Obtaining the suitable k for $(3+2 k)-$ cycles

Shuker Mahmood Khalil
Department of Mathematics, College of Science, University of Basra. shuker.alsalem@gmail.com

Abstract

$n \geq 5$, then 3-cycles form a single conjugacy class in A_{n} [see, (1)].

Keywords: alternating groups, conjugacy classes, ambivalent group, permutations, type α.

Abstract
We show that, if k is odd. Then the $(3+2 k)$-cycles form a single ambivalent conjugacy class in the alternating group A_{n} for all $n \geq 5+2 k$. This generalize to the following result, if

1. Introduction

If $\Omega=\{1,2, \ldots, n\}$, then S_{n} and A_{n} denote the symmetric and alternating groups of permutation on Ω, respectively. Product of two permutations will be executed from left to right. A cycle $\left(i_{1}, i_{2}, \ldots, i_{l}\right)$ is said to have length l or to be an l-cycle [see, (2)]. Suppose, first, that $\beta \in S_{n}$. Then the cycle type α of a permutation β is the list of integers $\quad \alpha_{1} \geq \alpha_{2} \geq \ldots \geq \alpha_{l}$ such that $\alpha_{1}+\alpha_{2}+\quad \ldots+\alpha_{l}=n$, where α_{i}, for all $(1 \leq i \leq l)$ are just the lengths of the cycles in the disjoint cycle decomposition of $\beta, 1$-cycles being including. Thus the type of the permutation $\beta=$ (389)(724)(51) in $\quad S_{11} \quad$ is $\alpha=(3,3,2,1,1,1)$. The permutation of a given type α form one conjugacy class C^{α} in the symmetric group S_{n}, and if this class C^{α}
splits into two conjugacy classes of A_{n}, we denote these by $C^{\alpha \pm}$. Also, A_{n} is ambivalent group iff each $C^{\alpha \pm}$ of A_{n} are ambivalent and $C^{\alpha}(\beta)$ splits into two A_{n} classes of equal order iff $n>1$, and the nonzero parts of $\alpha(\beta)$ are different and odd [see, (3)], so in every other case $C^{\alpha}(\beta)$ does not split. The conjugacy classes and ambivalence in alternating group A_{n} were studied by many mathematicians such as [(4)-(9)], that if $n \geq 5$ and X is the set of all 3-cycles $(i, j, k) \in A_{n}$, and $n \geq i \neq j \neq k \geq 1$. Then X form a single conjugacy class in the alternating group A_{n}. In this paper we introduced in the first some theorems in these theorems we prove that if $n \geq 7$ or $n \geq 9$ or $n \geq 5+2 k$, then 5 -cycles or 7cycles or $(3+2 k)$ - cycles, respectively form a single conjugacy class in the alternating group A_{n} where $k \geq 0$. Finally we prove that if k is an odd. Then for all $n \geq 5+2 k$ the $(3+2 \mathrm{k})$-cycles form a single ambivalent conjugacy class in the alternating group A_{n}.

2. Preliminaries

The following definitions have been used to obtain the results and properties developed in this paper.

2.1 Definition (10):

A partition α is a sequence of nonnegative integers $\quad\left(\alpha_{1}, \alpha_{2}, \ldots\right)$ with $\alpha_{1} \geq \alpha_{2} \geq \ldots \quad$ and $\sum_{i=1}^{\infty} \alpha_{i}<\infty$. The length $l(\alpha)$ and the size $|\alpha|$ of $\quad \alpha \quad$ are defined as $l(\alpha)=\operatorname{Max}\left\{i \in N ; \alpha_{i} \neq 0\right\}$ and $\quad|\alpha|=\sum_{i=1}^{\infty} \alpha_{i}$. We set $\quad \alpha \mathrm{F} n=\{\alpha$ partition $;|\alpha|=n\}$ for $n \in N$. An element of $\alpha \mathrm{F} n$ is called a partition of n and α_{i} are called the parts of α.

