On Projective Plane Over A Finite Field of Order Seventeen and its Application to Error-Correcting Codes

J.W.P. Hirschfeld * and Najm A.M. Al-seraji **
* School of Mathematical and Physical Sciences, University of Sussex, Brighton, United Kingdom, jwph@sussex.ac.uk
** Department of Mathematics, College of Science, Al-Mustansiriya University, Baghdad,Iraq najem_abdul@yahoo.com, 07711482379

Abstract

The aim of the paper is to classify certain geometric structures, called arcs. The main computing tool is the mathematical programming language GAP. In the plane $P G(2,17)$, the important arcs are called complete and are those that cannot be increased to a larger arc. So far, all arcs up to and including size eight have been classified, as have complete 10 -arcs, 11 -arcs, 12 -arcs, 13 -arcs and 14 -arcs. In the plane of order seventeen, the maximum size is eighteen. Each of these arcs gives rise to an error-correcting code that corrects the maximum possible number of errors for its length.

Key words: Arcs, Projective plane, codes, orbits, stabilizer groups.

1. INTRODUCTION:

A projective plane is an incidence structure of points and lines with the following properties.

- Every two points are incident with a unique line.
- Every two lines are incident with a unique point.
- There are four points, no three collinear.

A Desarguesian projective plane $P G(2, q)$ has as points one-dimensional subspaces and as lines two-dimensional subspaces of a three-dimensional vector
space over the finite field \mathbb{F}_{q} of q elements. A k-arc in $P G(2, q)$ is a set of k points no three of which are collinear. A k-arc is complete if it is not contained in a $(k+1)$ arc. A $(k ; 3)$-arc in $P G(2, q)$ is a set of k points in which no four points but some three points are collinear.

The main aims of this paper is to classify arcs of all sizes in projective plane $P G(2, q)$, and classify those arcs which are contained in a conic, each of these arcs gives rise to an error-correcting code that corrects the maximum possible number of error for its length.

Arcs in $P G(2, q)$ for $q=$ $2,3,4,5,7,8,9,11,13$ have been classified; (1).
We are looking at the plane of order seventeen, as it is the next in the sequence. A brief history, associated to any topic in mathematics is its history. Arcs were first introduced by (2) in connection with designs in statistics. Further development began with (3); he showed that every ($q+$ 1)-arc in $P G(2, q)$ is a conic. An important result is that of Ball, Blokhuis and Mazzocca showing that maximal arcs cannot exist in a plane of odd order. (4) found important applications of curves over finite fields to coding theory. As geometry over a finite field, it has been thoroughly studied (5).

An $(n, M, d)_{q}$ code C is a set of M words, each with n symbols taken from an alphabet of size q, such that any two words differ in at least d places. A code $(n, M, d)_{q}$ has the following desirable properties:

- Small n : fast transmission;
- Large M: many messages;
- Large d : correct many errors.

If the code is linear, it can more easily be used for encoding and decoding; in this case, $M=q^{k}$ for some positive integer k, the dimension of the code, and C is called an $[n, k, d]_{q}$ code. The main Coding Theory problem is to find codes optimizing one
parameter with the other two fixed. Mathematically, such a code can also be viewed as a set of n points in $P G(k-1, q)$ with at most $n-d$ points in a subspace of dimension $k-2$ for more details see (1), (6), (7), (8), (9).

2. PREVIOUS RESULTS

Definition(2.1): The set denoted by \mathbb{F}_{P}, with P prime, consists of the residue classes of the integers modulo P under the natural addition and multiplication.

Definition(2.2):Given a homogenous polynomial F in three variables x_{0}, x_{1}, x_{2} over \mathbb{F}_{q}, a curve \mathcal{F} is the set $\mathcal{F}=v(F)=$ $\{P(X): F(X)=0\}$

Where $P(X)$ is the point of $P G(2, q)$ represented by $X=\left(x_{0}, x_{1}, x_{2}\right)$. If F has degree three, that is,

$$
\begin{aligned}
F=a_{0} x_{0}{ }^{2} & +a_{1} x_{1}^{2}+a_{2} x_{2}^{2} \\
& +b_{2} x_{0} x_{1}+b_{1} x_{0} x_{2} \\
& +b_{0} x_{1} x_{2}
\end{aligned}
$$

Then \mathcal{F} is called a quadric. For q odd, the discriminant of a quadric \mathcal{F} is the determinant $\quad D=\left|\begin{array}{ccc}2 a_{0} & b_{2} & b_{1} \\ b_{2} & 2 a_{1} & b_{0} \\ b_{1} & b_{0} & 2 a_{2}\end{array}\right| \quad \mathrm{A}$ quadric \mathcal{F} is non-singular if its discriminant D is non-zero.

Definition(2.3): A conic C is a nonsingular quadric \mathcal{F}.

Definition(2.4): An $[n, k, d]_{q}$ code C is a subspace of $V(n, q)=\left(\mathbb{F}_{q}\right)^{n}$, where the
dimension of C is $\operatorname{dim} C=k$, and the minimum distance is $d(C)=d=\mathrm{min}$ $d(x, y)$.

Definition(2.5): For any $[n, k, d]_{q}$ code we have $d \leq n-k+1$.

