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Abstract 

The aim of the paper is to classify certain geometric structures, called arcs. The main computing 

tool is the mathematical programming language GAP. In the plane 𝑃𝐺(2,17), the important 

arcs are called complete and are those that cannot be increased to a larger arc. So far, all arcs 

up to and including size eight have been classified, as have complete 10-arcs, 11-arcs, 12-arcs, 

13-arcs and 14-arcs. In the plane of order seventeen, the maximum size is eighteen. Each of 

these arcs gives rise to an error-correcting code that corrects the maximum possible number of 

errors for its length. 
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1. INTRODUCTION: 

A projective plane is an incidence 

structure of points and lines with 

the following properties. 

• Every two points are 

incident with a unique line. 

• Every two lines are incident 

with a unique point. 

• There are four points, no 

three collinear. 

          A Desarguesian projective plane 

𝑃𝐺(2, 𝑞) has as points one-dimensional 

subspaces and as lines two-dimensional 

subspaces of a three-dimensional vector 

space over the finite field 𝔽𝑞 of 𝑞 elements. 

A 𝑘-arc in 𝑃𝐺(2, 𝑞) is a set of 𝑘 points no 

three of which are collinear. A 𝑘-arc is 

complete if it is not contained in a (𝑘 + 1)-

arc. A (𝑘; 3)-arc in 𝑃𝐺(2, 𝑞) is a set of 𝑘 

points in which no four points but some 

three points are collinear. 

       The main aims of this paper is to 

classify arcs of all sizes in projective plane  

𝑃𝐺(2, 𝑞), and classify those arcs which are 

contained in a conic, each of these arcs 

gives rise to an error-correcting code that 

corrects the maximum possible number of 

error for its length. 
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Arcs in 𝑃𝐺(2, 𝑞) for 𝑞 =

2, 3, 4, 5, 7, 8, 9, 11, 13 have been 

classified; (1).  

We are looking at the plane of order 

seventeen, as it is the next in the sequence. 

A brief history, associated to any topic in 

mathematics is its history. Arcs were first 

introduced by (2) in connection with 

designs in statistics. Further development 

began with (3); he showed that every (𝑞 +

1)-arc in 𝑃𝐺(2, 𝑞) is a conic. An important 

result is that of  Ball, Blokhuis and 

Mazzocca showing that maximal arcs 

cannot exist in a plane of odd order. (4) 

found important applications of curves over 

finite fields to coding theory. As geometry 

over a finite field, it has been thoroughly 

studied (5). 

An (𝑛, 𝑀, 𝑑)𝑞 code 𝐶 is a set of 𝑀 words, 

each with 𝑛 symbols taken from an alphabet 

of size 𝑞, such that any two words differ in 

at least 𝑑 places. A code (𝑛, 𝑀, 𝑑)𝑞 has the 

following desirable properties: 

• Small 𝑛: fast transmission; 

• Large 𝑀: many messages; 

• Large 𝑑: correct many errors. 

If the code is linear, it can more easily be 

used for encoding and decoding; in this 

case, 𝑀 = 𝑞𝑘 for some positive integer 𝑘, 

the dimension of the code, and  𝐶 is called 

an [𝑛, 𝑘, 𝑑]𝑞 code. The main Coding Theory 

problem is to find codes optimizing one 

parameter with the other two fixed. 

Mathematically, such a code can also be 

viewed as a set of 𝑛  points in 𝑃𝐺(𝑘 − 1, 𝑞) 

with at most 𝑛 − 𝑑 points in a subspace of 

dimension 𝑘 − 2  for more details see (1), 

(6), (7), (8), (9). 

 

2. PREVIOUS RESULTS 

Definition(2.1):The set denoted by 𝔽𝑃, 

with 𝑃 prime, consists of the residue classes 

of the integers modulo 𝑃 under the natural 

addition and multiplication. 

Definition(2.2):Given a homogenous 

polynomial 𝐹 in three variables 𝑥0, 𝑥1, 𝑥2 

over 𝔽𝑞 , a curve ℱ is the set ℱ = 𝜐(𝐹) =

{𝑃(𝑋): 𝐹(𝑋) = 0} 

Where 𝑃(𝑋) is the point of 𝑃𝐺(2, 𝑞) 

represented by 𝑋 = (𝑥0, 𝑥1, 𝑥2). 

If 𝐹 has degree three, that is, 

𝐹 = 𝑎0𝑥0
2 + 𝑎1𝑥1

2 + 𝑎2𝑥2
2

+ 𝑏2𝑥0𝑥1 + 𝑏1𝑥0𝑥2

+ 𝑏0𝑥1𝑥2, 

Then ℱ is called a quadric. For 𝑞 odd, the 

discriminant of a quadric ℱ is the 

determinant 𝐷 = |

2𝑎0 𝑏2 𝑏1

𝑏2 2𝑎1 𝑏0

𝑏1 𝑏0 2𝑎2

| A 

quadric ℱ is non-singular if its discriminant 

𝐷 is non-zero. 