* We only write the non zero components of a partition. Choose any $\beta \in S_{n}$ and write it as $\gamma_{1} \gamma_{2} \ldots . \gamma_{l}$. With γ_{i} disjoint cycles of length α_{i}. Since disjoint cycles commute, we can assume that $\alpha_{1} \geq \alpha_{2} \geq \ldots \geq \alpha_{l}$. Therefore $\alpha=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{c(\beta)}\right)$ is a partition of n.
2.2 Definition (10): We call the partition α the cycle-type of $\beta \in S_{n}$.
2.3 Definition (10): Let α be a partition of n.We define $C^{\alpha} \subset S_{n}$ to be the set of all elements with cycle type α.
* The permutation of a given type α form one conjugacy class C^{α} in the symmetric group S_{n}, and if this class C^{α} splits into two
conjugacy classes of A_{n}, we denote these by $C^{\alpha \pm}$, so every pair of permutations γ and β are conjugate iff they have the same cycle type. However, this is not necessarily true in an alternating group.
2.4 Theorem (3): Let $\beta \in C^{\alpha}$ in S_{n} and $n>1$, then C^{α} splits into two A_{n} - classes of equal order iff all the parts of the cycle-type of β are different and odd
2.5 Theorem (1): If $n \geq 5$, then 3-cycles form a single conjugacy class in the alternating group A_{n}.

3. Obtaining the suitable k for $(3+2 k)-$ cycles

In this section, we show that which the suitable k satisfies the $(3+2 k)$-cycle form a single conjugacy class, two conjugacy classes, a single ambivalent conjugacy class, and two ambivalent conjugacy classes in the alternating group A_{n} for some positive integer n.
3.1 Theorem: If $n \geq 7$, then 5-cycles form a single conjugacy class in the alternating group A_{n}.

Proof:

Let β denote the cycle (12345), and $\gamma=\left(\begin{array}{llllll}a_{1} & a_{2} & a_{3} & a_{4} & a_{5}\end{array}\right)$, let λ denote the transposition (67), but β and γ are two permutations have the same type α, so each of them belong to the conjugacy class C^{α} of S_{n}. Then there is a permutation $\pi \in S_{n}$
such that $\gamma=\pi \beta \pi^{-1}$. If π is odd, then $\lambda \pi$ is even. We note that $\beta=\lambda \beta \lambda^{-1}$. Therefore $\gamma=\pi\left(\lambda \beta \lambda^{-1}\right) \pi^{-1}=(\pi \lambda) \beta(\pi \lambda)^{-1}$. We replace π by $\lambda \pi$. Thus there always is an even permutation π such that $\gamma=\pi \beta \pi^{-1}$, which means that γ is in the conjugacy class of β in the alternating group.

3.2 Lemma

If $7>n \geq 5$, then 5 -cycles form two conjugacy classes in A_{5} and in A_{6}.

Proof:

Let X be the set of all 5 -cycles ($i, j, k, l, t) \in A_{n}, \quad$ for $(n=5,6) \quad$ where $n \geq i, j, k, l, t \geq 1$ and different. Moreover, for any $\beta \in X=C^{\alpha}$ the permutation β has cycle-type $\alpha=(5)$ in S_{5} and $\alpha=(5,1)$ in S_{6}. Thus C^{α} splits into two conjugacy classes $C^{\alpha \pm}$ of A_{n}, for $(n=5,6) \quad[b y$ Theorem 2.4]. Then for all $7>n \geq 5$ the 5cycles form two conjugacy classes in A_{5} and in A_{6}.

3.3 Theorem

If $n \geq 9$, then 7 -cycles form a single conjugacy class in the alternating group A_{n}.

