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Abstract 
In this paper, we prove that the equivalence between T-stabilities of modified Ishikawa 

and modified Mann iteration procedures for a self-mapping satisfying a certain contractive 

conditions. Our results extend several stability results in the literature. 
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1. Introductionand Preliminaries 

 
The concept of stability of a fixed point 

iteration procedure due to Ostrowski
(1)

 as 

mentioned by 
(2)

. In
(1)

 proved the stability of 

Picard iteration using the contraction 

condition. Note that, this is direct  conclusion 

for Banach᾿scontraction  principle. Since the 

Picard iteration  does not  converge to a  fixed  

point for all  kind of contraction mappings 

(such as the non- expansive mappings, for 

example see 
(3,p.481)

, to overcome thesedifficult, 

other fixed point iteration procedures were 

considered: Mann iteration, Ishikawa 

iteration…etc, see 
(4)

. The stability for Picard 

and Mann has been systematically studied by 
(5)

 in her Ph.D. Thesis and published in the 

papers
(6,7)

. In
(2,8)

 extended the results in 
(7)

.   

In
(9)

 established the same stability results for 

the same iteration processes using the same set 

of contractive definitions as in 
(7)

but thesame 

method of shorter proof as in 
(10)

. 

Let X be a normed  space, B be a nonempty 

subset of X and T be a self mapping on B. 

Recall some of iteration processes introduced 

by
(11)

.For    B, the sequence {un+   
 defined 

by 

un+1 = (1 αn)un+ αn  un, n=0,1,2,… (1) 

where{αn} is a sequence in [0,1], is known 

as modified Mann iteration process (see
(11)

). 

For x0   B,    

xn+1  (1   αn)xn  αn  yn, 

 (2)  

yn  (1  n)xn  n  xn,n=0,1,2,… 

                                                                                                                             

where {αn}, {βn} ⊂ [0,1]  and the 

iteration{xn+   
  is called the modified 

Ishikawa iteration(see
(11)

). In (2) if  n  0 we 

get (1). Replacing    by T in (1), (2), we 

obtain ordinary Mann, Ishikawa iteration, 

respectively. 

   An important practical feature of given 

fixed point iteration procedure is 

numerically stable if, “small” modifications 

in the initial data or in the data that are 

involved in the computation process, will 

produce a “small” in flounce on the 

computed value of the fixed point. 

Now, let {xn+   
  be the sequence  generated 

by an iteration procedure involving the 

operator T, 

xn+1 = f(  , xn),  n =0,1,2,. (3) 
 

where x0 B is the initial approximation and 

f is some function. Suppose {xn+   
  

converges to a fixed point p of T. 

 

For example, the modified Picard iteration is 

obtained from (3) forf (  , xn) =   xn,while 

the modified Mann iteration is obtained for 

f(  ,xn) = (1 αn)xn  αn  xn. 
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Suppose {xn+   
  converges to a fixed 

point p of T. when calculating {xn+   
 , then 

we cover the following steps: 

1. We choose the initial approximationx0  

B; 
 

2. We compute     f( 
 ,  ) but, due to 

various errors that occur during the 

computations (rounding errors, numerical 

approximations of functions, derivatives or 

integrals etc.), we do not get the exact value 

of   , but a different one, say  , which is 

however close enough to  , i.e.,     . 
 

3. Consequently,  when computing  x2 =  f 

(  , x1 )  we  will  actually  computx2  as x2 

= f(  , y1) ,and so, instead of the theoretical 

value x2 , we will obtain in fact another 

value, say y2, again close enough to x2, i.e., 

y2 x2, ..., and so on. In this way, instead of 

the theoretical sequence{xn+   
 ,defined by 

the given iterative method, we will 

practically obtain an 

approximatesequence{yn+   
 . We shall 

consider the given fixed point iteration 

method to be numerically stableif and only 

if, for ynclose enough (in some sense) to xn 

at each stage, the approximate 

sequence{yn+   
  still converges to the fixed 

point of T. 
 

The aim of this paper is to prove that the 

stability of modified Ishikawa iteration is 

equivalent to the stability of modified Mann 

iteration for more general contractive 

definitions than those of 
(12,13,14)

 and others.  
 

Our results will generalize and extend 

several equivalent T-stabilities results of
(15)

, 

and  
(16-18)

. 
 

