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Abstract 

 In this paper, the variable order method in connection with two steps Runge – 

Kutta method for solving stochastic ordinary differential equations have been proposed in 

order to improve the accuracy of the obtained results by increasing the order of 

convergence of the numerical schemes. The proposed approach has been introduced for 

Stratonovich type stochastic differential equation. 
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1. Introduction: 

 

 The stochastic ordinary differential 

equations (SODE’s for short) are 

differential equations in which one or more 

of its terms are stochastic processes, and 

therefore will give solutions which are 

itself stochastic processes, (1). Also, they 

are used in a wide range of applications, 

such as environmental modeling, 

engineering and biological modeling, etc., 

(2), (3). 

 It is remarkable that the stochastic 

differential equation in Stratonovich case 

that will be considered has the form: 

0

t t t t

t 0

dy f (y )dt g(y ) dW ,

y y

   


 

 … (1) 

where t ∈  [t0,T], ty  m
R and Wt is the 

Wiener process whose increment 

t t tW(t) W W    is a Gaussian random 

variable with mean 0 and variance Δt. 

 In this paper the attentions was paid 

toward the constructing of variable order 

method that is based on the global error 

expansions for explicit two steps stochastic 

Runge – Kutta method. 

 In addition, the variable order 

methods provide a class of higher order 

strong approximation methods which are 

efficient in many cases; there are also 

important practical situations in the 

variable order methods providing general 

and efficient class of algorithms for the 

higher order strong approximation of 

SODE’s. However, further investigations 

are still required to develop variable order 

methods for SODE’s that have some 

performances comparable to those already 

known methods for solving ordinary 

differential equations. With this aim, in this 

paper we will establish global error 

expansions for higher-order strong Taylor 

scheme, and we shall then use these 

expansions to construct variable order 

methods based on these higher-order 

schemes. This will allow range of SODE’s 

to be handled numerically. 

 

2. Preliminaries: 

 

 In this section, some fundamental and 

necessary concepts relative to SDE,s are 

given: 

Definition (2.1): (4) 

A stochastic process Wt, t  [0, ) is 

said to be a Brownian motion or Wiener 

process if: 

1. P(W0  0)  1, where P refers to the 

probability. 
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2. For 0 < t0 < t1 < … < tn; the 

increments 
1 2t tW W ,

2 1t tW W ,…, 

n n 1t tW W


  are independent. 

3. For an arbitrary t and h > 0, t h tW W   

has a Gaussian distribution with mean 0 

and variance h. 

 

2.1 Stochastic Differential Equations and 

their Models: (2), (4), (5) 

 

Consider the SDE: 

0

t t t t

t 0

dy f (t, y )dt g(t, y )dW ;

y y

  


 

 ... (2) 

where f : IR R , g : IR   R  be 

a Borel-measurable functions, we call (f) 

the drift function and (g) the diffusion 

function. Then a solution yt of the equation 

(2) must also satisfy equation (2) when it is 

written as a stochastic integral equation of 

the form:  

0
0

0

t

t t st

t

s st

y y f (s, y )ds

g(s, y )dW


 









 ... (3) 

Remarks (2.1): 

1. The second integral given in equation 

(3) cannot be defined in usual meaning, 

where sW  is the Wiener. The variance 

of the Wiener process satisfies 

tVar(W ) t , which is increases as the 

time increases even thought the mean 

stays at 0. 

2. There are two types of SODE's 

according to the calculations of the 

second integral, the first type is known 

as Itô SDE and is given by equation (2) 

and the stochastic integral 

0

t
s t

t
g(s, y )dW  that appears in 

equation (3) refers to the Itô stochastic 

integral while the second type of 

SODE's is known as Stratonovich that 

is given by: 

0

t t t t

t 0

dy f (t, y )dt g(t, y ) dW ;

y y

   


 

 … (4) 

Also, equation (4) can be written as 

Stratonovich stochastic integral equation 

by: 

0
0

0

t

t t st

t

s st

y y f (s, y )ds

g(s, y ) dW


 



 





  …(5) 

and the stochastic integral 

0

t
s t

t
g(s,y ) dW  that appears in 

equation (5) refers to the stochastic 

Stratonovich integral, (6).  

