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Abstract

In this paper, the concepts of the property(S), property(PS) and the converse

autocontinuity from below of an intuitionistic fuzzy measure on an intuitionistic fuzzy

o — algebra of an intuitionistic fuzzy sets will be introduced, and we proved Riesz’s

Theorem and three forms of Riesz’sTheorem for a sequence of measurable functions

on an intuitionistic fuzzy o —algebra.
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1-Introduction

The concept of fuzzy measure defined
on a classical o —algebra, were first
Some

proposed by  Sugenoin®.

structural characteristics of fuzzy
measure were introduced and discussed
by Wang®. Ageneralization of fuzzy
measure were established on fuzzy sets
by Qiao®, and the Lebesgu's theorem
and Riesz's theorem for a sequence of
measurable functions had been proved
on fuzzy c-algebra of fuzzy set. In 1996
,L.Jun and M. Yasuda® show that the
Egoroff's theorem for a sequence of
fuzzy measurable functions also holds
Also

on fuzzy o-algebra.
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they®introduced the concept of
converse autocontinuity of set function
and they discussed the relationship
between the convergence in measure
and the convergence pseudo in
measure.
Many authors defined new types of
measures ,Adrain 1. Ban® one of the
authors who defined an intuitionistic
fuzzy measure on an intuitionistic fuzzy
o — algebra Aon an intuitionistic fuzzy
sets. The notion of intuitionistic fuzzy
sets introduced by Atanassov(”) in 1983,
as a generalization of the notion of
fuzzy sets which introduced by Zadeh®
in 1965.
In this paper , we will prove Riesz’s
theorem and three forms of this theorem
for a sequence of intuitionistic fuzzy

measurable functions on an
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intuitionistic fuzzy c-algebra by using
the property(S)
the

concepts  of

property(PS) and converse
autocontinuity from below of an

intuitionistic fuzzy measure.

2- Intuitionistic fuzzy measure

In this section , we recall some
definitions which will be used for this
work .

Definition(2.1)®:

Let X be a non-empty set and let /
be the closed interval [0,1] of the real
line . A fuzzy set u in X is characterized
by membership function u: X — I,
which associates with each point x € X
its grade or degree of membership

u(x) € [0,1] .
Definition(2.2):

Let X be a non-empty set. An
intuitionistic fuzzy set (IFS) A is an
object having the form:

A={(x, us(x),v4(x)), x € X}, where the
functions p,: X — 1 and vy X — 1
denote the degree of membership and
the degree of non-membership of each
element x€X to the set A,
respectively, and

0 < puy(x)+v,(x) < 1foreach x € X.
Definition(2.3)®):

={(x,0,1),x € X}0

={(x,1,0),x € X}1
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are the intuitionistic fuzzy sets
corresponding to empty set and the
entire universe respectively .
Note :Every fuzzy set A on a non-empty
set X is obviously an IFS having the

form {{x, ua (%), 1 — pa(x)), x € X3.
Definition(2.4):

Let A be a subset of a set, we

define the intuitionistic characteristic

function of A as follows:

i
IXA = {6 )

Definition(2.5)(710);
Let X be a non-empty set and let A

ifxeA
ifxgA

and B are IFSs in the form
A={{x, ua(x), v4(x)), x € X},
B={{(x, ug (x), vg(x)),x € X} .
Then:
1) A < Bifand only if u,(x) < ug(x)
and v, (x) = vg(x) forall x € X.
2) A= BifandonlyifAS Band B <
A.
3)AC = {{x, va(x), pa(x)), x € X} .
4)A N B = {minfu,(x), ug(x)},
max{vs(x),vg(x)},x € X}
5) AU B = {max{u,(x), pp(x)},
min{v,(x),vg(x)},x € X}
6)A/B = AN BC.
Definition(2.6):

Let {A;,i € J} be an arbitrary
family of IFSs in X, then
DN A; = {(x,
A ta, (%) , Vi v4,(x)), x € X}
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2)U;4A; =
{(x'viﬂAi(x)'/\i vy,(x)), x € X}
Definition(2.7)®):

An intuitionistic fuzzy c-algebra
(o-field) on X # @ is a family A of
IFSs in X satisfying the properties :
1)I€A;

2) If A € A thisimplies that A° € A;
3) If(A)nen S A, then
Upen Ay, € A

The pair (X, A) is called an
intuitionistic fuzzy measurable space.
Example(2.8)©):