Firstly, we recall the definition of concept 

of stability which idea introduced by 
(5-7)

 as 

the following: 

 

 

Definition 1.1:                                                                                                                                                                

Let X be a normed space, B be a 

nonempty subset of X and T be a self 

mapping on B, x0  B and suppose that the 

iteration procedure(3), that is, the 

sequence{xn+   
   produced by(3), converges 

to a fixed point p and f is some function. Let 

{yn+    
 be an arbitrary sequence in B and 

set  

   ‖       ( 
    )‖, n =0,1,2,..  (4) 

 

Then, the iteration (3) is said to be T-stable 

or stable with respect to T if and only if 

       n 0 implies       n  p. 
 

For example about stability when n =1 see 
(19, p.6)

 and 
(20, p.2)

. 

 

Now, we define some types of successively 

contraction conditions: 

For all x, y B, there exist a, 0  a   1, such 

that 

‖       ‖≤a‖   ‖(5) 

 

For all x, y   B, there exist b, 0  b  0.5, 

such that‖       ‖≤ 

b,‖      ‖   ‖     ‖-(6) 

 

There exist c, 0  c  0.5, such that 

‖       ‖≤c[‖      ‖   

‖       ‖], for all x, y   B.    (7) 

 

There exist real numbers a,b and c satisfying 

0 a 1, 0  b   0.5 and 0  c  0.5 such that 

for each x, y in B, at least one of the 

following is true : 

 

(Z1) ‖       ‖≤ a‖    ‖; 

(Z2)‖       ‖≤ 
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b [‖      ‖+ ‖     ‖ ];       

(Z3)‖       ‖≤ 

c [‖       ‖  ‖     ‖ ].(8)  

 

For each x, y in B, there exist h, 0  h  1 

such that 

‖       ‖≤ h max 

 {‖      ‖,‖       ‖ }    (9)   

 

For each x,y in B, there exist h,  0  h   1 

such that      

‖       ‖  h max 

 {‖    ‖ ‖      ‖ ‖     ‖}       (10) 

 

There exist h, 0  h   1 such that,   x, y  B 

‖       ‖  h  max  

{  x y   
 

 
, ‖      ‖  ‖     ‖ - , 

‖       ‖ ‖       ‖}    (11)                                                                  

 

For each x, y in B, there exist h, 0   h   1 

such that 

‖       ‖  h max 

{‖    ‖  ‖      ‖,‖     ‖ , 

 

 
, ‖       ‖   ‖       ‖ - }          (12) 

 

For all x, y B, there exist h, 0  h   1 such 

that   

‖       ‖  h max 

{‖    ‖  
 

 
, ‖      ‖   ‖     ‖- , 

 

 
, ‖       ‖  ‖       ‖ - }            (13) 

 

There exist h, 0  h  1 such that  x, y B 

‖        ‖≤h max 

 {‖   ‖ ‖      ‖,‖     ‖, 

‖       ‖ ‖       ‖} (14) 

 

For all x, y in B, there exist C,0 C  1 and 

for some L   0,  x, y   B such that 

‖       ‖   

C‖   ‖   L ‖      ‖,(15) 

 

     The conditions (5), (6) and (7) are 

independent since   is continuous for             

all  n but (6), (7) not necessary continuous 

(see
(12,21)

, when n = 1 as espial case).Clearly 

(8) is generalization of (5), (6), (7). Below 

we prove that (8) implies to (14) and (15) 

independency. And then, one can prove that 

(9), (10),(11),(12),(13) and (13) implies (14) 

by similar way. 

 
Proposition 1.1: 

If T is holding the condition (8),  then  

(i)T satisfies (14) , (ii)T satisfies (15) 

Proof:                                                                                                                                                      

The proof of part (i) is clearly.  

Now, To proof (ii):                                                                        

If T is satisfying (8) for all x ,y in B, then at 

least one of (Z1), (Z2) or (Z3) is true.     

If (Z1) holds then‖       ‖ ≤ a ‖    ‖, 

thus condition (15) hold where C = a , L = 

0.                                 If (Z2) satisfies 

then‖       ‖≤ 

b,‖      ‖  ‖     ‖- 

≤b,‖      ‖   ‖   ‖  ‖     ‖  

‖       ‖-‖       ‖≤
 

   
‖   ‖  

  

   
‖     ‖                                                                      
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Since 0   b   0.5 therefore we have (15) 

with C = 
 

   
  and L = 

  

   
 .                                     