3. We have a simple relationship between 

the solution of an Itô SODE and the 

Stratonovich SODE's that are given in 

equations (2) and (4). Let ty  be the 

solution of one-dimensional Itô SODE 

that given in equation (2), then ty  is 

also a solution of the Stratonovich 

SODE, such that when, (6): 

0t t t t t 0dy f (t, y )dt g(t, y ) dW ;y y   

then: 

0 0

t t

t 0 s s st t
y y f (s, y )ds g(s, y ) dW    
where: 

t t t t
1 g

f (t, y ) f (t, y ) (t, y )g(t, y )
2 y


 


 

4. The formulation of two steps stochastic 

Runge - Kutta methods take the form, 

(6): 

1 n 11 1 12 2

1 11 1 12 2

2 n 21 1 22 2

1 21 1 22 2

n 1 n 1 1 2 2

1 1 1 2 2

Y y h [a f(Y ) a f(Y )]

J [b g(Y )+b g(Y )]

Y y h[a f(Y ) a f(Y )]

J [b g(Y )+b g(Y )]

y y h[ f(Y ) f(Y )]

J [ g(Y ) g(Y )]



   




   


 
   


    

 ... (6) 

Where : 

11 12

ij

21 22

a a
A (a ) ,

a a

 
   

 
 T

1 2   

11 12

ij

21 22

b b
B (b ) ,

b b

 
   

 
 T

1 2 ,     

and a ,b ,ij ij  andj j   are constants 

with i, j 1,2 , h t tn 1 n  , J W1 n   
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n 1 n
W Wt t

   for all n 0,1,2,...  . 

 

5. In this paper, we choose an explicit 

stochastic Runge - Kutta methods (R2 

and PL) models such that in R2 model, 

the stochastic Runge – Kutta method 

(SRKM for short) take the form, (6): 

1 n

2 n 1 1 1

n 1 n 1 2

1 1 2

Y y

2 2
Y y h f(Y ) J g(Y )

3 3

1 3
y y h[ f(Y ) f(Y )]

4 4

1 3
+J [ g(Y ) g(Y )]

4 4



 

  




   






 ... (7) 

and PL model of SRKM take the form, 

(6): 

1 n

2 n 1 1 1

n 1 n 1

1 1 2

Y y

Y y h f(Y ) J g(Y )

y y h f(Y )

1 1
+J [ g(Y ) g(Y )]

2 2



 


  

 




 ... (8) 

 

2.2 Strong convergence criterion: (7), (8) 

 

 Consider the sample path of the 

Wiener process, tW  that is given (and 

hence known), therefore, there is no 

randomness in the SDE and hence no 

randomness in XT, The increments in the 

given Wiener process are then used to 

obtain the numerical solution y(h). The 

expectation of the absolute error is defined 

as: 

  E(|XT  y(h)|) 

Here, the Euclidean norm is used, XT 

is the Itô process at time T, while y(h) is 

the numerical solution obtained by 

approximately integrating the stochastic 

differential equation in a sequence of time 

steps. 

 The numerical scheme is consistent if 

the numerical solution y(h) converge to XT 

as t tends to zero. Therefore, a discrete 

time numerical solution y(h) with 

maximum time step size  converges 

strongly to XT at time T if : 

0
lim


 E(|XT  y(h)|)  0 

 A discrete time approximation y(h) 

converge strongly with order p > 0 at time t 

if there exists a positive constant C, which 

does not depend on , and 0 > 0, such that: 

()  E(|XT  y(h)|)  pC( t)  

for each   (0, 0), where . (0, 0) is the 

interval of stability of the method. 

 

3. Variable Order Methods for Solving 

SODE’s 

 

Variable order method is an accurate 

method that may be used to improve the 

accuracy of the obtained results. Therefore 

in this section, this method will be used in 

connection with SRKM's for solving 

Stratonovich SODE’s and derive a new 

approach for solving Stratonovich SODE’s 

with more accurate results. This method 

will be referred to as the variable order 

method for solving Stratonovich SODE’s. 

In this investigation, the weak 

numerical solution E(y(T)) will be studied. 