Proof:

Let β denote the cycle (1234567), and $\gamma=\left(a_{1} a_{2} a_{3} a_{4} a_{5} a_{6} a_{7}\right)$, let λ denote the transposition (89), but β and γ are two permutations have the same type α, so each of them belongs to the conjugacy class
C^{α} of S_{n}, then there is a permutation $\pi \in S_{n}$ such that $\gamma=\pi \beta \pi^{-1}$. If π is odd, then $\lambda \pi$ is even. We note that $\beta=\lambda \beta \lambda^{-1}$. Therefore $\gamma=\pi\left(\lambda \beta \lambda^{-1}\right) \pi^{-1}=(\pi \lambda) \beta(\pi \lambda)^{-1}$. We replace π by $\lambda \pi$. Thus there always is an even permutation π such that $\gamma=\pi \beta \pi^{-1}$, which means that γ is in the conjugacy class of β in the alternating group.

3.4 Lemma

If $9>n \geq 7$, then 7 -cycles form two conjugacy classes in A_{7} and in A_{8}.

Proof:

Let X be the set of all 7-cycles $(i, j, k, l, t, r, d) \in A_{n}, \quad$ for $(n=7,8)$ where $n \geq i, j, k, l, t, r, d \geq 1$ and different. Moreover, for any $\beta \in X=C^{\alpha}$ the permutation β has cycle-type $\alpha=(7)$ in S_{7} and $\alpha=(7,1)$ in S_{8}. Thus C^{α} splits into two conjugacy classes $C^{\alpha \pm}$ of A_{n}, for $(n=7,8)$ [by Theorem 2.4]. Then for all $9>n \geq 7$ the 7 -cycles form two conjugacy classes in A_{7} and in A_{8}.

3.5 Theorem

If $k \geq 0$, then for all $n \geq 5+2 k$, the $(3+2 k)$-cycles form a single conjugacy class in the alternating group A_{n}.

Proof:

1) If $k=0$, then by (Theorem 2.5) we have 3-cycles form a single conjugacy class in the alternating group A_{n}.
2) If $k=1$, then by (Theorem 3.1) we have 5-cycles form a single conjugacy class in the alternating group A_{n}.
3) If $k=2$, then by (Theorem 3.3) we have 7-cycles form a single conjugacy class in the alternating group A_{n}.
4) If $k>2$, so for any $n \geq 5+2 k$, assume $l=3+2 k$, then $n \geq 2+l$. Therefore the transposition $\lambda=(l+1, l+2) \in A_{n}$, let β denote the cycle ($12 \ldots l$), and $\gamma=\left(a_{1} a_{2} \ldots a_{l}\right)$, However, β and γ are two permutations have the same type α, then there is a permutation $\pi \in S_{n}$ such that $\gamma=\pi \beta \pi^{-1}$. If π is odd, then $\lambda \pi$ is even. We note that $\beta=\lambda \beta \lambda^{-1}$. Therefore $\gamma=\pi\left(\lambda \beta \lambda^{-1}\right) \pi^{-1}=(\pi \lambda) \beta(\pi \lambda)^{-1}$. We replace π by $\lambda \pi$. Thus there always is an even permutation π such that $\gamma=\pi \beta \pi^{-1}$, which means that γ is in the conjugacy class of β in the alternating group A_{n}. Then for all $n \geq 5+2 k$, the $(3+2 k)$-cycles form a single conjugacy class in the alternating group A_{n}.

3.6 Lemma

If $5+2 k>n \geq 3+2 k$, then $(3+2 k)$-cycles form two conjugacy classes in $A_{3+2 k}$ and in $A_{4+2 k}$.

Proof:

Let X be the set of all $(3+2 k)$-cycles $\left(a_{1},, a_{2}, a_{3}, \ldots, a_{3+2 k}\right) \in S_{n}$, for $(n=3+2 k$, $4+2 k)$ where $n \geq a_{i} \geq 1,(\forall 1 \leq i \leq 3+2 k)$ and different, since for any $k \geq 0$ we have $3+2 k$ is odd number. Moreover, for any $\beta \in X=C^{\alpha}$ the permutation β has cycle-type $\alpha=(3+2 k)$ in $S_{3+2 k}$ and $\alpha=(3+2 k, 1)$ in $S_{4+2 k}$. Thus C^{α} splits into two conjugacy classes $C^{\alpha \pm}$ of A_{n}, for $(n=3+2 k, 4+2 k)$ [by Theorem 2.4]. Then, for all $5+2 k>n \geq 3+2 k$ the $(3+2 k)$-cycles form two conjugacy classes in $A_{3+2 k}$ and in $A_{4+2 k}$.