Definition(2.3): A conic 𝑪 is a non-

singular quadric ℱ. 

Definition(2.4): An [𝑛, 𝑘, 𝑑]𝑞 code 𝐶 is 

a subspace of  𝑉(𝑛, 𝑞) = (𝔽𝑞)𝑛, where the 
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dimension of  𝐶 is dim 𝐶 = 𝑘, and the 

minimum distance is 𝑑(𝐶) = 𝑑 = min 

𝑑(𝑥, 𝑦). 

Definition(2.5): For any [𝑛, 𝑘, 𝑑]𝑞 code 

we have 𝑑 ≤ 𝑛 − 𝑘 + 1. 

Definition(2.6): Let 𝜆  be a root of 𝑓 

which irreducible polynomial . Then 𝑓 is 

primitive if the smallest power 𝑠 of 𝜆 such 

that 𝜆𝑠 = 1 is 𝑠 = 𝑞𝑛 − 1. It is subprimitive 

if the smallest power 𝑠 of 𝜆 such that 𝜆𝑠 ∈

𝔽𝑞 is 𝑠 = 𝑞𝑛−1 + ⋯ + 𝑞 + 1. 

Definition(2.7): Denote by 𝑆 and 𝑆∗ two 

subspaces of 𝑃𝐺(𝑛, 𝐾), A projectivity 

𝛽: 𝑆 → 𝑆∗ is a bijection given by a matrix 𝑇,  

necessarily non-singular, where 𝑃(𝑋∗) =

𝑃(𝑋)𝛽 if 𝑡𝑋∗ = 𝑋𝑇, with 𝑡 ∈ 𝐾. Write 𝛽 =

𝑀(𝑇); then 𝛽 = 𝑀(𝜆𝑇) for any 𝜆 in 𝐾. The 

group of projectivities of 𝑃𝐺(𝑛, 𝐾) is 

denoted by 𝑃𝐺𝐿(𝑛 + 1, 𝐾). 

Definition(2.8): A group 𝐺 acts on a set 

Λ if there is a map Λ×𝐺 → Λ such that given 

g, g′ elements in 𝐺 and 1 its identity, then 

a. 𝑥1 = 𝑥, 

b. (𝑥𝑔)g′ = 𝑥(gg′) for any 𝑥 

in Λ.     

Definition(2.9): The orbit of 𝑥 in Λ 

under the action of G is the set 𝑥G =

{𝑥g|g ∈ G}. 

Definition(2.10): The stabilizer of 𝑥 in 

Λ under the action of G is the group  

G𝑥 = {𝑔 ∈ 𝐺|𝑥𝑔 = 𝑥}. 

Definition(2.11): Let 𝐾 be a 𝑘 -arc and 

𝑃 a point of 𝑃𝐺(2, 𝑞)\𝐾. Then if exactly 𝑖 

bisecants of 𝐾 pass through 𝑃, then 𝑃 is 

said to be a point of index 𝑖. The number 

of these points is denoted by 𝑐𝑖. 

Lemma(2.12): The constants 𝑐𝑖 of a 𝑘 –

arc 𝐾 in 𝑃𝐺(2, 𝑞) satisfy the following 

equations with the summation taken 0 to 𝑛 

for which 𝑐𝑖 ≠ 0: 

∑ 𝑐𝑖 = 𝑞2 + 𝑞 + 1 − 𝑘,          …                1                                            

∑ 𝑖𝑐𝑖 = 𝑘(𝑘 − 1)(𝑞 − 1)/2,   …               2                                               

∑ 𝑖(𝑖 − 1)𝑐𝑖/2 = 𝑘(𝑘 − 1)(𝑘 − 2)(𝑘 −

3)/8.  

                                                …                3                                                     

3. Results and Applications 

3.1 The algorithm to calculate 𝒌-

arcs, 𝒌 ≤ 18 

The strategy to compute the complete 𝑘-

arcs is the following. 

• The way of calculating 𝑐0 for 

(𝑘 − 1)-arcs is by listing the 

points not on the bisecants of 

the (𝑘 − 1)-arcs. 

• The points represented by the 

number 𝑐0 are separated into 

orbits. 

• The 𝑘-arcs are constructed by 

adding one point from each 

orbit. 

• For a given 𝑘-arc 𝐾, the set 𝑆 of 

points not on the bisecants of 𝐾 

is found. 
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• If 𝑆 is empty, then 𝐾 is 

complete. Otherwise 𝐾 is 

incomplete. 

• All possible 𝑘-arcs from a 

given (𝑘 − 1)-arcs are listed. 

• The next step is to select the 

non-identical complete 𝑘-arcs 

among the total number 

constructed. 