Definition(2.6): Let λ be a root of f which irreducible polynomial. Then f is primitive if the smallest power s of λ such that $\lambda^{s}=1$ is $s=q^{n}-1$. It is subprimitive if the smallest power s of λ such that $\lambda^{s} \in$ \mathbb{F}_{q} is $s=q^{n-1}+\cdots+q+1$.

Definition(2.7): Denote by S and S^{*} two subspaces of $P G(n, K)$, A projectivity $\beta: S \rightarrow S^{*}$ is a bijection given by a matrix T, necessarily non-singular, where $P\left(X^{*}\right)=$ $P(X) \beta$ if $t X^{*}=X T$, with $t \in K$. Write $\beta=$ $M(T)$; then $\beta=M(\lambda T)$ for any λ in K. The group of projectivities of $P G(n, K)$ is denoted by $\operatorname{PGL}(n+1, K)$.

Definition(2.8): A group G acts on a set Λ if there is a map $\Lambda \times G \rightarrow \Lambda$ such that given $\mathrm{g}, \mathrm{g}^{\prime}$ elements in G and 1 its identity, then
a. $x 1=x$,
b. $(x g) \mathrm{g}^{\prime}=x\left(\mathrm{gg}^{\prime}\right)$ for any x in Λ.

Definition(2.9): The orbit of x in Λ under the action of G is the set $x \mathrm{G}=$ $\{x \mathrm{~g} \mid \mathrm{g} \in \mathrm{G}\}$.

Definition(2.10): The stabilizer of x in Λ under the action of G is the group

$$
\mathrm{G}_{x}=\{g \in G \mid x g=x\} .
$$

Definition(2.11): Let K be a k-arc and P a point of $P G(2, q) \backslash K$. Then if exactly i bisecants of K pass through P, then P is said to be a point of index i. The number of these points is denoted by c_{i}.

Lemma(2.12): The constants c_{i} of a $k-$ arc K in $P G(2, q)$ satisfy the following equations with the summation taken 0 to n for which $c_{i} \neq 0$:
$\sum c_{i}=q^{2}+q+1-k, \quad \ldots \quad 1$
$\sum i c_{i}=k(k-1)(q-1) / 2, \quad \ldots \quad 2$
$\sum i(i-1) c_{i} / 2=k(k-1)(k-2)(k-$ 3)/8.

3

3. Results and Applications

3.1 The algorithm to calculate \boldsymbol{k} -

$\operatorname{arcs}, \boldsymbol{k} \leq 18$

The strategy to compute the complete k arcs is the following.

- The way of calculating c_{0} for ($k-1$)-arcs is by listing the points not on the bisecants of the $(k-1)$-arcs.
- The points represented by the number c_{0} are separated into orbits.
- The k-arcs are constructed by adding one point from each orbit.
- For a given k-arc K, the set S of points not on the bisecants of K is found.
- If S is empty, then K is complete. Otherwise K is incomplete.
- All possible k-arcs from a given $(k-1)$-arcs are listed.
- The next step is to select the non-identical complete k-arcs among the total number constructed.
- Calculate the transformations between them. By use of The Fundamental Theorem of Projective Geometry, there is a unique projectivity of $P G(2, q)$ transforming four points no three on a line to any other four points no three on a line. Two k-arcs K_{1} and K_{2} are equivalent if $K_{1} \beta=K_{2}$ and β is given by a matrix T and $\beta=M(T)$ with $M(\lambda T)=M(T), \lambda \in \mathbb{F}_{17}\{0\}$.

3.2 Preliminary to $\operatorname{PG}(\mathbf{2}, \mathbf{1 7})$

In $P G(2, q)$, the projective plane of order 17, $\theta_{1}=18, \theta_{2}=307$, where

$$
\theta_{n}=|P G(n, q)|=\left(q^{n+1}-1\right) /(q-1) ;
$$

Hence we have 307 points, 307 lines, 18 points on each line and 18 lines passing through each point.
Let $P_{0}=(1,0,0)$, and $T=\left(\begin{array}{ccc}0 & 1 & 0 \\ 0 & 0 & 1 \\ 14 & 1 & 0\end{array}\right)$ be a non-singular matrix such that the points of $P G(2,17)$ are generated as following. $P_{i}=$
$P_{0} T^{i}, i=0, \ldots, 306$, such $P_{0}=(1,0,0)$, $P_{1}=(0,1,0), \quad P_{2}=(0,0,1), \ldots, P_{306}=$ $(16,0,0)$. We will write the points of $P G(2,17)$ in numeral forms as follows: $P_{i}=i, i=0, \ldots, 306, P_{307} \sim P_{0}$. The lines of $P G(2,17)$ are as follows:
$\ell_{1}=\{0,1,3,45,58,62,73,96,110,122,142$, $149,178,196,267,277,286,302\}$,
$\ell_{2}=\{1,2,4,46,59,63,74,97,111,123,143$, 150,179,197,268,278,287,303\},
$\ell_{307}=\{306,0,2,44,57,61,72,95,109,121$, 141,148,177,195,266,276,285,301\}.

