | 5027 | 389 | 4

311 16

Table 7: The stabilizers of 8-arcs

3.10 The 8-arcs on a conic
The seventeen distinct octads ( An
unordered set of eight points) on PG(1,17)

can be mapped to seventeen distinct 8-arcs
on a conic. The 8-arcs in PG(2,17) on a

conic are given in Table 8.

Conic 8-arc Stabilizer
XoX1 — 7XgXy + 6x1%5 | C; U {84} I
XoX1 — 7XgXy + 6x1%, | C; U {135} Z,
XoX1 — 7XgXy + 6x1%, | C; U {152} |
XoX1 — 7XgXy + 6x1%, | C; U {175} Z,
XoX1 — 7XgXy + 6x1%, | C; U {185} |
XoX1 — 7XgX, + 6x1%, | C; U {205} Z,
XoX1 — 7XgXy + 6x1%x, | C; U {269} | Z,XZ,
XoX1 — 7XgXy + 6Xx1%5 | C; U {167} Z,
XoX1 — 7XgXy + 6x1%5 | C; U {175} Z,
XoX1 — 7XgXy + 6x1%5 | C3U {167} | ZyXZ,
XoX1 — 7XgXy + 6Xx1%, | C3 U {175} Z,
XoX1 — 7XgXy + 6Xx1%5 | C4 U {175} I
XoX1 — 7XgXy + 6Xx1%5 | C4 U {185} Z,
XoX1 — 7XgXy + 6x1%, | C5 U {298} D,
XoX1 — 7XgXy + 6x1%, | Cg U {135} Z,
XoX1 — 7XgXy + 6x1%, | Cq U {175} | Z,XZ,
XoX1 — 3XpXy + 2x1%, | C1o U {240} Dg

Table 8: The disti
3.11 The 9-arcs on a conic

The seventeen distinct nonads on PG (1,17)

can be mapped to seventeen distinct 9-arcs

nct 8-arcs on a conic
on a conic as given in Table 9. The 9-arcs
all lie on the conic

V(XgX1 — 7XoX5 + 6X1X7).
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Where,

El = Cl V) {84‘}, EZ = Cl V) {135},

9-arc Stabilizer 9-arc Stabilizer 9-arc Stabilizer
E,u{135}| Z, E, U {205} I E;U{269}| S,
E,u{152}| Z, E, U {269} I E,u{187}| Z,
E, U {167} I E, U {300} I EsU{269}| Do
E,u{175}| Z, E, U {187} I EsU{175}| Z,
E,u{185}| Z, E; U {175} I E,U {300} | Zg
E,u{187}| Z, E;u{187}| Z,

Table 9: The distinct 9-arcs on a conic

E3 = Cl V) {152}, E4, = Cl V) {185},

3.12 The complete k-arcs, k = 10

From section (3.1), we have the following

results.

ES = CZ V) {167}, E6 == C3 V) {185}, E7 =
C, U {185}.

Theorem 5: The numbers of projectively

distinct complete k-arcs in PG(2,17) for
k = 10 are given in Table 10.

k 10 11 12 113|114 |115|16 |17 |18
Number | 560 | 2644 {553 | 8 | 1 | — | —| — | 1
Table 10: The numbers of the complete k-arcs
The numbers of the complete k-arcs, k =
10,11,12,13,14 and their stabilizers are
given in Table 11,12,13,14 and 15.
Stabilizer | I | Z, | Ay | Dg | Z3 | ZyXZy | S3 | Zy | ZgXZy | Q4 | Sa
Number | 343|178 | 2 | 1 | 9 8 9 7 1 1)1

Table 11: The stabilizers of the complete 10-arcs

Let K; be the complete 10-arc with group
isomorphic to Dg in Table 9. Then G (K;) is

generated by g4, g, Where

0
g1=|0
15
13
92=<6
6

0
11
0

13
13
15

16
o)
0

13
12).
13
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Then G (K;) has the following orbits on Kj:
one orbit M; of size 9 and one orbit M, =
{P} of size 1. Then K; consists of M; on
conic € and P not on C. The number of the
points on no bisecant of M, is ¢, = 19. So
P is not unique and we can select it from

any of these ten points not on C.
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Let K, be the complete 10-arc with group Let K5 be the complete 10-arc with group

isomorphic to Zg x Z, in Table 9. Then isomorphic to S, in Table 9. Then G(K3) is

G (K,) is generated by g4, g, where

0 0 1
g1=(15 0 0),
13 3 4

8 0 0
gz = (14 5 16).
12 12 12

Then G (K;) has the following orbits on K,:

a generated by g,, g, where

0 12 0
g1 = (16 2 8>,

8 8 8

16 0 O
g2=10 16 0]

10 12 1

one orbit of size 8 and one orbit of size 2.
The group G(K3)
containing the orbit of size two, and 4.