LetA={<x, uy(x),v,(x)>x € X} €
IFSs . Let
Qy ={x €X; pa(x) > 0},
Ay ={x €X; vy(x) > 0}and
N = {A € IFS(X); Qqor Ayis a finite
or countable}, then the family N of
IFSs is an intuitionistic fuzzy
o-algebra.
Definition(2.9)®):

Let A be an IF c-algebra in X. A
function 7i: A — [0, ] is said to be
an intuitionistic fuzzy measure if it

satisfies the following conditions:
1) m(0) = 0;

2) Forany A,B € A and A € B this
implies thatm (A4) < m(B).

The intuitionistic fuzzy measure i is
called o-additive if M(UpeyAn) =
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ZnEN m(An) for
(A, nen OF pairwise disjoint IFSs in A.

The triple (X , A, ) is called

every sequence

intuitionistic fuzzy measure space.
Definition(2.10):
The intuitionistic fuzzy measure m is
called :
1) Finite if Ai(1)<oo , and infinite if
ﬁi(i)Zoo .
2) Finitely additive if 7(A U B)
=m(A)+mi(B).
Example(2.11) ©):
The function 7ii: A — [0, o]

defined by

) =2 ) (14 (8) + 1= 0,x)

x€eX
for A={<x, us(x),v,(x)> x € X}EA
, is a o-additive intuitionistic fuzzy
measure.
Definition(2.12):
Let (X,A ) be an intuitionistic fuzzy
measurable  space. An intuitionistic
fuzzy measure fi: A — [0, 0] is said
to be:
1) Double asymptotic null- additive
if m(A,UB,) —0
whenever {4} c A , {Bptc A ,
m(4,,) — 0and m(B,,) — 0.

( n,m-0)

2) Have property (S)
(A)neny €A |, lim Mi(4,) = 0, there
n—-oo

if for any

exists a subsequence {4,,} of {A,}

such that M (Nyp=; Ug=pnAn,) = 0.
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3) Have property (PS) if for any
(A nenEAWIth lim Ai(4,) = 0,
n—-oo

there exists a subsequence {4, } of
{A,,} such that

A [ Ny Uy Any) = 11i(A)
4)  Converse-autocontinuous
below , if forany A € A, {B,} € AN
A and M(B,) — Mi(A),
M(A/B,) — 0.

5) Weakly-null-countable additive if
m(U2, 4;) =0, whenever A; € A
with 7i(4;) = 0.

from

then

3-Main result
In this section , we introduced the
definitions of the convergence almost
everywhere and the convergence in
proved Riesz’s

measure and we

theorem and three forms of this theorem

Definition(3.1):

Let (X,.A ,m ) be an intuitionistic fuzzy
measure space andf : X — [0, 0] be a
IS an

function, we say that f

intuitionistic fuzzy real-valued

measurable function on an IF c-algebra
A if  Ixe,€A , where F,=
{x: f(x) = a}and

1, ifx€F
Ixe, == l.fx o
0, if x €F,
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Let Mdenoted the collection of all

intuitionistic fuzzy real-valued
measurable functions on (X,A ).

Definition(3.2):

letfeM, A€ Aand {f,n=>1} S

M we say that:

1) {fn}converges to f everywhere on A

and denote it by fnif on A if there
exists a subset D € X with Iyp € A
such that {f,,} converges to f on D and

A C Iyp.
2){fuJconverges to  f  almost

everywhere on A and denote it by f,

(Eif on A if there exists asubset D € X
with Iyp € Aand Ai(Iyp) =0 such
that {f,,} converges to f everywhere on
AN Iyg.

3){f.Jconverges to f pseudo-almost

everywhere on A and denote it by

fn&fon/l if there exists D c X
withly, € A andmi(A N Ix5) =mi(A)
and {f,,} converges to f everywhere on
AnNIys.

Definition(3.3):

Letf eM ,{fp,n=1} S Mand €
A, we say that:

1) {f,,Jconverges to f in measure #i on

A and denote it by f, ks fonA, if for
any € >0, when n — oo, we have
(AN X peifuo-rlz ) — 0-

2) {fn}convergesto f pseudo in

measure m on A and denote it by
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In @ fonA, if forany e> 0,

when n—oo, we have

M(A N X 10 G01< @) — (A,
Theorem(3.4):

Let{fo,f,n=1}c M;f, g€
M,A € A and A is weakly-null-
countable additive:

1-1f £, E{fand fn E{g on A, then
f =g a.eonA.