3.3 Stabilizer of the frame

The stabilizer of any 4 -arc is the group of 24 projectivities found by shifting the 4 -arc to its 24 permutations. The frame points in $P G(2,17)$ are $0,1,2,253$. The two projectivities
$g_{1}=\left(\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1\end{array}\right) \quad$ and $\quad g_{2}=$ $\left(\begin{array}{ccc}0 & 16 & 0 \\ 0 & 0 & 16 \\ 1 & 1 & 1\end{array}\right)$ which generate $\boldsymbol{S}_{\mathbf{4}}$, the stabilizer of the frame, partitions the points in $P G(2,17)$ into 21 disjoint orbits.

3.4 The 5-arcs

Let K be a k-arc in $P G(2, q)$. For $k=4$, the equations in Lemma (2.12) become

$$
\begin{gathered}
c_{0}=(q-2)(q-3), \\
c_{1}=6(q-2), \\
c_{2}=3
\end{gathered}
$$

Another way to calculate c_{0} is by listing the points not on the bisecants of the 4 -arc. The points represented by the number c_{0} are separated into orbits. Then 5 -arcs are
constructed by adding one point from each orbit. This gives the following result.

Theorem 1: In $P G(2,17)$ there are precisely four projectively distinct 5 -arcs, given in Table 1.

Symbol	5-arc	Stabilizer
A_{1}	$\{0,1,2,253,6\}$	$\boldsymbol{Z}_{\mathbf{4}}$
A_{2}	$\{0,1,2,253,7\}$	$\boldsymbol{Z}_{\mathbf{2}}$
A_{3}	$\{0,1,2,253,9\}$	\boldsymbol{Z}_{2}
A_{4}	$\{0,1,2,253,11\}$	\boldsymbol{Z}_{2}

Table 1: The distinct 5-arcs

3.5 The 6-arcs

The number of the points on the bisecant of any 5 -arc is $L(5, q)=10 q-20$; that is, 150 for $q=17$. Hence there are $307-$ $150=157$ points of the plane not on the bisecant of any of the four 5 -arcs. Let K be a k-arc in $P G(2, q)$. For $k=5$, the equations in Lemma (2.12) become

$$
\begin{gathered}
c_{0}=(q-4)(q-5)+1, \\
c_{1}=10(q-4), \\
c_{2}=15
\end{gathered}
$$

Another way to calculate c_{0} is by listing the points not on the bisecants of the $5-\mathrm{arc}$. The points represented by the number c_{0} are separated into orbits. Then 6 -arcs are constructed by adding one point from each orbit. For a specific 5 -arc, points of index zero are divided into orbits by the stabilizer of that $5-\mathrm{arc}$. The points of index zero for every 5 -arc as a number of orbits with the size of the orbits in brackets are given in Table 2.

5-arc	c_{0}	Orbits
A_{1}	157	$36(4), 6(2), 1(1)$
A_{2}	157	$72(2), 13(1)$
A_{3}	157	$72(2), 13(1)$
A_{4}	157	$72(2), 13(1)$

Table 2: The orbits

So far, the number of 6 -arcs constructed is 295. The method to compute the transformations between the 6 -arcs is by use of The Fundamental Theorem of

Projective Geometry. This gives the following result.

Theorem 2: In $P G(2,17)$ there are precisely 74 projectively distinct 6 -arcs, the
numbers of 6 -arcs and their stabilizers are given in Table 3.

Stabilizer	\boldsymbol{I}	$\boldsymbol{Z}_{\mathbf{2}}$	$\boldsymbol{Z}_{\mathbf{3}}$	$\boldsymbol{Z}_{\mathbf{4}}$	$\boldsymbol{Z}_{\mathbf{2}} \times \boldsymbol{Z}_{\mathbf{2}}$	$\boldsymbol{S}_{\mathbf{3}}$	$\boldsymbol{S}_{\mathbf{4}}$	$\boldsymbol{D}_{\mathbf{6}}$	$\boldsymbol{A}_{\mathbf{4}}$
Number	32	16	9	3	2	7	1	1	3

Table 3: The stabilizers of 6-arcs

3.6 The 6-arcs on a conic

The ten distinct hexads (An unordered set of six points) on $P G(1,17)$ can be mapped to ten distinct 6 -arcs on a conic. If the points $U_{0}=(1,0,0), U_{1}=(0,1,0), U_{2}=(0,0,1)$ are on the conic, then the general equation of the conic reduces to the following:

$$
x_{0} x_{1}+a_{0} x_{0} x_{2}+a_{1} x_{1} x_{2}=0
$$

Therefore,

$$
\left(a_{0}, a_{0}\right)=
$$ $(-7,6),(-3,2),(-2,1),(-5,4)$ are the

coefficients of the equations of the conic containing the respective four 5 -arcs

$$
\begin{aligned}
& \left\{U_{0}, U_{1}, U_{2}, U_{3}, U_{4}\right\},\left\{U_{0}, U_{1}, U_{2}, U_{3}, U_{5}\right\}, \\
& \left\{U_{0}, U_{1}, U_{2}, U_{3}, U_{6}\right\},\left\{U_{0}, U_{1}, U_{2}, U_{3}, U_{7}\right\},
\end{aligned}
$$

Where

$$
\begin{gathered}
U_{3}=(1,1,1), U_{4}=(-8,-6,1), U_{5}= \\
(-8,4,1), U_{6}=(-8,-5,1), U_{7}=
\end{gathered}
$$

$$
(-7,6,1)
$$

Substituting the point of each 6 -arc in the corresponding conic shows the ten 6 -arcs on a conic as given in Table 4.