If (Z3) holds, 0   C   0.5  then similarly of 

(Z2) we get (15) satisfies.     

 
On the other hand, we pose the following 

question: Are (14) and (15) independent? In 

fact, we cannot have an exact answer but we 

give a part of answer in the following 

proposition and example: 

 

Proposition 1.2: 

Any mapping satisfying condition (14) with 

0 < h < 1/2 is also, satisfying condition (15). 

Proof:Let T: B   B be a mapping for 

which satisfying (15) for all x ,y in B. 

To prove ,we have five possible cases:  
 

Case 1. When  ‖       ‖≤ h ‖   ‖ 

then condition (15) is obviously satisfied 

(with C = h and L = 0). 

Case 2. When ‖       ‖≤ h ‖     ‖ 

then (15) holds  (with C = 0 and L = h). 

Case 3. ‖       ‖≤ h ‖     ‖ 

  ,‖   ‖  ‖     ‖  ‖       ‖- 
 

(   )‖       ‖

  ,‖   ‖     ‖     ‖- 

‖       ‖  
 

   
‖   ‖

    
 

   
‖     ‖ 

which is (15) with C = 
 

   
  1 (since h   

 

 
) and L = 

 

   
  0. 

Case 4. ‖       ‖≤ h ‖     ‖ 

  ,‖     ‖  ‖       ‖- 

‖       ‖  
 

   
‖     ‖ 

  ‖   ‖   
 

   
‖     ‖ 

Thus, the condition (15) is satisfying with  

C = 0 and L =  
 

   
  0. 

Case 5. When ‖       ‖≤ 

h ‖     ‖   ,‖   ‖  ‖     ‖- 

which is (15) with C = h and L = h.  

This completes the proof .                   

 

Now ,we give example satisfies 

condition  (15) but not  condition (14): 

 

Example 1.1: 
 

Let X = [0,1] be unit interval with usual 

norm when n = 1 define T:[0,1] [0,1] by 

T(x) = 
 

 
  for all x   [0, 1) and T(1)  

 

 
 , if x 

= 1. Then T satisfies condition (15), since 

‖     ‖   ‖   ‖   ‖    ‖,     

then  |
 

 
 

 

 
|   |   |   |  

 

 
|  

which is true if we take C  
 

 
 and L   2. 

For any      , if x = h, y = 0 then 

T(x) = 
 

 
 , T(0) = 0, hence ‖     ‖  

 

 
 , 

and h    {  
 

 
   

 

 
  }    .  

 

Therefore T is not satisfy (14).  

 

For equivalence between T-stabilities, 

suppose 

that     ( )     *  +  *  + *  + ⊂   be 

such that           , let the 

sequences *  + *  +  ⊂ (   )  Satisfy 

        =        ,∑       
   .  (16) 

 

The following non-negative sequences are 

well defined for all n  

   ‖     (    )      
   ‖  (17) 

We consider      (    )      
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   ‖     (    )      
   ‖   (  ) 

 

Definition 1.2: 

a. The modified Mann iteration (1) is said to 

be T-stable if 

          ,            . 

b. The modified Ishikawa iteration (2) is 

said to be T-stable if 

           ,             . 
 

precisely the following conditions 

equivalence: 
 

c- For all *  + *  + ⊂ (   )   satisfying (16) 

the modified  Ishikawa iteration is T-stable . 
 

d-For all*  + *  + ⊂ (   )  satisfying(16), 

   
   

     

   
   

‖     (    )      
   ‖    

implies that           . 
 

Also, for modified Mann iteration  

e- For all *  + ⊂ (   ) satisfying (16), the 

Mann iteration is T-stable . 
 

f- For all *  + ⊂ (   )satisfying (16), 

   
   

    

   
   

‖   (    )      
   ‖    

           . 

 

2.  Main Results 

We give the following results: 
 

Theorem 2.1: 

Let X be a normed space, B be a 

nonempty convex subsetof X . Let T be a 

self-mapping satisfying a condition (14) 

with a fixed point p. For     B, let*  +   
  

and *  +   
 defined by (1) and (2) 

respectively with*  +    *  +  ⊂ (   )which 

satisfying (16). Then, the following 

assertions are equivalent: 

m- The modified Ishikawa iteration is T- 

stable ; 

n-The modified Mann iteration is T-stable . 
 