3.7 Theorem

If k is odd, then for all $n \geq 5+2 k$, the $(3+2 k)$-cycles form a single ambivalent conjugacy class in the alternating group A_{n}.

Proof:

From [Theorem 3.5], we have the $(3+2 k)-$ cycles form a single conjugacy class in the alternating group A_{n}. Now we have to prove that for each permutation $\beta=\left(b_{1}, b_{2}, \ldots, b_{3+2 k}\right)$ has $(3+2 k)$-cycle is conjugate to its inverse in A_{n}, where $n \geq 5+2 k$. Since k odd number \Rightarrow $\frac{(3+2 k)-1}{2}$ is even number for each k. Let
$\mu=\left(b_{2}, b_{3+2 k}\right)\left(b_{3}, b_{(3+2 k)-1}\right)\left(b_{4}, b_{(3+2 k)-2}\right) \ldots \ldots$.
Then we have $\mu \beta \mu^{-1}=\beta^{-1}$. Now we want to show that μ is an even permutation (i.e $\mu \in A_{n}$), since μ is a composite of $\frac{(3+2 k)-1}{2}$ (an even number) of
transpositions $\Rightarrow \mu \in A_{n}$. So for each permutation β has $(3+2 k)$-cycle is conjugate to its inverse in A_{n}. Then $(3+2 k)$-cycles form a single ambivalent conjugacy class in the alternating group A_{n}, for each $n \geq 5+2 k$ and k odd number.

3.8 Lemma

If k is odd, and $5+2 k>n \geq 3+2 k$, then $(3+2 k)$-cycles form two ambivalent conjugacy classes in $A_{3+2 k}$ and in $A_{4+2 k}$.

Proof:

From [Lemma3.6], we have the $(3+2 k)$ cycles form two conjugacy classes $C^{\alpha \pm}$ in $\quad A_{3+2 k}$ and in $A_{4+2 k}$. Assume $\quad \beta=\left(b_{1}, b_{2}, \ldots, b_{3+2 k}\right) \in C^{\alpha+} \quad$ and $\gamma=\left(a_{1}, a_{2}, \ldots, a_{3+2 k}\right) \in C^{\alpha-}$. Since k odd number $\Rightarrow \frac{(3+2 k)-1}{2}$ is even number for each k. That means there are two even permutations $\mu, t \in A_{n}$, for $(n=3+2 k, 4+2 k)$ which are satisfy that $\mu \beta \mu^{-1}=\beta^{-1}$, and $\quad t \gamma t^{-1}=\gamma^{-1}$, where $\mu=\left(b_{2}, b_{3+2 k}\right)\left(b_{3}, b_{(3+2 k)-1}\right)\left(b_{4}, b_{(3+2 k)-2}\right) \ldots \ldots$, and

$$
t=\left(a_{2}, a_{3+2 k}\right)\left(a_{3}, a_{(3+2 k)-1}\right)\left(a_{4}, a_{(3+2 k)-2}\right) \ldots \ldots
$$

Then both of β and γ are conjugate to their inverses in A_{n} for $(n=3+2 k, 4+2 k)$. Moreover, \quad let $\quad \lambda \in C^{\alpha+} \Rightarrow \lambda \underset{A_{n}}{\approx} \beta \Rightarrow$ $\lambda^{-1} \underset{A_{n}}{\approx} \beta^{-1}$. However $\quad \beta \underset{A_{n}}{\approx} \beta^{-1} . \quad$ Thus
$\lambda^{-1} \underset{A_{n}}{\approx} \beta$, but $\lambda \underset{A_{n}}{\approx} \beta$, then $\lambda^{-1} \underset{A_{n}}{\approx} \lambda$. That means for any class in any group to show this class is ambivalent we need only to find one element belongs to this class and conjugate to its inverse. Thus the conjugacy class $C^{\alpha+}$ of A_{n} is ambivalent class, and similarity $C^{\alpha-}$ is ambivalent class. Then for all $5+2 k>n \geq 3+2 k$, the $(3+2 k)$-cycles form two ambivalent conjugacy classes in $A_{3+2 k}$ and in $A_{4+2 k}$.