Symbol	Conic	6-arc	Stabilizer
B_{1}	$x_{0} x_{1}-7 x_{0} x_{2}+6 x_{1} x_{2}$	$\{0,1,2,253,6,13\}$	$\boldsymbol{Z}_{\mathbf{2}}$
B_{2}	$x_{0} x_{1}-7 x_{0} x_{2}+6 x_{1} x_{2}$	$\{0,1,2,253,6,41\}$	\boldsymbol{I}
B_{3}	$x_{0} x_{1}-7 x_{0} x_{2}+6 x_{1} x_{2}$	$\{0,1,2,253,6,84\}$	$\boldsymbol{Z}_{\mathbf{2}}$
B_{4}	$x_{0} x_{1}-7 x_{0} x_{2}+6 x_{1} x_{2}$	$\{0,1,2,253,6,269\}$	$\boldsymbol{S}_{\mathbf{4}}$
B_{5}	$x_{0} x_{1}-3 x_{0} x_{2}+2 x_{1} x_{2}$	$\{0,1,2,253,7,23\}$	$\boldsymbol{Z}_{\mathbf{2}}$
B_{6}	$x_{0} x_{1}-3 x_{0} x_{2}+2 x_{1} x_{2}$	$\{0,1,2,253,7,33\}$	$\boldsymbol{Z}_{\mathbf{2}} \times \boldsymbol{Z}_{\mathbf{2}}$
B_{7}	$x_{0} x_{1}-3 x_{0} x_{2}+2 x_{1} x_{2}$	$\{0,1,2,253,7,98\}$	$\boldsymbol{Z}_{\mathbf{2}}$
B_{8}	$x_{0} x_{1}-3 x_{0} x_{2}+2 x_{1} x_{2}$	$\{0,1,2,253,7,153\}$	$\boldsymbol{Z}_{\mathbf{2}} \times \boldsymbol{Z}_{\mathbf{2}}$
B_{9}	$x_{0} x_{1}-2 x_{0} x_{2}+x_{1} x_{2}$	$\{0,1,2,253,9,235\}$	$\boldsymbol{D}_{\mathbf{6}}$
B_{10}	$x_{0} x_{1}-5 x_{0} x_{2}+4 x_{1} x_{2}$	$\{0,1,2,253,11,182\}$	$\boldsymbol{S}_{\mathbf{3}}$

Table 4: The distinct 6 -arcs on a conic

3.7 The 7-arcs

Let K be a k-arc in $P G(2, q)$. For $k=6$, the equations in Lemma (2.12) become

$$
c_{0}=(q-7)^{2}+6-c_{3},
$$

$$
\begin{gathered}
c_{1}=3\left\{5(q-7)+c_{3}\right\}, \\
c_{2}=3\left\{15-c_{3}\right\}
\end{gathered}
$$

The constant c_{3} and hence c_{0}, c_{1} and c_{2} are calculated. Another way of calculating c_{0} is
by listing the points not on the bisecants of the $6-\mathrm{arc}$. The points represented by the number c_{0} are separated into orbits. Then 7arcs are constructed by adding one point from each orbit. This gives the following result.

Stabilizer	\boldsymbol{I}	$\boldsymbol{Z}_{\mathbf{2}}$	$\boldsymbol{S}_{\mathbf{3}}$	$\boldsymbol{Z}_{\mathbf{3}}$
Number	644	75	2	12

Table 5: The stabilizers of 7-arcs

3.8 The $\mathbf{7 - a r c s}$ on a conic

The ten distinct heptads (An unordered set of seven points) on $P G(1,17)$ can be

Substituting the points of each 7 -arc in the corresponding conic shows the ten 7 -arcs on a conic as given in Table 6. mapped to ten distinct 7 -arcs on a conic.

Symbol	Conic	7-arc	Stabilizer
C_{1}	$x_{0} x_{1}-7 x_{0} x_{2}+6 x_{1} x_{2}$	$B_{1} \cup\{41\}$	\boldsymbol{I}
C_{2}	$x_{0} x_{1}-7 x_{0} x_{2}+6 x_{1} x_{2}$	$B_{1} \cup\{84\}$	\boldsymbol{Z}_{2}
C_{3}	$x_{0} x_{1}-7 x_{0} x_{2}+6 x_{1} x_{2}$	$B_{1} \cup\{152\}$	\boldsymbol{Z}_{2}
C_{4}	$x_{0} x_{1}-7 x_{0} x_{2}+6 x_{1} x_{2}$	$B_{1} \cup\{167\}$	\boldsymbol{Z}_{2}
C_{5}	$x_{0} x_{1}-7 x_{0} x_{2}+6 x_{1} x_{2}$	$B_{1} \cup\{175\}$	\boldsymbol{I}
C_{6}	$x_{0} x_{1}-7 x_{0} x_{2}+6 x_{1} x_{2}$	$B_{2} \cup\{84\}$	\boldsymbol{I}
C_{7}	$x_{0} x_{1}-7 x_{0} x_{2}+6 x_{1} x_{2}$	$B_{2} \cup\{167\}$	\boldsymbol{Z}_{2}
C_{8}	$x_{0} x_{1}-7 x_{0} x_{2}+6 x_{1} x_{2}$	$B_{2} \cup\{175\}$	\boldsymbol{Z}_{2}
C_{9}	$x_{0} x_{1}-7 x_{0} x_{2}+6 x_{1} x_{2}$	$B_{2} \cup\{205\}$	\boldsymbol{Z}_{2}
C_{10}	$x_{0} x_{1}-3 x_{0} x_{2}+2 x_{1} x_{2}$	$B_{5} \cup\{33\}$	\boldsymbol{Z}_{2}

