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Abstract
In this article, we have discussed a new application of alternating direction implicit

formulation of the differential quadrature method (ADI-DQM) (Al-Saif A.S.J. et al. 2011,2012)
.2 on Navier-Stokes equations . the weighting coefficient computing by Cosine expansion based.
Numerical results of one example, show that the present method has been high accuracy ,good
convergence comparing with using weighting coefficients is Lagrange interpolation polynomial.

:Cosine -based differential
quadrature method (CDQM),
Navier-Stokes equations, ADI,
accuracy.

1. Introduction

Key words

Consider the two-dimensional Navier-
Stokes equations:

6u+ 6u+ ou E)p_l_ 1 62u+62u
ot ' “ox Oy 0x Re\odx? 0y?
(x,y)eQ, t>0 (1.1a)

ov N ov N v E)p 0%v 6217
ac " Yox Y ay - Oy Re\dx? ay2
x,y)el, t>0 (1.1b)

6u

P 5 =0 (1.1¢)
d%p (’)zp (')u v
+ gre_ 2 _ 2 °v

ax? ( ) ( ) ay 0x
(1.1d)

the computational domain is taken as () =
{(x,y):a<x,y<b}
with initial condition

u(x’yl O) = @1(95’}’) :V(X.y; 0) = @z(X;J’)
(1.1e)
and the boundary conditions
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u(x,y,t) = f(x,y,¢)
v(x,y,0) =g (xy, t)} (x,y) €0Q
>0 (1.1d)

where Re is the Reynolds number , u and
v are velocity components and @4, @,, f and
g are the known functions . For a positive
integer n, let h = (b — a) / n denote the step
size of spatial space and At is the step size
with respect to time.
The stream function ¥ (x, y, t) is defined for
two- dimensional flows: the partial
derivatives of the stream function are linked
with the velocity components through the
relation:
g—f=—v, g—;’lj=—u (1.2)
The equation (1.1a) is differentiated with
respect to y and the second equation (1.1b) is
differentiated with respect to Then,
equation (1.1a) is subtracted from the
equation (1.1b) one, so that the pressure is
eliminated.
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Substituting the definition of vorticity w =

vy —u, Yields the vorticity transport
equation as:

ow ow ow 1 (0%w , 0*w
Srus i - (5E+5) =0

(1.3)
Substituting (1.2) in (1.3) we get :

we + wywx - wxwy = Rie (Wyx + wyy)
(1.4)
The Navier- Stokes equations are the
fundamental nonlinear partial differential
equations in almost every real situation that
describe the motion of fluid, i.e. liquids and
gases. These equations, named after Claude-
Louis Navier (1822) and George Gabriel
Stokes (1848) and these equations are one of
the most useful sets of equations because they
can be used to describe many different
engineering problems. The solution of these
equations describes the velocity of the fluid
at a given point in space and time, and is
called a velocity field. They may be used to
model weather, ocean currents, water flow in
a pipe, flow around an airfoil, and motion of
stars inside a galaxy, the design of aircraft
and cars, the study of blood flow, the design
of power stations, etc. Many researchers seek
the solution of the Navier- Stokes equations
such as & 4 The development of new
techniques from the standpoint of
computational efficiency and numerical
accuracy is of primal interest. Since it has
been developed, several researchers have
applied  successfully  the  differential
quadrature method to solve a variety of
problems in different fields of science and
engineering. In this work weighting
coefficients computing by Cosine expansion
based comparing with Lagrange
interpolation polynomial.
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2. Differential Quadrature Method

The differential quadrature is a numerical
technique used to solve the initial and
boundary value problems. This method was
proposed by Bellman in the early 70s . ®. The
essence of the method is that the partial
(ordinary) derivatives of a function with
respect to a variable in governing equation
are approximated by a weighted linear sum of
function values at all discrete points in that
direction, then the equation can be
transformed into a set of ordinary differential
equations or algebraic equations.

The first —order and the second —order
derivatives of a function w(x,y) at a point
x = x; along any line y = y; parallel to the
x —axis, can be approximated by DQM may
be written as :

N
ow
D | x=xi = z Agl?w(xk: y)
k=1
i=12,..,N (2.1)
aZ(D N )
W x=x; — ZAik w (X, y)
k=1
i=12,..,N (2.2)

The first —order and the second —order
derivatives of a function w(x,y) at a point
y = y; along any line x = x; parallel to the
y —axis, can be approximated by DQM may
be written as :

M
ow
a_ y=yj = Z Bj(ll)w(x' yl)
Y =1
i=12..M (2.3)
az(l) & )
a_yz y=yj = ZBﬂ w(x,y)
=1
j=12,..M (2.4)
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where Af and BY are the respective

weighting coefficients of the first order
derivatives  with  respect to xand
() 2
A;. and le

y respectively are the

respective weighting coefficients of the
second order derivatives with respect to
x and y respectively, such that ©,

@ _ —ap(x;)sinx;

ik (cosx; — cosxy)p(xx)
for i#k (2.5)

N

1 _ 1)
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k=1,i%k
2 « sinx;

@) _ 4, (1 i '
A = i (ZA” * COSX; — COSX}, e COtxl)
for i#k (2.7)

N

@ _ 2
A =- A (2.8)

k=1,i%k

Where  «=-=  and p(x)=
[TR=1ixk(cosx; — cosx) , In the same
procedure can by written Bj(ll)and Bj(lz)

By differential quadrature method, we
approximate the partial derivatives of the
equation(1.4). Using equations (2.1) , (2.2)
,(2.3) and (2.4) in equation (1.4), we obtain
the system of ordinary differential equation
as:

%‘ +Z"’y A(l)w"f zlp’fuB(l)
o=

2 2
(Z Agk)wk] + Z Bj(l dwi)