The weak error is defined as E(y(T)  y(h)) 

and the primary goal of this investigation is 

to derive the variable order method which 

has an error expansion of the form: 

E(y(T)  y(h))  a1h + a2h
2 +  …(9) 

where a1, a2, … are some constants 

independent of the step size discretization h  

Now, to successively eliminate the 

terms in the error expansion, thereby 

producing solutions using methods of 

higher and higher order. If a1 in equation 

(9) is not zero, then the scheme of 

evaluating E(y(T)) is only of order h. To 

obtain the scheme of evaluating E(y(T)) of 

order h2, we proceed as follows: 

Find the error expansion using two 

different step sizes h0 and h1, such that  

h1 < h0, as follows: 

2
0 1 0 2 0

3
3 0

E(y(T) y(h )) a h a h

a h ...

   


  

 … (10) 
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2
1 1 1 2 1

3
3 1

E(y(T) y(h )) a h a h

a h ...

   


  

 … (11) 

and upon subtracting h0-times of equation 

(11) from h1-times of equation (10) and 

solving for E(y(T)), one may get: 

  

 

1 0 0 1

1 0

2 0 1 3 0 1 0 1

2 2
4 0 0 1 1

h E(y(h )) h E(y(h ))
E y T

h h

a h h a h h h  h

a (h h h h )






  

   

 

 

  

 

1 0
1

0

1

2 0 1 3 0 1 0 1

2 2
4 0 0 1 1

E(y(h )) E(y(h ))
E y h

h
1

h

a h h a h h h  h

a (h h h h )


 



  

   

Thus, letting: 

     1 0 1

1 0

0

1

E y h =E y h

E(y(h ))) E(y(h ))

h
1

h






 

which is an O( 2
0h ) approximation to 

E(y(T)). Since h1 < h0 and for any two step 

sizes hj and hj+1 may be used in the above 

elimination process, one may see that in 

general:  

j 1 j
1 j j 1

j

j 1

E(y(h )) E(y(h ))
E (y(h )) E(y(h ))

h
1

h







 



, j 0,1,2,...  

which is also an O( 2
jh ) approximation to 

E(y(T)). Now, we have: 

     

 

1 0 2 0 1 3 0 1

2 2

0 1 4 0 1 0 0 1 1

E y T E y h a h h a h h

h h a h h ( h  h h h )

  

    
 

and  

     

 

1 1 2 1 2 3 1 2

2 2

1 2 4 1 2 1 1 2 2

E y T E y h a h h a h h

h h a h h ( h  h h h )

  

    
 

and upon eliminating the terms involving 

a2, we obtain: 

 

     

 

2 0 3 0 1 2 4 0

1 2 0 1 2

E y T E y h a h h h a h

h h h h h

  

  
 

where: 

1 1 1 0
2 0 1 1

0

2

E (y(h )) E (y(h ))
E (y(h )) E (y(h ))

h
1

h


 



 

which is an O( 3
0h ) approximation to 

E(y(T)). More generally: 

1 j 1 1 j
2 j 1 j 1

j

j 1

E (y(h )) E (y(h ))
E (y(h )) = E (y(h ))

h
1

h











, j 0,1,2,...  

which is also an O( 3
jh ) approximation to 

E(y(T)). 

 

Similarly, continuing in this process, the 

following recursively sequence may be 

derived: 

 E0(y(hj))  E(y(hj)) … (12) 

n j n 1 j 1

n 1 j 1 n 1 j

j

j n

E (y(h )) = E (y(h ))

E (y(h )) E (y(h ))

h
1

h

 

  









 … (13) 

for all n  1, 2, …; j  0, 1, 2, … 

 

On the basis of the results for E(y(hj)) 

and En(y(hj)), it seems that En(y(hj)) 

provides an O( n 1
jh  ) approximation to 

E(y(T)). This may be verified directly by 

following the evolution of the general term 

an h
n in the error expansion, but is perhaps 

obtained more easily by the following an 

alternative approach obtained from 

equations (12) and (13), which is given in 

the following table: 
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Level O(hj) O( 2
jh ) O( 3

jh ) O( 4
jh )  

0 E0(y(h0))     

1 E0y(h1)) E1(y(h0))    

2 E0(y(h2)) E1(y(h1)) E2(y(h0))   

3 E0(y(h3)) E1(y(h2)) E2(y(h2)) E3(y(h0))  

      
 

 

The following algorithm may be 

used for presenting computer programs: 

Algorithm: 

1. Input 0y (initial condition) , 0h  , 1h  …; 

j

j j

h
h :

2
  , j:=0,1,2,…,(step sizes). 