• Calculate the transformations 

between them. By use of The 

Fundamental Theorem of 

Projective Geometry, there is a 

unique projectivity of 𝑃𝐺(2, 𝑞) 

transforming four points no 

three on a line to any other four 

points no three on a line. Two 

𝑘-arcs 𝐾1 and 𝐾2 are equivalent 

if 𝐾1𝛽 = 𝐾2 and 𝛽 is given by 

a matrix 𝑇 and 𝛽 = 𝑀(𝑇) with 

𝑀(𝜆𝑇) = 𝑀(𝑇) , 𝜆 ∈ 𝔽17{0}. 

3.2  Preliminary to 𝑷𝑮(𝟐, 𝟏𝟕) 

In 𝑃𝐺(2, 𝑞), the projective plane of order 

17, 𝜃1 = 18, 𝜃2 = 307, where  

𝜃𝑛 = |𝑃𝐺(𝑛, 𝑞)| = (𝑞𝑛+1 − 1)/(𝑞 − 1); 

Hence we have 307 points, 307 lines, 18 

points on each line and 18 lines passing 

through each point. 

Let 𝑃0 = (1,0,0), and 𝑇 = (
0 1 0
0 0 1

14 1 0
) be 

a non-singular matrix such that the points of  

𝑃𝐺(2,17) are generated as following. 𝑃𝑖 =

𝑃0𝑇𝑖, 𝑖 = 0, … ,306, such 𝑃0 = (1,0,0), 

𝑃1 = (0,1,0), 𝑃2 = (0,0,1), … , 𝑃306 =

(16,0,0). We will write the points of 

𝑃𝐺(2,17) in numeral forms as follows: 

𝑃𝑖 = 𝑖, 𝑖 = 0, … ,306, 𝑃307~𝑃0.The lines of 

𝑃𝐺(2,17) are as follows: 

ℓ1 = {0,1,3,45,58,62,73,96,110,122,142, 

149,178,196,267,277,286,302}, 

ℓ2 = {1,2,4,46,59,63,74,97,111,123,143, 

150,179,197,268,278,287,303}, 

⋮ 

ℓ307 = {306,0,2,44,57,61,72,95,109,121, 

141,148,177,195,266,276,285,301}. 

3.3 Stabilizer of the frame 

The stabilizer of any 4-arc is the group of 

24 projectivities found by shifting the 4-arc 

to its 24 permutations. The frame points in 

𝑃𝐺(2,17) are 0,1,2,253. The two 

projectivities 

 𝑔1 = (
0 1 0
1 0 0
0 0 1

) and 𝑔2 =

(
0 16 0
0 0 16
1 1 1

) which generate 𝑺𝟒, the 

stabilizer of the frame, partitions the points 

in 𝑃𝐺(2,17) into 21 disjoint orbits. 

3.4 The 5-arcs 

Let 𝐾 be a 𝑘-arc in 𝑃𝐺(2, 𝑞). For 𝑘 = 4, the 

equations in Lemma (2.12) become 

𝑐0 = (𝑞 − 2)(𝑞 − 3), 

𝑐1 = 6(𝑞 − 2), 

𝑐2 = 3; 
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Another way to calculate 𝑐0 is by listing the 

points not on the bisecants of the 4-arc. The 

points represented by the number 𝑐0 are 

separated into orbits. Then 5-arcs are 

constructed by adding one point from each 

orbit. This gives the following result. 

Theorem 1: In 𝑃𝐺(2,17) there are 

precisely four projectively distinct 5-arcs, 

given in Table 1. 

 

Symbol 5-arc Stabilizer 

𝐴1 {0,1,2,253,6} 𝒁𝟒 

𝐴2 {0,1,2,253,7} 𝒁𝟐 

𝐴3 {0,1,2,253,9} 𝒁𝟐 

𝐴4 {0,1,2,253,11} 𝒁𝟐 

Table 1: The distinct 5-arcs 

3.5 The 6-arcs 

The number of the points on the bisecant of 

any 5-arc is 𝐿(5, 𝑞) = 10𝑞 − 20; that is, 

150 for 𝑞 = 17. Hence there are 307-

150=157 points of the plane not on the 

bisecant of any of the four 5-arcs. Let 𝐾 be 

a 𝑘-arc in 𝑃𝐺(2, 𝑞). For 𝑘 = 5, the 

equations in Lemma (2.12) become 

𝑐0 = (𝑞 − 4)(𝑞 − 5) + 1, 

𝑐1 = 10(𝑞 − 4), 

𝑐2 = 15; 

Another way to calculate 𝑐0 is by listing the 

points not on the bisecants of the 5-arc. The 

points represented by the number 𝑐0 are 

separated into orbits. Then 6-arcs are 

constructed by adding one point from each 

orbit. For a specific 5-arc, points of index 

zero are divided into orbits by the stabilizer 

of that 5-arc. The points of index zero for 

every 5-arc as a number of orbits with the 

size of the orbits in brackets are given in 

Table 2. 