Table 6: The distinct 7-arcs on a conic

3.9 The 8-arcs

Let K be a k-arc in $P G(2, q)$. For $k=7$, the equations in Lemma (2.12) become

$$
\begin{gathered}
c_{0}=(q-10)^{2}+20-c_{3}, \\
c_{1}=3\left\{7(q-11)+c_{3}\right\}, \\
c_{2}=3\left\{35-c_{3}\right\} ;
\end{gathered}
$$

Theorem 3: In $P G(2,17)$ there are precisely 733 projectively distinct 7 -arcs, the numbers of 7 -arcs and their stabilizers are given in Table 5.

The constant c_{3} and hence c_{0}, c_{1} and c_{2} are calculated. Another way of calculating c_{0} is by listing the points not on the bisecants of the 7 -arc. The points represented by the number c_{0} are separated into orbits. Then 8arcs are constructed by adding one point
from each orbit. This gives the following result.
the numbers of 8 -arcs and their stabilizers are given in Table 7.

Theorem 4: In $P G(2,17)$ there are precisely 5441 projectively distinct 8 -arcs,

Stabilizer	\boldsymbol{I}	$\boldsymbol{Z}_{\mathbf{2}}$	$\boldsymbol{Z}_{\mathbf{4}}$	$\boldsymbol{D}_{\mathbf{4}}$	$\boldsymbol{D}_{\mathbf{8}}$	$\boldsymbol{Z}_{\mathbf{2}} \times \boldsymbol{Z}_{\mathbf{2}}$	$\boldsymbol{Z}_{\mathbf{8}} \rtimes \boldsymbol{Z}_{\mathbf{2}}$
Number	5027	389	4	3	1	16	1

Table 7: The stabilizers of 8-arcs

3.10 The 8-arcs on a conic

The seventeen distinct octads (An unordered set of eight points) on $P G(1,17)$
can be mapped to seventeen distinct 8 -arcs on a conic. The 8 -arcs in $P G(2,17)$ on a conic are given in Table 8.

Conic	8-arc	Stabilizer
$x_{0} x_{1}-7 x_{0} x_{2}+6 x_{1} x_{2}$	$C_{1} \cup\{84\}$	\boldsymbol{I}
$x_{0} x_{1}-7 x_{0} x_{2}+6 x_{1} x_{2}$	$C_{1} \cup\{135\}$	\boldsymbol{Z}_{2}
$x_{0} x_{1}-7 x_{0} x_{2}+6 x_{1} x_{2}$	$C_{1} \cup\{152\}$	\boldsymbol{I}
$x_{0} x_{1}-7 x_{0} x_{2}+6 x_{1} x_{2}$	$C_{1} \cup\{175\}$	\boldsymbol{Z}_{2}
$x_{0} x_{1}-7 x_{0} x_{2}+6 x_{1} x_{2}$	$C_{1} \cup\{185\}$	\boldsymbol{I}
$x_{0} x_{1}-7 x_{0} x_{2}+6 x_{1} x_{2}$	$C_{1} \cup\{205\}$	\boldsymbol{Z}_{2}
$x_{0} x_{1}-7 x_{0} x_{2}+6 x_{1} x_{2}$	$C_{1} \cup\{269\}$	$\boldsymbol{Z}_{2} \times \boldsymbol{Z}_{2}$
$x_{0} x_{1}-7 x_{0} x_{2}+6 x_{1} x_{2}$	$C_{2} \cup\{167\}$	\boldsymbol{Z}_{2}
$x_{0} x_{1}-7 x_{0} x_{2}+6 x_{1} x_{2}$	$C_{2} \cup\{175\}$	\boldsymbol{Z}_{2}
$x_{0} x_{1}-7 x_{0} x_{2}+6 x_{1} x_{2}$	$C_{3} \cup\{167\}$	$\boldsymbol{Z}_{2} \times \boldsymbol{Z}_{\mathbf{2}}$
$x_{0} x_{1}-7 x_{0} x_{2}+6 x_{1} x_{2}$	$C_{3} \cup\{175\}$	\boldsymbol{Z}_{2}
$x_{0} x_{1}-7 x_{0} x_{2}+6 x_{1} x_{2}$	$C_{4} \cup\{175\}$	\boldsymbol{I}
$x_{0} x_{1}-7 x_{0} x_{2}+6 x_{1} x_{2}$	$C_{4} \cup\{185\}$	$\boldsymbol{Z}_{\mathbf{2}}$
$x_{0} x_{1}-7 x_{0} x_{2}+6 x_{1} x_{2}$	$C_{5} \cup\{298\}$	$\boldsymbol{D}_{\mathbf{4}}$
$x_{0} x_{1}-7 x_{0} x_{2}+6 x_{1} x_{2}$	$C_{6} \cup\{135\}$	$\boldsymbol{Z}_{\mathbf{2}}$
$x_{0} x_{1}-7 x_{0} x_{2}+6 x_{1} x_{2}$	$C_{6} \cup\{175\}$	$\boldsymbol{Z}_{\mathbf{2}} \times \boldsymbol{Z}_{\mathbf{2}}$
$x_{0} x_{1}-3 x_{0} x_{2}+2 x_{1} x_{2}$	$C_{10} \cup\{240\}$	$\boldsymbol{D}_{\mathbf{8}}$