2-1f f, Eﬁfon Aand g intuitionistic
fuzzy real-valued measurablefunction

suchthat f = g a.e. on A, then f,
a.e.
— g on A.

3- Iff, Eifon Aand g, is a sequence
of an intuitionistic fuzzy real-valued

measurable functions such that f,, =

gn a.e.on A, then g, a;eif on A.

Proof:

1- Since f, Cif on A, there exists a

subset D € X with Iy, € A and

m(lyp) = 0 such that £, if on
AN Iyp.

=thereexists H € X with Iy, € A
such that f,, converges to f on Hand
ANIy; clyy.

Since f, Eigon A, then there exists a

subset N € X with Iyy € A and

m(Iyy) = 0 such that f, ig on
ANlyy.
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= thereexists M S X with Iy, € A

such that f,, converges to g on M and

ANIyy € lyy.

Let E=Ixp U Ixy = IXpun

=E € A.

Since m is weakly-null-countable

additive =m(E) = 0.

Since f, convergesto f on H

=f(x) = f(x) Vx €H

andf, convergesto g on M

SfHhx) = gkx), VxeM

=VxeEHNM, f(x)=_g(x)

=f=gonHNM

Since AnIyfclyyandAnliyy c

Ixm

=ANnIxyp)N(ANnIyy) Clyyn

Ixm

=AN (Ixp Vlxy)©
=ANE°CIlyyny

Therefore, f =g e.on AN E°.

SinceDUN c X and m(Iypyy) = 0.

So,f = g a.e. on A.

2- Since f, Eif on A, there exists a

subset D € X with Iy, € A and

m(Iyp) = 0 such that £, if on
AN Iys.

=thereexists H € X withIyy € A
such that f,, converges to f on Hand
ANy clyy.

Since f = g a.e.on A, then there

exists asubset N € X with Iyy €
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Aand Mi(Iyy) = 0 suchthat f = ge.

OnA N Iyy.
=there exists M S X with Iy, € A
suchthat f =gonMand Anlyy c
Ixy.
Let E=Ixp U Ixy =IXpun
=E € A.
Since m is weakly-null-countable
additive =m(E) = 0.
Since f,, convergesto f on H
=f(x) = f(x),Vx €H
andf = gon M=f(x) = g(x),Vx €
M
=Vx e HNM,f,(x) — g(x)
=f, = gonHNM.
Since AnIyf < lyyand

ANIyg clyy
=ANnIxyp)N(ANnIyy) S lyyNn
Ixm
=ANE° Clyynm
Therefore ,f;, i')g onANE°.

Sincem(E) = 0,0 f, Eig on A.

3-Since f, Cif on A, there exists a

subset D € X with Iy, € A and

m(Iyp) = 0 such that f, if on
AN Iys.

=thereexists H € X withIyy € A
such that f,, converges to f on Hand
ANlIys clyy.

Since f,, = g, a.e.on A, then there

exist a sequence {E,}X withly; €
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A and M(Iyg, ) =0foralln>1
such that f,, = gn e. on AN Ix(g, .
=there exist M, € X with Ixy, € A
foralln > 1 such that f, = g, on

n?{;l Mnand AN IXG??:lEn C

IXﬂ??:l Mp*

—1En

=Ixp U (U )(En)
n=1

= € Aand = IXy%_, puEy)
since m is weakly-null-countable
additive =>m(C) = 0.

Since f, convergesto f on H
=fa(x) — f(x)Vx € Handf,, = gy,
on Ny, M,

=f(x) = gn(x)Vx € NyZy My,
=gn(x) = f(0)Vx € H N (Np=g My,
)=Nn=1(H N My)

Thus, g, — fon Ny—,(H N M,,).
Since Anlyp c Iyyand

ANIxie g S IXno,
= @Anixg)n(4an 1X6;°=1En) <
Ixu N Ixne m,
=ANCE c I)(n;o:l(HnMn)'
Therefore, g, — fon AN C.
Since, m(C) = 0.