2. Find the numerical solution jy  with 

j

j j

h
h :

2
 , by using explicit SRKM's 

which are given in equations (7) and 

(8). 

3. Evaluate:  E(y(hj)), j=0,1, 2, … 

4. Find: 

a. E0(y(hj))  E(y(hj)) 

b. 

n j n 1 j 1

n 1 j 1 n 1 j

j

j n

E (y(h )) = E (y(h ))

E (y(h )) E (y(h ))
;

h
1

h

for n : 1,2, ,  j 0,1,  2,  

 

  









   

 

 

4. Numerical Simmulation: 

 

As an illustration and for comparison 

purpose, we consider in this section, two 

illustrative examples, which are compared 

with the exact solution, but, first, it is 

remarkable that the argument of the 

considered examples is t  [0, 1] and the 

step sizes used for discretizing this interval 

are h, 
h

2
, 

h

4
, … with h  0.1. Also, the 

obtained results for the given examples are 

represented at average of 10000 simulated 

solution by using N(0, h) random number 

generations for the Wiener process Wt. 

 

Example (1): 

Consider to the nonlinear 

Stratonovich SODE, (3), (9) 

tdy  2(y 1) dt + 2(0.1 0.1y )  dWt, 

with the initial condition 0y 0 , and for 

comparison purpose, the exact solution is 

given by: 

0 t 0
t

0 t 0

(1 y )exp( 2t 0.2W ) y 1
y

(1 y )exp( 2t 0.2W ) y 1

    


    
 

and using two steps SRKM's with (R2 and 

PL) models that are given in equations (7) 

and (8) with step sizes h0  0.1, h1  0.05, 

h2  0.025 and h3  0.013 and is defined 

for all n=0,1,…,N.  

Therefore, using equations (12) and 

(13), the following results given in tables 

(1) - (6) which represent the approximate 

variable order method, exact results and 

the absolute error, respectively for the 

weak solution at x=0.1: 
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Table (1) 

The numerical results for the weak solutions using variable order method with R2-

model 

Level O(hj) O( 2
jh ) O( 3

jh ) O( 4
jh )  

0 -0.09963055     

1 -0.09963032 -0.09963009    

2 -0.09972327 -0.09981622 -0.10000235   

3 -0.09966088 -0.09959848 -0.09938075 -0.09875915  

      
 

 

Table (2) 

The exact results solutions by using variable order method 

 

 

 

 

 

 

 

 
 
 

 

Table (3) 

The absolute error between the numerical results for the weak solutions with R2-

model and the exact results for the solutions using variable order method 

Level O(hj) O( 2
jh ) O( 3

jh ) O( 4
jh )  

0 1.4618×10-6     

1 5.26297×10-7 4.0921×10-7    

2 1.42624×10-7 2.41048×10-7 7.2887×10-8   

3 3.60967×10-8 1.06527×10-7 2.79934×10-8 1.28874×10-7  

      
 

 

Table (4) 

The numerical results for the weak solutions using variable order method with PL-

model 

Level O(hj) O( 2
jh ) O( 3

jh ) O( 4
jh )  

0 -0.10006628     

1 -0.0999485 -0.09983072    

2 -0.099768 -0.09958751 -0.09934429   

3 -0.09969615 -0.09962429 -0.09966108 -0.09997787  

Level O(hj) O( 2
jh ) O( 3

jh ) O( 4
jh )  

0 -0.09963202     

1 -0.09963085 -0.09962968    

2 -0.09972341 -0.09981598 -0.10000228   

3 -0.09966091 -0.09959838 -0.09938078 -0.09875928  
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Table (5) 

The exact results solutions by using the variable order method 

Level O(hj) O( 2
jh ) O( 3

jh ) O( 4
jh )  

0 -0.09973404     

1 -0.09974248 -0.09975092    

2 -0.09965491 -0.09956734 -0.09938376   

3 -0.09963703 -0.09967827 -0.09978919 -0.10019463  

      

 

Table (6) 

The absolute error between the numerical results for the weak solutions with PL-

model and the exact results for the solutions using variable order method 

Level O(hj) O( 2
jh ) O( 3

jh ) O( 4
jh )  

0 3.32244×10-4     

1 2.06022×10-4 7.98008×10-5    

2 1.13094×10-4 2.0166×10-5 3.94688×10-5   

3 5.91213×10-5 5.3973×10-5 1.28112×10-4 2.16755×10-4  

      

 

 

Example (2): 

Consider to the linear Stratonovich 

SODE given by, (10): 

d ty  t
7

y
8

dt + t
1

y
2

 dWt, 

with the initial condition 0y 0.5 , and 

for comparison purpose, the exact solution 

is given by: 

t 0 t
7

y y exp( t W )
8

 
 

and using two steps SRKM's with (R2 and 

PL) models that are given in equations (7) 

and (8) with step sizes h0  0.1, h1  0.05, 

h2  0.025 and h3  0.013 and is defined 

for all n=0,1,…,N. 