Table 8: The distinct 8 -arcs on a conic

3.11 The 9-arcs on a conic

The seventeen distinct nonads on $P G(1,17)$ can be mapped to seventeen distinct 9 -arcs
on a conic as given in Table 9. The 9-arcs all lie on the conic

$$
v\left(x_{0} x_{1}-7 x_{0} x_{2}+6 x_{1} x_{2}\right) .
$$

9-arc	Stabilizer	9-arc	Stabilizer	9-arc	Stabilizer
$E_{1} \cup\{135\}$	$\boldsymbol{Z}_{\mathbf{2}}$	$E_{1} \cup\{205\}$	\boldsymbol{I}	$E_{3} \cup\{269\}$	$\boldsymbol{S}_{\mathbf{3}}$
$E_{\mathbf{1}} \cup\{152\}$	$\boldsymbol{Z}_{\mathbf{3}}$	$E_{1} \cup\{269\}$	\boldsymbol{I}	$E_{\mathbf{4}} \cup\{187\}$	$\boldsymbol{Z}_{\mathbf{4}}$
$E_{\mathbf{1}} \cup\{167\}$	\boldsymbol{I}	$E_{1} \cup\{300\}$	\boldsymbol{I}	$E_{5} \cup\{269\}$	$\boldsymbol{D}_{\mathbf{9}}$
$E_{\mathbf{1}} \cup\{175\}$	$\boldsymbol{Z}_{\mathbf{2}}$	$E_{2} \cup\{187\}$	\boldsymbol{I}	$E_{6} \cup\{175\}$	$\boldsymbol{Z}_{\mathbf{2}}$
$E_{\mathbf{1}} \cup\{185\}$	$\boldsymbol{Z}_{\mathbf{2}}$	$E_{\mathbf{3}} \cup\{175\}$	\boldsymbol{I}	$E_{7} \cup\{300\}$	$\boldsymbol{Z}_{\mathbf{8}}$
$E_{\mathbf{1}} \cup\{187\}$	$\boldsymbol{Z}_{\mathbf{2}}$	$E_{3} \cup\{187\}$	$\boldsymbol{Z}_{\mathbf{2}}$		

Table 9: The distinct 9-arcs on a conic

Where,
$E_{1}=C_{1} \cup\{84\}, E_{2}=C_{1} \cup\{135\}$,
$E_{3}=C_{1} \cup\{152\}, E_{4}=C_{1} \cup\{185\}$,

3.12 The complete k-arcs, $k \geq 10$

From section (3.1), we have the following results.
$E_{5}=C_{2} \cup\{167\}, E_{6}=C_{3} \cup\{185\}, E_{7}=$ $C_{4} \cup\{185\}$.

Theorem 5: The numbers of projectively distinct complete k-arcs in $P G(2,17)$ for $k \geq 10$ are given in Table 10.

k	10	11	12	13	14	15	16	17	18
Number	560	2644	553	8	1	-	-	-	1

Table 10: The numbers of the complete k-arcs
The numbers of the complete k-arcs, $k=$ $10,11,12,13,14$ and their stabilizers are given in Table 11,12,13,14 and 15.

Stabilizer	\boldsymbol{I}	$\boldsymbol{Z}_{\mathbf{2}}$	$\boldsymbol{A}_{\mathbf{4}}$	$\boldsymbol{D}_{\mathbf{9}}$	$\boldsymbol{Z}_{\mathbf{3}}$	$\boldsymbol{Z}_{\mathbf{2}} \times \boldsymbol{Z}_{\mathbf{2}}$	$\boldsymbol{S}_{\mathbf{3}}$	$\boldsymbol{Z}_{\mathbf{4}}$	$\boldsymbol{Z}_{\mathbf{8}} \rtimes \boldsymbol{Z}_{\mathbf{2}}$	$\boldsymbol{Q}_{\mathbf{4}}$	$\boldsymbol{S}_{\mathbf{4}}$
Number	343	178	2	1	9	8	9	7	1	1	1

Table 11: The stabilizers of the complete 10-arcs

Let K_{1} be the complete 10 -arc with group isomorphic to $\boldsymbol{D}_{\mathbf{9}}$ in Table 9. Then $G\left(K_{1}\right)$ is generated by g_{1}, g_{2} where

$$
\begin{aligned}
& g_{1}=\left(\begin{array}{ccc}
0 & 0 & 16 \\
0 & 11 & 0 \\
15 & 0 & 0
\end{array}\right), \\
& g_{2}=\left(\begin{array}{ccc}
13 & 13 & 13 \\
6 & 13 & 12 \\
6 & 15 & 13
\end{array}\right) .
\end{aligned}
$$

Then $G\left(K_{1}\right)$ has the following orbits on K_{1} : one orbit M_{1} of size 9 and one orbit $M_{2}=$ $\{P\}$ of size 1 . Then K_{1} consists of M_{1} on conic \boldsymbol{C} and P not on \boldsymbol{C}. The number of the points on no bisecant of M_{1} is $c_{0}=19$. So P is not unique and we can select it from any of these ten points not on \boldsymbol{C}.