S0,9x, Eifon A.
Theorem(3.5):

Let{f, gn. f,g.,m =1} c M f,g €
M,A € A and 1 is weakly-null-
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countable additive, f;, Eif on A and
In Cﬁg on A, ¢ € R,then
a.e.

Defp—c f.

a.e.
Dfntgn—f+g.

a.e.

Al = If1.
Proof:

1) Since f, Eif on A, there exists a
subset D € X with Iy, € A and

m(Iyp) = 0 such that £, if on

AN Iyg.

= thereexists H € X withIyy € A
such that f,, converges to f on Hand
ANIys clyy.

Since f, convergesto f on H
=fu(x) = f(x) Vx €H

=c fulx) > c-f(x) Vxe€H
=c-f, —c-fonH.

Therefore,c *f, 25 cf.

2) Since f, ‘Eif on A, there exists a

subset D € X with Iy, € A and

m(Iyp) = 0 such that f, if on
AN Iys.

=there exists H € X with Iy, € A
such that f,, converges to f on Hand
ANIy; clyy.

Since g, ﬁgon A, there exists a

subset N € X with Iyy € A and

m(Iyy) = 0 such that g, ig on
ANIyg.
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= there exists M € X with [yy € A
such that g,, converges to g on Mand
ANIyy € lyy.

Let E=Iyp U Iyy, sincem is weakly-
null-countable additive =m(E) = 0.
Since f, converge to f on H

=Vx €EH, f,(x) — f(x)andg,
converge to g on M

=Vx €M, gn(x) — g(x)
=Vx€EHNM, f,(x) + g,(x) —
fx)+g9(x).

Thus ,f, + g, convergeto f + g
onHNM.

SinceAnly;, clyy andANnIyf c
Ixm

=ANIxys)N(ANIy; ) clyy N
IXu = IXpom

=ANE° CIyyny-

Therefore, f, + g, 5 f+gonAnE°.

Since m(E) = 0, so
on A. fn+gncf>'f+g

3)Since f, g'f on A, there exists a

subset D € X with Iy, € A and

m(Iyp) = 0 such that £, if on

AN Iys.

= thereexists H € X with Iyy € A
such that f,, converges to f on Hand
ANy clyy.

Since f, convergesto f on H
=fL(x) — f(x) VxEH

=) — If ()| vx € H

=|ful = Iflon A.
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Therefore, | f, | &5 |f].

Theorem(3.6):
Let{f,,f n=1}c M, f,g e MAE
A and 7 is weakly-null-countable

additive, then:

1If f, Eif onAand f, >0 a.e.on
A, then f >0 a.e.on A.

2) If fncﬁfonAand m<g ae.
on A for eachn, then f < g a.e.on A.
3) If fy—fondand |f,] <|g|
onA for each n, then |f| < a.e.

gl a.e.on A.

HIf f, a;eif on Aand f, < f,+1 a.e.

onA foreach n,then f, T f a.e.on A.

Proof:

1) Since f, ﬁf on A, there exists a

subset D € X with Iy, € A and

m(Iyp) = 0 such that f, if on
ANnlys .

=there exists HEX with Iyy € A
such that f,, converges to f on H and
ANlIys clyy .

Since f, = 0 a.e.on A, then there
exists a sequence {E, } ¢ X with
Ixg, € A and Ai(Ixg, ) =0 forall
n=>1 suchthat f, >0 e.on4An
I)(G%ozl £,

= there exist F,CX withlyy € A
suchthat f, =0 onN;-;F, and

c
AN IXU?lozlEn c IXn??:an'
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Let M= Iy, Uly,

=1 En

=Ixp U (Un=1 Xs,)

Since m is weakly-null-countable
additive =>m((M) =0

Since f, convergesto f on H
=Vx € H, f(x) — f(x)

andf, =0 on Ny=1 F,

=f,(x) = 0Vx € Ny, F,
forallx e HN (Np=1 F)f(x) =0

- _@nr

Thus, f = 00on Ny=1(HN E,)
Since Anlyj; clyy and
AN IXEJ?’f’:lEn < Ixne, F,
= (ANIxy5)N (A N IXEJ%‘;lEn) c
Ixu N Ixns F,
=AN M CIxno (unry)
Therefore, f > 0 e.on A N M€.
Sincem(M) = 0,50 f >0 a.e.onA.
2)since f, < g a.e.on A
=g —fn=0a.e.
Since f, (Eifon A
=9 — Cﬁg — fonA.
From(1) g—f =0 a.e.onA
=f < g a.eonA.
3) Sincef, Eifon A=|fl = |f] on.
Since |f,| <|gla.e. on A
=from (2) |f] < |g| a.e.on A.
4) Since f, E&f on A, then there