Approximation the first-order derivatives
with respect to the temporal variable in the

(2.9)
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equation (2.9) by using the forward
differences and arrangement the terms of
equation (2.9) ,we obtain the system of
algebraic equation as:

n+1

—
Wij Wy +§ (1/)y" 4D _

§ (1)
(lpxl] jl +

3. Alternating Direction Technique

of the DQM

The alternating direction implicit
technique was introduced in the mid-50s by
Peaceman and Rachford  for solving
equations, which result from finite difference
discretization ~ of  partial  differential
equations (PDEs). From iterative method’s
perspective, ADI method can be considered
as special relaxation method, where a big
system is simplified into a number of smaller
systems such that each of them can be solved
efficiently and the solution of the whole
system is got from the solutions of the sub-
systems in an iterative way. Using
alternating direction implicit method into
equation (2.10), we get the systems of
algebraic equations in the form:

1
(1)
+ z (wyz ik

B(Z))w;; =0 (2.10)
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2
Z(‘/’xu zBﬁl) B( N+t = 0

Formula (3.1) is used to compute
function values at all interval mesh points
along rows and known as horizontal traverse
or x —sweep. While, Formula (3.2) is used
to compute function values at all interval
mesh points along columns and known as
vertical traverse or y —sweep.

(3.2)

4. Numerical

Discussion

In this section, we apply ADI-CDQM and
ADI-DQM on one test problem which are
also considered by other researchers.

Experiments and

Problem @
The exact solutions to the equation (1.4)
can be written as:

2B, 2  Rec
_ (x+y+ct+&y)
) rt - 2
wlxy.t) Rec + Rec
(4.1)
Py, t) = — [a 25
ad (Re)*c2 Rec
2
+ Rece 2 (x+y+ct+fo)] (4.2)

The boundary condition can be obtained
easily from (4.1) by using x,y = 0, 1. Inthis
problem, we found numerical results for w
and using equally spaced grid points. In
Tables (1,...,4) we shows the errors obtained
in solving problem with the ADI-DQM by
using Weighting coefficients are Lagrange
interpolated  polynomials and Cosine
expansion based at t=1, t=0.1, At = 0.001 ,
Re = 10,100 and x,y € [0, 1] for different
values of h.. In Figs. (1) and (2) we shows the
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exact and approximate solutions for t = 0.1,
At = 0.001 and Re = 10,100 respectively.
The numerical results given in tables (1,...,4)
confirm that ADI-DQM by using weighting
coefficients Cosine expansion based has
been , high accuracy, good convergence
compare with weighting coefficients
Lagrange interpolated polynomials.

Table 1. Errors obtained by ADI-DQM for
problem with t=0.1, At = 0.001,¢, =0
Re=10and By=c=0.1

Max|error| for the w by ADI-
\ DQM with weighting coefficients
is
NxM  |Cosine Lagrange
expansion based | interpolated
(ADI-CDQM) polynomials
(ADI-DQM)
5%5 1.757778E-08 | 3.564035E-08
10x10 |1.265919E-08 | 1.353973E-07
15x15 1.163422E-08 | 2.450875E-07

Table 2. Errors obtained by ADI-DQM for
problem with t=0.1, At = 0.001,&, =0
Re =100 and By =c=0.1

Max|error| for the w by ADI-
\ DQM with weighting coefficients
is
NxM  |Cosine Lagrange
expansion based | interpolated
(ADI-CDQM) polynomials
(ADI-DQM)
5%5 1.565777E-06 | 1.485690E-06
10x10 |4.703395E-08 | 1.212858E-07
15x15 4.387702E-08 | 1.173604E-07
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Table 3. Errors obtained by ADI-DQM for

problem with t=1, At = 0.001,¢&, =0
Re=10and By, =c=0.1
Max|error| for the w by ADI-

™

DQM with weighting coefficients W)
is
NxM  |Cosine Lagrange 00
expansion based | interpolated
(ADI-CDQM) polynomials
(ADI-DQM)
5%5 1.743789E-06 | 1.895389E-06
10x10 [1.314255E-06 | 1.965212E-06
15x15 1.213379E-06 2.216335E-06

Table 4. Errors obtained by ADI-DQM for
problem with t=1, At = 0.001,¢&, =0
Re =100and B, =c=0.1

™

IS

Max|error| for the w by ADI-
DQM with weighting coefficients

NxM  |Cosine Lagrange
expansion based | interpolated
(ADI-CDQM) polynomials
(ADI-DQM)
5%5 2.498984E-04 | 2.499745E-04
10x10 |1.553376E-05 | 1.582487E-05
15x15 7.024219E-06 | 9.673604E-06

c. ADI-DQM 10-point ,Re=10
Fig. 1 Exact and approximate solution of

the problem with, t=0.1 Re = 10 and At =
0.001
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wix,y,

c. ADI-DQM 10-point ,Re=100

Fig. 2 Exact and approximate solution of
the problem with, t=0.1 Re = 100 and
At = 0.001

7. Conclusions

In this work, we employed the ADI-DQM by
using weighting coefficients are Lagrange
interpolated  polynomials and Cosine
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expansion based. The methods applied for
the solution of the Navier-Stokes equations in
two-dimension. The numerical results show
that the Cosine expansion based has the
higher accuracy and convergence comparing
with Lagrange interpolated polynomials. The
accuracy of the method depends on the
number and type of grid points chosen for
DQM.

The stability of the DQM applied depends on
the eigenvalues of differential quadrature
discretization matrices. These eigenvalues in
turn vary much depend on the distribution of
grid points.

The results, show that is of high accuracy can
be obtained if the number of grid points is
large, while the stability requires the inverse.
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