Let K_{2} be the complete 10 -arc with group isomorphic to $\boldsymbol{Z}_{\mathbf{8}} \rtimes \boldsymbol{Z}_{\mathbf{2}}$ in Table 9. Then $G\left(K_{2}\right)$ is generated by g_{1}, g_{2} where

$$
\begin{aligned}
g_{1} & =\left(\begin{array}{ccc}
0 & 0 & 1 \\
15 & 0 & 0 \\
13 & 3 & 4
\end{array}\right), \\
g_{2} & =\left(\begin{array}{ccc}
8 & 0 & 0 \\
14 & 5 & 16 \\
12 & 12 & 12
\end{array}\right) .
\end{aligned}
$$

Then $G\left(K_{2}\right)$ has the following orbits on K_{2} : one orbit of size 8 and one orbit of size 2 . The group $G\left(K_{2}\right)$ stabilizes a line containing the orbit of size two, and partitions the line into one orbit of size 8 , two of size 4 , and one orbit of size 2 .

Stabilizer	\boldsymbol{I}	$\boldsymbol{Z}_{\mathbf{2}}$
Number	2569	75

Table 12: The stabilizers of the complete 11-arcs

Stabilizer	\boldsymbol{I}	$\boldsymbol{Z}_{\mathbf{2}}$	$\boldsymbol{Z}_{\mathbf{3}}$	$\boldsymbol{Z}_{\mathbf{2}} \times \boldsymbol{Z}_{\mathbf{2}}$	$\boldsymbol{Z}_{\mathbf{4}}$	$\boldsymbol{S}_{\mathbf{3}}$	$\boldsymbol{D}_{\mathbf{4}}$	$\boldsymbol{D}_{\mathbf{6}}$	$\boldsymbol{S}_{\mathbf{4}}$
Number	337	152	17	18	1	20	2	3	3

Table 13: The stabilizers of the complete 12-arcs

Stabilizer	\boldsymbol{I}	$\boldsymbol{Z}_{\mathbf{2}}$	$\boldsymbol{Z}_{\mathbf{3}}$	$\boldsymbol{Z}_{\mathbf{4}}$	$\boldsymbol{S}_{\mathbf{3}}$
Number	1	4	1	1	1

Table 14: The stabilizers of the complete 13-arcs

Stabilizer	$\boldsymbol{D}_{\mathbf{4}}$
Number	1

Table 15: The stabilizers of the complete 14-arcs
Let K_{4} be the complete 14 -arc with group isomorphic to \boldsymbol{D}_{4} in Table 12. Then $G\left(K_{4}\right)$

$$
g_{2}=\left(\begin{array}{ccc}
11 & 1 & 15 \\
12 & 12 & 12 \\
0 & 0 & 2
\end{array}\right)
$$

is generated by g_{1}, g_{2} where

$$
g_{1}=\left(\begin{array}{ccc}
0 & 6 & 0 \\
3 & 0 & 0 \\
2 & 12 & 16
\end{array}\right)
$$

Then $G\left(K_{4}\right)$ has the following orbits on K_{4} : one orbit O_{4} of size 8 , one orbit O_{5} of size 4 and one orbit O_{1} of size 2 . The group $G\left(K_{4}\right)$
stabilizes a line ℓ containing O_{1} on a conic \boldsymbol{C}, and partitions the line ℓ into three orbits of size 4 and three orbits O_{1}, O_{2}, O_{3} of size 2. Then K_{4} consists of ten points on \boldsymbol{C}, two of them on ℓ, and eight points in $O_{4}=$ $\left\{R_{1}, R_{2}, R_{3}, R_{4}, R_{5}, R_{6}, R_{7}, R_{8}\right\}$ on \boldsymbol{C}. Let $Q_{1}, Q_{2}, Q_{3}, Q_{4}$ be the four points in O_{5} not on C. Let $O_{1}=\left\{P_{1}, P_{1}{ }^{\prime}\right\}, O_{2}=\left\{P_{2}, P_{2}{ }^{\prime}\right\}, O_{3}=$ $\left\{P_{3}, P_{3}{ }^{\prime}\right\}$ on ℓ, where

$$
\begin{gathered}
P_{2}=Q_{1} Q_{3} \cap \ell=Q_{2} Q_{4} \cap \ell, P_{2}^{\prime}= \\
Q_{1} Q_{4} \cap \ell=Q_{2} Q_{3} \cap \ell, P_{3}=Q_{1} Q_{2} \cap \ell, \\
P_{3}^{\prime}=Q_{3} Q_{4} \cap \ell .
\end{gathered}
$$

The tetrad $O_{1} \cup O_{2}$ is a harmonic (if $P_{1}, P_{2}, P_{3}, P_{4}$ are distinct points, then P_{1} and