exists asubset D € X with Iyp €
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Aand Ai(Iyp) = 0 such that £, if
on AnNIyg.
= thereexists H € X withIyy € A
such that f,, converges to f on Hand
ANlys clyy.
Since f,, < fns1 a.e.on A, then there
exist a sequence {M,,} c X with
Ixm, € Aand Aii(Ixy, ) =0 Yn > 1
and f,, < fry1 €. ONANIxGy, .
= there exists a sequence {F,} c X
with Iy € Aforalln>1and f, <
fa+1 ON Ny Fyand AN
I)(LCJ%,:an S IXn= k-
Let C =1Ixp U (Ulxy,)

= IXU,?{;l(DuMn)
Since m is weakly-null-countable
additive =>m(C) = 0.
Since f, convergesto f on H
=f,(x) = f(x)Vx € Hand since
fa < fosr YR oON NE,
=f(x) < fna1(OVX ENE,,
This implies that Vx € H N (N1 F,) ,
fa(0) T f ().
Therefore,f,, T fon H N (Ny=1 F,)
=Nu=1(H N E,).
Since AN Iy5, c Iyy and

AN Ixiu, € Ixn2, F,
This implies that An C¢ c
IXunne., r,) @nd therefore,
onANC.f, Tf e.
Since,m(C) = 0,
sof, Tf a.e. on A.
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Theorem(3.7):
Let{fo, gn. f, g9, n = 1} € M,
A€EA M

and m is weakly-null-
countable additive, then:

1) If £, =5 f on A, g, — g on A and
fn = gn a.e.forall n, then

f =g a.e.
2) If f Cﬁfon A, f, = gn a.e.forall

nand f = g a.e., then

a.e.
onA. g, —g

Proof:

1) Since f, Eif on A, there exists a

subset D € X with Iy, € A and

m(Iyp) = 0 such that £, if on
ANIys.

= there exists H € X with Iy, € A
such that f,, converges to f on H and

ANy clyy.

Since g, “E;g on A, there exists a

subset N € X with Iyy € A and

m(Iyy) = 0 such that g, i)g on
ANlyy.

= there exists M € X with Iy, € A
such that g,, converges to g on Mand
ANIyy € lyy.

Since f,, = g, a.e.on A, then there
exists a sequence {E,}SX with

Ixg, € A and m(Ixg,) = 0 for

alln > 1 suchthat f, = g, e. on

AN IXG%O=1 Ep’
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=there exist F,CX with Iy € A for
alln > 1 suchthat f, = g, on

Ny=1 F,and AN IXLCJ?&lEn c

IXne k-

LetB = Ixp U Ixy U (Upzy Ixe,) -
Since 1 is weakly-null-countable
additive =m(B) = 0.

Since f,, converges to f on H

=fu(x) = f(x)Vx EH,

converges to g on M g,

=Vx € M, g,(x) — g(x)and since
fa=gnon N1 By

=Vx € Npza By fu(X) = gn ().
This implies that Vx e HN M N
(Nn=1 B, f(x) = g(x).
Sof=gonHNMn (N5, E).
Since ANIysclyy, AnIyy € lyy
and A N IXLCJ??:lEn cIxne, r,

=A N B° C IXpamn(ne., Fyand since
m(B) = 0.

Therefore, f = g a.e..

2)It is similar to proof (1).
Theorem(3.8):

Let {f, g frg,n=1}c M, AEA

and m isa double asymptotic null-

- m m
additive,andc €R , f, = f, gn— 9,
on A then:

m
Dc-fr—=c-fonA
2)fn+gnT>f+gonA.

3fal S Iflon A.
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Proof:
1) If ¢ = 0, the proof is trivial.
If c #0,letc > 0.