Therefore, using equations (12) and (13), 

the following results given in tables (7) - 

(12) which represent the approximate 

variable order method, exact results and 

the absolute error, respectively for the 

weak solution at x=0.1: 

 

Table (7) 

The numerical results for the weak solutions using variable order method with R2-

model 

Level O(hj) O( 2
jh ) O( 3

jh ) O( 4
jh )  

0 0.54607854     

1 0.54569265 0.54530676    

2 0.54569103 0.54568941 0.54607206   
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3 0.54568609 0.54568114 0.54567288 0.54527369  

      

 

 

Table (8) 

The exact results solutions by using variable order method 

Level O(hj) O( 2
jh ) O( 3

jh ) O( 4
jh )  

0 0.54619186     

1 0.54572822 0.54526458    

2 0.54570117 0.54567411 0.54608365   

3 0.54568873 0.54567365 0.54567318 0.54526272  

      

 

Table (9) 

The absolute error between the numerical results for the weak solutions with R2-

model and the exact results for the solutions using variable order method 

Level O(hj) O( 2
jh ) O( 3

jh ) O( 4
jh )  

0 1.13325×10-4     

1 3.55705×10-5 4.21837×10-5    

2 1.01355×10-5 1.52995×10-5 1.15848×10-5   

3 2.63722×10-6 7.49827×10-6 3.02935×10-7 1.09789×10-5  

      

 

Table (10) 

The numerical results for the weak solutions using variable order method with PL-

model 

Level O(hj) O( 2
jh ) O( 3

jh ) O( 4
jh )  

0 0.54417286     

1 0.54491478 0.5456567    

2 0.54529575 0.54567672 0.54569675   

3 0.54553026 0.54576477 0.54585281 0.54600887  

      

 

Table (11) 

The exact results solutions by using variable order method 

Level O(hj) O(
2
jh ) O(

3
jh ) O(

4
jh )  

0 0.54619186     

1 0.54593727 0.54568267    

2 0.54581177 0.54568627 0.54568988   

3 0.54578991 0.54550839 0.54533051 0.54497115  
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Table (12) 

The absolute error between the numerical results for the weak solutions with PL-

model and the exact results for the solutions using variable order method 

 

Level O(hj) O( 2
jh ) O( 3

jh ) O( 4
jh )  

0 2.019×10-3     

1 1.02249×10-3 2.59703×10-5    

2 5.16019×10-4 9.55111×10-6 6.86804×10-6   

3 2.59647×10-4 2.56372×10-4 5.22295×10-4 1.03772×10-3  

      

 

5. Conclusion: 

1. Variable order method gives very high 

accurate result in comparison between 

the approximate result and exact result. 

2. Solution of non-linear SODE’s using 

variable order method give more 

accurate result than the solution of 

linear SODE’s. 
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ذات  كوتا –بأستخدام طرائق رانج  لحل المعادلات التفاضلية التصادفية الاعتيادية رةيطريقة الرتبة المتغ

 الخطوتين
 

 مصطفى محمد صبحيو        فاضل صبحي فاضل

 جامعة النهرين –كلية العلوم  -قسم علوم الرياضيات وتطبيقات الحاسوب 
 

 الخلاصة
 

في هذا البحث, ولغرض تحسين دقة النتائج تم استحداث طريقة الرتبة المتغيرة لحل معادلات تفاضلية تصادفية من 

العددية  الطريقةكوتا ذات الخطوتين وذلك عن طريق زيادة رتبة تقارب  –نوع ستراتونوفيتش وبأستخدام طرائق رانج 

 من نوع ستراتونوفيتش. .. إن الطريقة المقترحة تم دراستها لمعادلات تصادفية