5-arc 𝑐0 Orbits 

𝐴1 157 36(4),6(2),1(1) 

𝐴2 157 72(2),13(1) 

𝐴3 157 72(2),13(1) 

𝐴4 157 72(2),13(1) 

Table 2: The orbits 

So far, the number of 6-arcs constructed is 

295. The method to compute the 

transformations between the 6-arcs is by 

use of The Fundamental Theorem of 

Projective Geometry. This gives the 

following result. 



J.W.P. Hirschfeld&N.A.M. Al-seraji                    On Projective Plane Over… 
 

162 
 

Theorem 2: In 𝑃𝐺(2,17) there are 

precisely 74 projectively distinct 6-arcs, the 

numbers of 6-arcs and their stabilizers are 

given in Table 3. 

Stabilizer 𝑰 𝒁𝟐 𝒁𝟑 𝒁𝟒 𝒁𝟐×𝒁𝟐 𝑺𝟑 𝑺𝟒 𝑫𝟔 𝑨𝟒 

Number 32 16 9 3 2 7 1 1 3 

Table 3: The stabilizers of 6-arcs 

3.6 The 6-arcs on a conic 

The ten distinct hexads (An unordered set 

of six points) on 𝑃𝐺(1,17) can be mapped 

to ten distinct 6-arcs on a conic. If the points  

𝑈0 = (1,0,0), 𝑈1 = (0,1,0), 𝑈2 = (0,0,1) 

are on the conic, then the general equation 

of the conic reduces to the following: 

𝑥0𝑥1 + 𝑎0𝑥0𝑥2 + 𝑎1𝑥1𝑥2 = 0 

Therefore, (𝑎0, 𝑎0) =

(−7,6), (−3,2), (−2,1), (−5,4) are the 

coefficients of the equations of the conic 

containing the respective four 5-arcs 

{𝑈0, 𝑈1, 𝑈2, 𝑈3, 𝑈4},{𝑈0, 𝑈1, 𝑈2, 𝑈3, 𝑈5}, 

{𝑈0, 𝑈1, 𝑈2, 𝑈3, 𝑈6}, {𝑈0, 𝑈1, 𝑈2, 𝑈3, 𝑈7}, 

Where 

𝑈3 = (1,1,1), 𝑈4 = (−8, −6,1), 𝑈5 =

(−8,4,1), 𝑈6 = (−8, −5,1), 𝑈7 =

(−7,6,1). 

Substituting the point of each 6-arc in the 

corresponding conic shows the ten 6-arcs 

on a conic as given in Table 4. 

Symbol Conic 6-arc Stabilizer 

𝐵1 𝑥0𝑥1 − 7𝑥0𝑥2 + 6𝑥1𝑥2 {0,1,2,253,6,13} 𝒁𝟐 

𝐵2 𝑥0𝑥1 − 7𝑥0𝑥2 + 6𝑥1𝑥2 {0,1,2,253,6,41} 𝑰 

𝐵3 𝑥0𝑥1 − 7𝑥0𝑥2 + 6𝑥1𝑥2 {0,1,2,253,6,84} 𝒁𝟐 

𝐵4 𝑥0𝑥1 − 7𝑥0𝑥2 + 6𝑥1𝑥2 {0,1,2,253,6,269} 𝑺𝟒 

𝐵5 𝑥0𝑥1 − 3𝑥0𝑥2 + 2𝑥1𝑥2 {0,1,2,253,7,23} 𝒁𝟐 

𝐵6 𝑥0𝑥1 − 3𝑥0𝑥2 + 2𝑥1𝑥2 {0,1,2,253,7,33} 𝒁𝟐×𝒁𝟐 

𝐵7 𝑥0𝑥1 − 3𝑥0𝑥2 + 2𝑥1𝑥2 {0,1,2,253,7,98} 𝒁𝟐 

𝐵8 𝑥0𝑥1 − 3𝑥0𝑥2 + 2𝑥1𝑥2 {0,1,2,253,7,153} 𝒁𝟐×𝒁𝟐 

𝐵9 𝑥0𝑥1 − 2𝑥0𝑥2 + 𝑥1𝑥2 {0,1,2,253,9,235} 𝑫𝟔 

𝐵10 𝑥0𝑥1 − 5𝑥0𝑥2 + 4𝑥1𝑥2 {0,1,2,253,11,182} 𝑺𝟑 

Table 4: The distinct 6-arcs on a conic 

 

3.7 The 7-arcs 

Let 𝐾 be a 𝑘-arc in 𝑃𝐺(2, 𝑞). For 𝑘 = 6, the 

equations in Lemma (2.12) become 

𝑐0 = (𝑞 − 7)2 + 6 − 𝑐3, 

𝑐1 = 3{5(𝑞 − 7) + 𝑐3}, 

𝑐2 = 3{15 − 𝑐3}; 

The constant 𝑐3and hence 𝑐0, 𝑐1 and  𝑐2are 

calculated. Another way of calculating 𝑐0 is 
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by listing the points not on the bisecants of 

the 6-arc. The points represented by the 

number 𝑐0 are separated into orbits. Then 7-

arcs are constructed by adding one point 

from each orbit. This gives the following 

result. 