3.13 Links with Coding Theory

From Definition (2.5) and (1), there is a natural one-to-one correspondence between linear $[n, k, n-k+1$] MDS code and n arcs in $P G(k-1, q)$. In the case that $k=$
P_{2} separate P_{3} and P_{4} harmonically if $\lambda=$ $\frac{\left(t_{1}-t_{3}\right)\left(t_{2}-t_{4}\right)}{\left(t_{1}-t_{4}\right)\left(t_{2}-t_{3}\right)}=-1$, with $t_{1}, t_{2}, t_{3}, t_{4}$ are the coordinates of $P_{1}, P_{2}, P_{3}, P_{4}$) and the tetrads $O_{1} \cup O_{3}, \quad O_{2} \cup O_{3}$ are neither harmonic nor equianharmonic (if $\lambda=\frac{1}{1-\lambda}$). The tangents at P_{1} and $P_{1}{ }^{\prime}$ to \boldsymbol{C} meet at R. The lines

$$
\begin{gathered}
R_{1} R, R_{2} R, R_{3} R, R_{4} R, R_{5} R, R_{6} R, R_{7} R, \\
R_{8} R, P_{1} R, P_{1}^{\prime} R ;
\end{gathered}
$$

are part of a pencil . However $O_{4}{ }^{\prime}=\boldsymbol{C}-$ $\left\{O_{2} \cup O_{4}\right\}$ is inequivalent to O_{4}. The other eight lines of the pencil meet \boldsymbol{C} in O_{4}.

3 and $d=n-2$ of an $[n, k, d]$ code, the code C converts to a set K of n points on the projective plane $P G(2, q)$.

The parameters n, k and d for k-arcs in $P G(2, q)$ up to 18 and the number e of errors that can be corrected are given in Table 16.

$(k ; 2)-\operatorname{arc}$	n	k	d	e	$(k ; 2)-\operatorname{arc}$	n	k	d	e
$(4 ; 2)-\operatorname{arc}$	4	3	2	1	$(10 ; 2)-\operatorname{arc}$	10	3	8	3
$(5 ; 2)-\operatorname{arc}$	5	3	3	1	$(11 ; 2)-\operatorname{arc}$	11	3	9	4
$(6 ; 2)-\operatorname{arc}$	6	3	4	1	$(12 ; 2)-\operatorname{arc}$	12	3	10	4
$(7 ; 2)-\operatorname{arc}$	7	3	5	2	$(13 ; 2)-\operatorname{arc}$	13	3	11	5
$(8 ; 2)-\operatorname{arc}$	8	3	6	2	$(14 ; 2)-\operatorname{arc}$	14	3	12	5
$(9 ; 2)-\operatorname{arc}$	9	3	7	3	$(18 ; 2)-\operatorname{arc}$	18	3	16	7

Table 16: The parameters for $(k ; 2)$-arcs

If C has minimum distance d, then it can detect $d-1$ errors and correct
$e=\lfloor(d-1) / 2\rfloor$ errors, where $\lfloor m\rfloor$ denotes the integer part of m :

d	1	2	3	4	5	6	7	8
e	0	0	1	1	2	2	3	3

ANKNOWLEDGMENTS

REFERENCES

(1) Hirschfeld J.W. P, 1998," Projective Geometries Over Finite Fields " second Edition, Oxford University Press, Oxford.
(2) Bose R.C, 1947," Mathematical theory of the symmetrical factorial design" Sankhya, 8:107-166.
(3) Segre B ,1954, "Sulle ovali nei piani lineari finiti." Atti Accad. Naz. Lincei Rend., 17:1-2.
(4) Goppa V. D, 1981, "Codes on algebraic curves" Soviet Math. Dokl., 24:170-172.
(5) Hirschfeld J.W. P, 2007, Korchmáros G and Torres F," Algebraic Curves

Over a Finite field" Oxford University Press, Oxford.

I would like to thank my supervisor, for his suggestions which help me to complete this work.
(6) Al-seraji N. A. M, 2010, " The Geometry Of The Plane Of Order Seventeen_ And Its Application To ErrorCorrecting Codes" Ph.D. Thesis, University of Sussex, UK.
(7) Ali A.H, 1993, "Classification of Arcs in Galois Plane of Order Thirteen" Ph.D. Thesis, University of Sussex.
(8) Hirschfeld J.W. P, D.R. Hughes, and J.A. Thas ,1991,"Advances in Finite Geometries and Designs" Oxford University Press, Oxford.
(9) Hirschfeld J.W. P, 1997,"Complete Arcs" Discrete Math., 174, 177-184.

الخلاصة

هدف البحث هو تصنيف أشكال هنسية ندعى بالأقواس. أن أدوات الحسابات الأساسية هي برمجة الرياضيات بلغة كاب. في المستوي من الرتبة السابعة عشر الأقواس المهمة تدعى بالكاملة والتي لا يمكن أن تكون متزايدة لأكبر فوس. كل الأقواس التي تحتوي الحجم الثامن تم تصنيفها. مثل الأقواس الكاملة من الحجم 10و 11و 12و13و14. في المسنوي من الرتبة السابعة عشر اكبر حجم هو ثمانية عشر . كل هذه الأقواس أعطت تصحيح اكبر عدد مككن من الأخطاء للرموز من نفس الطول.