Since fnﬁf onA

=M(A N Xl f0-folz 0) =
Oand since

fesle - ful) = ¢ FOO] = €}
= {100 - F)

€
=1
||

=AN X pxlefu0)-c-f @)]ze}
AN X G po-r o1z
This implies that (A N
IXie fu-cfize)) — 0
So,c-fnic-fonA.
2) Since|(f(x) + gn(x)) = (f(x) +
gO)[lf () = fF)I+

|gn(x) — g ()]
This implies that
{x: | (o) + gn () = (F () +
cfx: £ (0) = f(0)] 29(0)| = €}

ol 1gn () — g1 = 5}
This implies that

AN X | (fu0+920)-(F )+ ) 2}

CAN X i 0-r o)V

AN X g9 12d)

Since fnﬁf,gnﬁgonAandfr’z IS

a double asymptotic null- additive.
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Thus, m| AN
Ix { (a0 +gn ()~ >E} -0
| (Feo+g) |

Therefore, f, + g» 5 f+gonA.

3)since|lf ()| = IfF(OI] < £ () —
f(x)| this implies that

{x: |1 = If ] =

e Ifn(x) = f(0)] = €e)e}
SANAN I (el fu) 1= 17 ) |2¢ )
IX1fuGo-r@)l2e)

= (A n IX{x:IIfn(x)I—If(x)Ilze}) =
(A N I el -1 @1z )
Sincefnr—ﬁ)fon A, so |fyl i |f]on
A.Theorem(3.9):

Let {f,,}n>1CM,f € M, A € A and
AN A€ =0 forevery A € A, then:
1) If m has property(S) and f, i f on

A\ then there exists a subsequence {f;, }
of {f,} such that f,. = fon A.

2) If mhas property(PS) and f, 3 fon
A, then there exists a subsequence {f;,.}

of {f,} such that f,. e f on A.

3) If m is a converse-autocontinuous

from below, has property(S) and

fnﬂnfon A, then there exists a

subsequence {f,,.} of {f,} such that

a.e.
fa,— fONA.
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4) If m is a converse-autocontinuous

from below, has property(PS) and

fnﬂnf on A, then there exists a

subsequence {f,,} of {f,} such that
p.a.e.
fa,— fONA.
Proof :
A m
1) Since f,—>fonA
= (A N IX{x=|fn(x)—f(x)|2%}) — Ofor
any k > 1.
Let £ = {x : Ifu®) — f@)] = 7}
=i (AN IXE,%) —0.

Then there exists a subsequence {n;}

such that
forany k > 1, then 7 (A n IXEr’%k) <z
r?l(AnI)(Erz\;k) — 0 ask - 0.

By using property(S), there exists a

subsequence {A NIY ki } of
lei

a sequence {A N Ixgk } such that
k

m ﬂU<AnI)(Eki> =0

nki

ﬁﬁl(z‘l N IXﬂUES;q) =0.
Let D = NUN {x : |fo,, () = F(0)| <

S
ki)

Sincel)(;UEkl. C Iyp and {fnki}

TLki

converges to f on D.
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On Riesz’s Theorem on...

=A4AN IXrC\UEki C Iyp.

nki

Therefore, f,, E;f on A.

. "
2) Since f, > fonA
= (A n IX{x=|fn(x)—f(x)|z%}) — 0for
any k > 1.

k 1
Let Ef = {x Cf(0) = F0)] = ;}
=i (AN Iyg) — 0.

Then there exists a subsequence {n;}
such that

forany k > 1, then (A n IXE,’gk) <
fﬁ(AnI)(E#k) — 0 ask - 0.

By using property(PS), there exists a

subsequence {A NIY i } of

lei
a sequence {A NIy } such that
g

m<A/nU (A NIx,k )) = 71 (A)

e
= (A NI i ) = 7i(A)

e
Let = NUN {x : |fo,, (1) = f(0)] <
i

=A4AN IXrC\uEki C Iypand since {fnk,}

nki

convergesto f on D.

p.a.e.
Therefore, f,, — f on A.

. p.m
3) Since f, — fonA

=M(A 0 D et 00— 00 1<)
for > 1.— m(4)

85

By using the converse-autocontinuity

from below ofi, we have

A/ (AN I 00-ol<d) ) —
, this implies that0

(A O I el o 00— F0)129) — O

This shows that £, = f on.

From (1) there exists a subsequence
{f,} of {fn} such that f;,. XS fonA

4) Since f, ﬁnf on A and as in proof
(3), by using the converse-

autocontinuity from below, we have

i
onA. f, = f
From (2), there exists a subsequence

{£u} Of (£} such that f;,, = fon A.
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