Proof : 

From (17) and (18) show that (m)   (n) 

is mean that (d)  (f).        

i.e. suppose that the modified Ishikawa 

iteration is T-stable.                                       

Then, we prove that modified Mann 

iteration is T-stable.  

Now , by using (17) and (14) with       , 

     , we obtain 

‖     (    )      
   ‖ 

 ‖     (    )      
   ‖

   ‖ 
     

   ‖      (  ) 

Since                                                                                                     

‖      
   ‖         

*‖     ‖ ‖    
   ‖ ‖  

     ‖ ‖    
   ‖ ‖  

     ‖+ 

         *‖     ‖ ‖    
   ‖ ‖  

   ‖  ‖    
   ‖

 ‖      
   ‖ ‖  

     ‖   ‖ 
     

   ‖  

‖     ‖  ‖    
   ‖+ 

 

    { ‖     ‖  ‖    
   ‖  

 

   
,‖     ‖   ‖    

   ‖-  
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‖    

   ‖  ,‖     ‖  

‖    
   ‖-} 

 
 

   
,‖     ‖

 ‖    
   ‖-         (  ) 

Hence (20) implies to                                                                                                                                           

‖      
   ‖ 

 
 

   
‖     ‖  

 

   
,‖     ‖

 ‖    
   ‖

 ‖      
   ‖- 

(  
 

   
) ‖      

   ‖   

 

   
‖     ‖  

 

   
,‖     ‖

 ‖    
   ‖- 

    

   
‖      

   ‖

 
 

   
‖     ‖

 
 

   
,‖     ‖ 

 ‖    
   ‖- 

‖      
   ‖

 
 (   )

(    )(   )
‖  

   ‖

 
 (   )

(    )(   )
,‖  

   ‖  ‖    
   ‖ 

 
 

    
‖     ‖  

 

    
,‖     ‖

 ‖    
   ‖- 

 
  

    
‖     ‖  

 

    
  

‖    
   ‖                                                (  ) 

Now, substituting (21) in (19), we have 

‖     (    )      
   ‖ 

 ‖     (    )      
   ‖

   ,
  

    
‖     ‖

 
 

    
‖    

   ‖- 

 ‖     (    )      
   ‖

   ,
  

    
‖,(    )  

     
   -    ‖

       
 

    
‖    

   ‖- 

 ‖     (    )      
   ‖

   ,
  

    
((    )‖  

   ‖ 

   ‖    
   ‖)  

 

    
‖    

   ‖- 

 ‖     (    )      
   ‖

   
      

    
‖    

   ‖

           

By condition (d) thus 

       ‖     (    )      
   ‖= 

0, implies that              

            ‖     (    )   

   
   ‖                     . 

Conversely, we show that (f)   (d) i.e. 

Assume that the modified Mann iteration is 
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T-stable . Then, we shown that the modified 

Ishikawa iteration is T-stable. 

 Now , by using (14) and (18) with       , 

     , we have . 

‖     (   )      
   ‖ 

 ‖     (    )      
   ‖

   ‖ 
     

   ‖ 

 ‖     (    )      
   ‖

   [
 

   
‖     ‖

  
 

   
‖    

   ‖] 

 ‖     (    )      
   ‖

   ,
 

   
‖  

 ,(    )      
   -‖

        
 

   
‖    

   ‖ 

 ‖     (    )      
   ‖

   ,
 

   
((    )‖  

   ‖ 

   ‖    
   )‖  

 

   
‖    

   ‖- 

 ‖     (    )      
   ‖

   
     

   
‖    

   ‖

           

Hence condition (f) show that 

      ‖     (    )      
   ‖= 0 

implies to           .  

Thus       ‖     (    )   

   
   ‖    ,  

yields            .                               

 

Remark 2.1:As consequence of Theorem 

(2.1) we have Theorem (3.6) and corollary 

(3.7) in 
(15, p.1889-1890)

 directly. 
 

Corollary 2.1:          *  +   
  *  +   

   

*  + *  +and p be as in Theorem (2.1). Let 

T: B  B be a mapping satisfying condition 

(8) such that the conclusion of theorem (2.1) 

satisfies. 
 