Then G (K3) has the following orbits on

stabilizes a line K5 one orbit of size 6 and one orbit of size
partitions the line into one orbit of size 8,

two of size 4, and one orbit of size 2.

Stabilizer

I

Z,

Number

2569

75

Table 12: The stabilizers of the complete 11-arcs

Stabilizer | I | Z, |Z3 | Z,XZy |Z4 |S3 | Dy | Dg | Sy
Number | 337 | 152 | 17 18 1120 2| 3 |3
Table 13: The stabilizers of the complete 12-arcs
Stabilizer | I | Z, | Z3 | Z4 | S5
Number |14 |1 |1 |1
Table 14: The stabilizers of the complete 13-arcs
Stabilizer | D,

Number | 1

Table 15: The stabilizers of the complete 14-arcs

11 1 15
g2=<12 12 12).

0o 0 2

Let K, be the complete 14-arc with group

isomorphic to D, in Table 12. Then G (K,)
is generated by g4, g, Where

g = ((3) 8 g ) Then G(K,) has the following orbits on K,

2 12 16 one orbit 0, of size 8, one orbit O5 of size 4

and one orbit 0, 0f size 2. The group G (K,)
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stabilizes a line ¢ containing O,0n a conic
C, and partitions the line ¢ into three orbits
of size 4 and three orbits 04, 0,, 05 of size
2. Then K, consists of ten points on C, two
of them on ¢, and eight points in 0, =
{R1,R,,R3,R,, Rs, R, R7,Rg} on C. Let
Q1, Q2, Q3, Q,be the four points in Og not on
C. Let 0, ={P,P,'}, 0, ={P,,P,'},05 =
{P;,P;'} on £, where
P, =Q:1Q:N¢=0Q,QsN¢, P =
Q104 N?L =0Q203N¢, P3=0:Q,N 7,
Py =Q3Q.n 4.
The tetrad 0, U 0, is a harmonic ( if
P;, P,, P;, P,are distinct points, then P;and
3.13 Links with Coding

Theory

From Definition (2.5) and (1), there is a
natural one-to-one correspondence between
linear [n, k,n —k + 1] MDS code and n-
arcsin PG(k —1,q). Inthe case that k =

P, separate P;and P, harmonically if A =

(t1—t3)(t2—t4) —
(t1—t4)(t2—t3)

the coordinates of P, P,, P;,P,) and the
tetrads 0, U 03, 0, U 04

—1 , withty, t,, ts, t, are

are neither
. . . . 1
harmonic nor equianharmonic (if A = v ).

The tangents at P; and P, to C meet at R.
The lines
RiR, R,R, R3R, R,R, RsR, R¢R, R R,
RgR, PR, P;'R;
are part of a pencil . However 0, = C —
{0, U 0,} is inequivalent to O,. The other

eight lines of the pencil meet C in 0,.

3 and d =n— 2 of an [n, k,d] code, the
code C converts to a set K of n points on the
projective plane PG (2, q).

The parameters n,k and d for k-arcs in
PG(2,q) up to 18 and the number e of
errors that can be corrected are given in
Table 16.

(k;2)-arc |n|k|d|e| (k;2)-arc n |k|d|e
(4;2)-arc | 43|21 (10;2)-arc |10 |3 | 8 |3
(5;2)-arc | 5|3 [3|1] (11;2)arc |11 3| 9 |4
(6;2)-arc | 6|3 |4 |1 (12;2)-arc |12 |3 |10 | 4
(7;2)-arc | 7|3 |5|2]| (13;2)arc |13 |3 |11 |5
(8;2)-arc |83 |6|2]| (14;2)arc |14 |3 |12 |5
(9;2)-arc |93 |7|3] (18;2)arc |18 |3 |16 |7

Table 16: The parameters for (k; 2)-arcs

detect d — 1 errors and correct

If C has minimum distance d, then it can

e = [(d — 1)/2] errors, where |m| denotes

the integer part of m:
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