Theorem 3: In 𝑃𝐺(2,17) there are 

precisely 733 projectively distinct 7-arcs, 

the numbers of 7-arcs and their stabilizers 

are given in Table 5. 

Stabilizer 𝑰 𝒁𝟐 𝑺𝟑 𝒁𝟑 

Number 644 75 2 12 

Table 5: The stabilizers of 7-arcs 

3.8 The 7-arcs on a conic 

The ten distinct heptads (An unordered set 

of seven points)  on 𝑃𝐺(1,17) can be 

mapped to ten distinct 7-arcs on a conic.  

 

Substituting the points of each 7-arc in the 

corresponding conic shows the ten 7-arcs 

on a conic as given in Table 6. 

 

Symbol Conic 7-arc Stabilizer 

𝐶1 𝑥0𝑥1 − 7𝑥0𝑥2 + 6𝑥1𝑥2 𝐵1 ∪ {41} 𝑰 

𝐶2 𝑥0𝑥1 − 7𝑥0𝑥2 + 6𝑥1𝑥2 𝐵1 ∪ {84} 𝒁𝟐 

𝐶3 𝑥0𝑥1 − 7𝑥0𝑥2 + 6𝑥1𝑥2 𝐵1 ∪ {152} 𝒁𝟐 

𝐶4 𝑥0𝑥1 − 7𝑥0𝑥2 + 6𝑥1𝑥2 𝐵1 ∪ {167} 𝒁𝟐 

𝐶5 𝑥0𝑥1 − 7𝑥0𝑥2 + 6𝑥1𝑥2 𝐵1 ∪ {175} 𝑰 

𝐶6 𝑥0𝑥1 − 7𝑥0𝑥2 + 6𝑥1𝑥2 𝐵2 ∪ {84} 𝑰 

𝐶7 𝑥0𝑥1 − 7𝑥0𝑥2 + 6𝑥1𝑥2 𝐵2 ∪ {167} 𝒁𝟐 

𝐶8 𝑥0𝑥1 − 7𝑥0𝑥2 + 6𝑥1𝑥2 𝐵2 ∪ {175} 𝒁𝟐 

𝐶9 𝑥0𝑥1 − 7𝑥0𝑥2 + 6𝑥1𝑥2 𝐵2 ∪ {205} 𝒁𝟐 

𝐶10 𝑥0𝑥1 − 3𝑥0𝑥2 + 2𝑥1𝑥2 𝐵5 ∪ {33} 𝒁𝟐 

Table 6: The distinct 7-arcs on a conic 

3.9 The 8-arcs 

Let 𝐾 be a 𝑘-arc in 𝑃𝐺(2, 𝑞). For 𝑘 = 7, the 

equations in Lemma (2.12) become 

𝑐0 = (𝑞 − 10)2 + 20 − 𝑐3, 

𝑐1 = 3{7(𝑞 − 11) + 𝑐3}, 

𝑐2 = 3{35 − 𝑐3}; 

The constant 𝑐3and hence 𝑐0, 𝑐1 and  𝑐2are 

calculated. Another way of calculating 𝑐0 is 

by listing the points not on the bisecants of 

the 7-arc. The points represented by the 

number 𝑐0 are separated into orbits. Then 8-

arcs are constructed by adding one point 
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from each orbit. This gives the following 

result. 

Theorem 4: In 𝑃𝐺(2,17) there are 

precisely 5441 projectively distinct 8-arcs, 

the numbers of 8-arcs and their stabilizers 

are given in Table 7. 

Stabilizer 𝑰 𝒁𝟐 𝒁𝟒 𝑫𝟒 𝑫𝟖 𝒁𝟐×𝒁𝟐 𝒁𝟖 ⋊ 𝒁𝟐 

Number 5027 389 4 3 1 16 1 

Table 7: The stabilizers of 8-arcs 

3.10 The 8-arcs on a conic 

The seventeen distinct octads ( An 

unordered set of eight points) on 𝑃𝐺(1,17) 

can be mapped to seventeen distinct 8-arcs 

on a conic. The 8-arcs in 𝑃𝐺(2,17) on a 

conic are given in Table 8. 