4. Concluding Remarks

Suppose that $\beta \in S_{n}$ and $\beta=\pi_{1} \pi_{2}$, where π_{1}, π_{2} are disjoint cycles in S_{n} of lengths $(3+2 k)$ and l respectively. The results of our research can be summarized as follows:

1) If $l=1$, then $A_{4+2 k}$ has two conjugacy classes corresponding to the partition $(3+2 k, 1) \mathrm{F}(4+2 k)$.
2) If k is odd, and $l=1$, then $A_{4+2 k}$ has two ambivalent conjugacy classes corresponding to the partition $(3+2 k, 1) \mathrm{F}(4+2 k)$.
3) If $l=3+2 k$, then $A_{2 l}$ has a single ambivalent conjugacy classes corresponding to the partition $(l, l) 户 2 l$.

The first question we are concerned with is: what is the possible value of l provided that $A_{2 l+1}$ with no conjugacy classes corresponding to the partition $(3+2 k, l) \mathrm{F}(2 l+1) ?$ The answer to this question is that $l=4+2 k$. In another direction, let $\beta=\pi_{1} \pi_{2} \ldots \pi_{t}$, where $\left\{\pi_{i}\right\}_{i=1}^{t}$
are disjoint cycles in S_{n} of lengths $\left\{l_{i}\right\}_{i=1}^{t}$ respectively. So the second question we are concerned with is: what are the possible values of $\left\{l_{i}\right\}_{i=2}^{t}$ provided that A_{n} has a

References

(1)Victor M. (2005). A Characterization of Alternating Groups, Algebra and Logic, 44(1): 54-69.
(2) Edward B. and Marcel H. (2001). powers of cyclic-classes in symmetric groups. J. Combinatorial theory, Series A 94: 87-99.
(3) James G. and Kerber A. (1984). The Representation Theory of the Symmetric Group. Addison-Wesley Publishing, Cambridge University press.
(4) Claire P. (1973). Ambivalence in Alternating Symmetric Groups, American Mathematical Monthly. 80(2):190-192.
(5) Ion A. (1996). About Ambivalent Groups, Ann. Math. Blaise Pascal. 3(2):17-
single ambivalent conjugacy classes corresponding to the partition $\left(l_{1}, l_{2}, \ldots, l_{t}\right) \mathrm{F}$ n, where $l_{1}=(3+2 k)$ and $n=\sum_{i=1}^{t} l_{i}$?
(6) Jorn O.(2009). Sign conjugacy classes in symmetric groups, Journal of Algebra. 322: 2793-2800.
(7) Laszlo H. and Burkhard K. (2005). Elements of prime power and their conjugacy classes in finite groups. J. Aust. Math. Soc. 78: 291-295.
(8) Edith A., John H., and Helena V. (2009). Products of Conjugacy Classes of the Alternating Group.
(9) Joseph R. (1995). An Introduction to the Theory of Groups, $4^{\text {th }}$ Edition. New York: Springer-Verlag.
(10) Dirk Z. (2010). Permutation matrices and the moments of their characteristic polynomial, Electronic Journal of Probability. 15(34):1092-1118.
22.

بينا في هذا البحث على انه اذا كان k عدد أولي فأن مجموعة التباديل ذات ال- (cycles) (3+2k) في الزمر المتتاوبة A_{n} تنكل صف متغاير أحادي في A_{n} لكل على ان مجموعة التباديل ذات ال-3 (cycles) في الزمر المتناوبة A_{n} نتُكل صف أحادي في A_{n} لكل $n \geq 5 ، ~ ك م ا ~$ قدمنا عدة نظريات أخرى.