Conic 8-arc Stabilizer 

𝑥0𝑥1 − 7𝑥0𝑥2 + 6𝑥1𝑥2 𝐶1 ∪ {84} 𝑰 

𝑥0𝑥1 − 7𝑥0𝑥2 + 6𝑥1𝑥2 𝐶1 ∪ {135} 𝒁𝟐 

𝑥0𝑥1 − 7𝑥0𝑥2 + 6𝑥1𝑥2 𝐶1 ∪ {152} 𝑰 

𝑥0𝑥1 − 7𝑥0𝑥2 + 6𝑥1𝑥2 𝐶1 ∪ {175} 𝒁𝟐 

𝑥0𝑥1 − 7𝑥0𝑥2 + 6𝑥1𝑥2 𝐶1 ∪ {185} 𝑰 

𝑥0𝑥1 − 7𝑥0𝑥2 + 6𝑥1𝑥2 𝐶1 ∪ {205} 𝒁𝟐 

𝑥0𝑥1 − 7𝑥0𝑥2 + 6𝑥1𝑥2 𝐶1 ∪ {269} 𝒁𝟐×𝒁𝟐 

𝑥0𝑥1 − 7𝑥0𝑥2 + 6𝑥1𝑥2 𝐶2 ∪ {167} 𝒁𝟐 

𝑥0𝑥1 − 7𝑥0𝑥2 + 6𝑥1𝑥2 𝐶2 ∪ {175} 𝒁𝟐 

𝑥0𝑥1 − 7𝑥0𝑥2 + 6𝑥1𝑥2 𝐶3 ∪ {167} 𝒁𝟐×𝒁𝟐 

𝑥0𝑥1 − 7𝑥0𝑥2 + 6𝑥1𝑥2 𝐶3 ∪ {175} 𝒁𝟐 

𝑥0𝑥1 − 7𝑥0𝑥2 + 6𝑥1𝑥2 𝐶4 ∪ {175} 𝑰 

𝑥0𝑥1 − 7𝑥0𝑥2 + 6𝑥1𝑥2 𝐶4 ∪ {185} 𝒁𝟐 

𝑥0𝑥1 − 7𝑥0𝑥2 + 6𝑥1𝑥2 𝐶5 ∪ {298} 𝑫𝟒 

𝑥0𝑥1 − 7𝑥0𝑥2 + 6𝑥1𝑥2 𝐶6 ∪ {135} 𝒁𝟐 

𝑥0𝑥1 − 7𝑥0𝑥2 + 6𝑥1𝑥2 𝐶6 ∪ {175} 𝒁𝟐×𝒁𝟐 

𝑥0𝑥1 − 3𝑥0𝑥2 + 2𝑥1𝑥2 𝐶10 ∪ {240} 𝑫𝟖 

Table 8: The distinct 8-arcs on a conic 

3.11 The 9-arcs on a conic 

The seventeen distinct nonads on 𝑃𝐺(1,17) 

can be mapped to seventeen distinct 9-arcs 

on a conic as given in Table 9. The 9-arcs 

all lie on the conic  

𝜈(𝑥0𝑥1 − 7𝑥0𝑥2 + 6𝑥1𝑥2). 
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9-arc Stabilizer 9-arc Stabilizer 9-arc Stabilizer 

𝐸1 ∪ {135} 𝒁𝟐 𝐸1 ∪ {205} 𝑰 𝐸3 ∪ {269} 𝑺𝟑 

𝐸1 ∪ {152} 𝒁𝟑 𝐸1 ∪ {269} 𝑰 𝐸4 ∪ {187} 𝒁𝟒 

𝐸1 ∪ {167} 𝑰 𝐸1 ∪ {300} 𝑰 𝐸5 ∪ {269} 𝑫𝟗 

𝐸1 ∪ {175} 𝒁𝟐 𝐸2 ∪ {187} 𝑰 𝐸6 ∪ {175} 𝒁𝟐 

𝐸1 ∪ {185} 𝒁𝟐 𝐸3 ∪ {175} 𝑰 𝐸7 ∪ {300} 𝒁𝟖 

𝐸1 ∪ {187} 𝒁𝟐 𝐸3 ∪ {187} 𝒁𝟐   

Table 9: The distinct 9-arcs on a conic 

Where, 

𝐸1 = 𝐶1 ∪ {84},   𝐸2 = 𝐶1 ∪ {135}, 

𝐸3 = 𝐶1 ∪ {152}, 𝐸4 = 𝐶1 ∪ {185}, 

𝐸5 = 𝐶2 ∪ {167}, 𝐸6 = 𝐶3 ∪ {185},  𝐸7 =

𝐶4 ∪ {185}. 

 

3.12 The complete 𝑘-arcs, 𝑘 ≥ 10 

From section (3.1), we have the following 

results. 

Theorem 5: The numbers of projectively 

distinct complete 𝑘-arcs in 𝑃𝐺(2,17) for 

𝑘 ≥ 10 are given in Table 10. 

 

𝑘 10 11 12 13 14 15 16 17 18 

Number 560 2644 553 8 1 − − − 1 

Table 10: The numbers of the complete 𝑘-arcs 

The numbers of the complete 𝑘-arcs, 𝑘 =

10,11,12,13,14 and their stabilizers are 

given in Table 11,12,13,14 and 15. 

Stabilizer 𝑰 𝒁𝟐 𝑨𝟒 𝑫𝟗 𝒁𝟑 𝒁𝟐×𝒁𝟐 𝑺𝟑 𝒁𝟒 𝒁𝟖 ⋊ 𝒁𝟐 𝑸𝟒 𝑺𝟒 

Number 343 178 2 1 9 8 9 7 1 1 1 

Table 11: The stabilizers of the complete 10-arcs 

Let 𝐾1 be the complete 10-arc with group 

isomorphic to 𝑫𝟗 in Table 9. Then 𝐺(𝐾1) is 

generated by 𝑔1, 𝑔2 where  

𝑔1 = (
0 0 16
0 11 0

15 0 0
), 

𝑔2 = (
13 13 13
6 13 12
6 15 13

). 

 

Then 𝐺(𝐾1) has the following orbits on 𝐾1: 

one orbit 𝑀1 of size 9 and one orbit 𝑀2 =

{𝑃} of size 1. Then 𝐾1 consists of 𝑀1 on 

conic 𝑪 and 𝑃 not on 𝑪. The number of  the 

points on no bisecant of 𝑀1 is 𝑐0 = 19. So 

𝑃 is not unique and we can select it from 

any of these ten points not on 𝑪. 
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Let 𝐾2 be the complete 10-arc with group 

isomorphic to 𝒁𝟖 ⋊ 𝒁𝟐 in Table 9. Then 

𝐺(𝐾2) is generated by 𝑔1, 𝑔2 where  

𝑔1 = (
0 0 1

15 0 0
13 3 4

), 

𝑔2 = (
8 0 0

14 5 16
12 12 12

). 

Then 𝐺(𝐾2) has the following orbits on 𝐾2: 

one orbit of size 8 and one orbit of size 2. 

The group 𝐺(𝐾2) stabilizes a line 

containing the orbit of size two, and 

partitions the line into one orbit of size 8, 

two of size 4, and one orbit of size 2. 

Let 𝐾3 be the complete 10-arc with group 

isomorphic to 𝑺𝟒 in Table 9. Then 𝐺(𝐾3) is 

a generated by 𝑔1, 𝑔2 where  

𝑔1 = (
0 12 0

16 2 8
8 8 8

), 

𝑔2 = (
16 0 0
0 16 0

10 12 1
). 

 

Then 𝐺(𝐾3) has the following orbits on 

𝐾3: one orbit of size 6 and one orbit of size 

4. 

Stabilizer 𝑰 𝒁𝟐 

Number 2569 75 

Table 12: The stabilizers of the complete 11-arcs 

 

Stabilizer 𝑰 𝒁𝟐 𝒁𝟑 𝒁𝟐×𝒁𝟐 𝒁𝟒 𝑺𝟑 𝑫𝟒 𝑫𝟔 𝑺𝟒 

Number 337 152 17 18 1 20 2 3 3 

Table 13: The stabilizers of the complete 12-arcs 

Stabilizer 𝑰 𝒁𝟐 𝒁𝟑 𝒁𝟒 𝑺𝟑 

Number 1 4 1 1 1 

Table 14: The stabilizers of the complete 13-arcs 

Stabilizer 𝑫𝟒 

Number 1 

Table 15: The stabilizers of the complete 14-arcs 

Let 𝐾4 be the complete 14-arc with group 

isomorphic to 𝑫𝟒 in Table 12. Then 𝐺(𝐾4) 

is generated by 𝑔1, 𝑔2 where  

𝑔1 = (
0 6 0
3 0 0
2 12 16

), 

𝑔2 = (
11 1 15
12 12 12
0 0 2

). 

 

Then 𝐺(𝐾4) has the following orbits on 𝐾4: 

one orbit 𝑂4 of size 8, one orbit 𝑂5 of size 4 

and one orbit 𝑂1of size 2. The group 𝐺(𝐾4) 
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stabilizes a line ℓ containing 𝑂1on a conic 

𝑪, and partitions the line ℓ into three orbits 

of size 4 and three orbits 𝑂1, 𝑂2, 𝑂3 of size 

2. Then 𝐾4 consists of ten points on 𝑪, two 

of them on ℓ, and eight points in 𝑂4 =

{𝑅1, 𝑅2, 𝑅3, 𝑅4, 𝑅5, 𝑅6, 𝑅7, 𝑅8} on 𝑪. Let 

𝑄1, 𝑄2, 𝑄3, 𝑄4be the four points in 𝑂5 not on 

𝑪. Let 𝑂1 = {𝑃1, 𝑃1
′}, 𝑂2 = {𝑃2, 𝑃2

′},𝑂3 =

{𝑃3, 𝑃3
′} on ℓ, where  

𝑃2 = 𝑄1𝑄3 ∩ ℓ = 𝑄2𝑄4 ∩ ℓ, 𝑃2
′ =

𝑄1𝑄4 ∩ ℓ = 𝑄2𝑄3 ∩ ℓ, 𝑃3 = 𝑄1𝑄2 ∩ ℓ, 

𝑃3
′ = 𝑄3𝑄4 ∩ ℓ. 

The tetrad 𝑂1 ∪ 𝑂2 is a harmonic ( if 

𝑃1, 𝑃2, 𝑃3, 𝑃4are distinct points, then 𝑃1and 

𝑃2 separate 𝑃3and 𝑃4  harmonically if  𝜆 =

(𝑡1−𝑡3)(𝑡2−𝑡4)

(𝑡1−𝑡4)(𝑡2−𝑡3)
= −1 , with 𝑡1, 𝑡2, 𝑡3, 𝑡4  are 

the coordinates of 𝑃1, 𝑃2, 𝑃3, 𝑃4) and the 

tetrads 𝑂1 ∪ 𝑂3, 𝑂2 ∪ 𝑂3 are neither 

harmonic nor equianharmonic (if 𝜆 =
1

1−𝜆
 ). 

The tangents at 𝑃1 and 𝑃1
′ to 𝑪 meet at 𝑅. 

The lines 

𝑅1𝑅, 𝑅2𝑅, 𝑅3𝑅, 𝑅4𝑅, 𝑅5𝑅, 𝑅6𝑅, 𝑅7𝑅, 

𝑅8𝑅, 𝑃1𝑅, 𝑃1
′𝑅; 

 are part of a pencil . However 𝑂4
′ = 𝑪 −

{𝑂2 ∪ 𝑂4} is inequivalent to 𝑂4. The other 

eight lines of the pencil meet 𝑪 in 𝑂4. 

3.13  Links with Coding 

Theory 

From Definition (2.5) and (1), there is a 

natural one-to-one correspondence between 

linear [𝑛, 𝑘, 𝑛 − 𝑘 + 1] MDS code and 𝑛-

arcs in  𝑃𝐺(𝑘 − 1, 𝑞).  In the case that 𝑘 =

3 and 𝑑 = 𝑛 − 2 of an [𝑛, 𝑘, 𝑑] code, the 

code 𝐶 converts to a set 𝐾 of 𝑛 points on the 

projective plane 𝑃𝐺(2, 𝑞). 

The parameters 𝑛, 𝑘 and 𝑑 for 𝑘-arcs in 

𝑃𝐺(2, 𝑞) up to 18 and the number 𝑒 of 

errors that can be corrected are given in 

Table 16. 

 (𝑘; 2)-arc 𝑛 𝑘 𝑑 𝑒 (𝑘; 2)-arc 𝑛 𝑘 𝑑 𝑒 

(4; 2)-arc 

(5; 2)-arc 

(6; 2)-arc 

(7; 2)-arc 

(8; 2)-arc 

(9; 2)-arc  

4 

5 

6 

7 

8 

9 

 

3 

3 

3 

3 

3 

3 

 

2 

3 

4 

5 

6 

7 

 

1 

1 

1 

2 

2 

3 

 

(10; 2)-arc 

(11; 2)-arc 

(12; 2)-arc 

(13; 2)-arc 

(14; 2)-arc 

(18; 2)-arc 

  

10 

11 

12 

13 

14 

18 

 

3 

3 

3 

3 

3 

3 

 

8 

9 

10 

11 

12 

16 

 

3 

4 

4 

5 

5 

7 

Table 16: The parameters for (𝑘; 2)-arcs 

If 𝐶 has minimum distance 𝑑, then it can 

detect 𝑑 − 1 errors and correct  

𝑒 = ⌊(𝑑 − 1)/2⌋ errors, where ⌊𝑚⌋ denotes 

the integer part of 𝑚: 
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𝑑 1 2 3 4 5 6 7 8 

𝑒 0 0 1 1 2 2 3 3 
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من الرتبة السابعة عشرة و تطبيقاته لتصحيح أخطاء الرموز حول مستوي الاسقاط لحقل منتهي  

و نجم  عبد الزهرة السراجي **   جيمس هيرشفلد *   

 *   المملكة المتحدة، برايتن، جامعة سا سكس ، مدرسة علوم الرياضيات و الفيزياء.

 **  العراق ، بغداد ، الجامعة المستنصرية، كلية العلوم، قسم الرياضيات.

 الخلاصة
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هدف البحث هو تصنيف أشكال هندسية تدعى بالأقواس. أن أدوات الحسابات الأساسية هي برمجة الرياضيات بلغة كاب. 

في المستوي من الرتبة السابعة عشر الأقواس المهمة تدعى بالكاملة والتي لا يمكن أن تكون متزايدة لأكبر قوس. كل الأقواس 

. في المستوي من الرتبة 14و13و12و11و10الأقواس الكاملة من الحجم  التي تحتوي الحجم الثامن تم تصنيفها. مثل

السابعة عشر اكبر حجم هو ثمانية عشر. كل هذه الأقواس أعطت تصحيح اكبر عدد ممكن من الأخطاء للرموز من نفس 

 الطول.