Proof:From (17) and (18) show that (m)  

(n) is equivalent (d)  (f).  

To prove that (d)   (f). i.e. Suppose that 

the modified Ishikawa iteration is T-stable.  

Then, we prove that modified Mann 

iteration is T-stable.                 

Now, by using (8) and (17) with       

and      , we get  

‖     (    )      
   ‖ 

 ‖     (    )      
   ‖

   ‖ 
   

     ‖                                      (  ) 

Since T is holding the condition (8), then the 

following condition  

‖      
   ‖   ‖     ‖  

  ‖    
   ‖                                           (  )                                                      

holds         in B, where                                                                                                                  

     {  
 

   
 
 

   
}, where     0.5.                                                                                                                  

From(23) we have  

‖      
   ‖

  ‖     ‖

   ,‖     ‖

 ‖    
   ‖

 ‖      
   ‖- 

 
 

    
‖     ‖

 
  

    
,‖     ‖

 ‖    
   ‖- 
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‖     ‖

 
  

    
‖    

   ‖           

The proof completes by a same way of 

Theorem (2.1).         
 

Corollary2.2:        *  +   
  *  +   

   

*  + *  + and p be as in Theorem (2.1) and 

T: B   B be a mapping satisfying (13)  such 

that the conclusion of  Theorem (2.1) is 

satisfying. 
 

Proof: From (17) and (18) the equivalent 

between (m) (n) is mean that (d) (f). To  

prove  that  (d)   (f).  i.e. If  modified  

Ishikawa  iteration  is  T-stable, then  the 

modified Mann iteration is T-stable.                                                                                    

By using condition (13) and (17) with 

     and      , we get   

‖     (  α )   α  
   ‖ 

 ‖     (  α )   α  
   ‖  

α ‖ 
     

   ‖     (24)                      

Observe that                                                                            

‖      
   ‖ 

     {‖     ‖ 
 

 
,‖    

   ‖

 ‖    
   ‖- 

 

 
,‖    

   ‖

    ‖    
   ‖-} 

       {‖     ‖ 

 

 
,‖    

   ‖

 ‖     ‖  ‖    
   ‖

    ‖      
   ‖- 

 

 
,‖  

     ‖  ‖ 
     

   ‖

 ‖     ‖

 ‖    
   ‖-} 

    { ‖     ‖ 
 

   
, ‖    

   ‖

 ‖     ‖- 
 

   
, ‖    

   ‖

       ‖     ‖} 

    ‖     ‖     ‖    
   ‖         (  ) 

where      {   
 

   
}, where     1.                                                                                                                   

Thus (25) implies to 

‖      
   ‖

  ‖     ‖

   ,‖     ‖

 ‖    
   ‖

 ‖      
   ‖- 

 
 

    
‖     ‖

 
  

    
,‖     ‖

 ‖    
   ‖- 

 
  

    
‖     ‖  

  

    
‖    

   ‖ 

The proof follows by a same way of 

Theorem (2.1) .               
 

Theorem 2.2:Let    *  +   
  *  +   

  

*  + *  +and p be as in theorem (2.1)and T 

be a self mapping on B satisfying (15) such 

that the following are equivalent : 
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m- The modified Ishikawa iteration is T-

stable ; 

n- The modified Mann iteration is T-stable. 

Proof:By (17) and (18) we known the 

equivalence (m) (n) means that(d) (f). 

So, we will prove that (d)   (f). i.e. 

Suppose that the modified Ishikawa iteration 

is T-stable. To show that the modified Mann 

iteration is T-stable.                                                                                                                                            

By using condition (15) and (17) with 

     and      , we have 

‖     (    )      
   ‖ 

 ‖     (    )      
   ‖  

  ‖ 
     

   ‖    (26)                             

Since 

‖      
   ‖

  ‖     ‖

  ‖    
   ‖(  ) 

From (27), we get     

‖      
   ‖

  ‖     ‖

  ,‖     ‖

 ‖    
   ‖

 ‖      
   ‖- 

 
 

   
‖     ‖

 
 

   
,‖     ‖

 ‖    
   ‖- 

 
   

   
‖     ‖  

 

   
‖   

   ‖         (28) 
 

Substitution (28) in (  ), we obtain  

‖     (    )      
   ‖ 

 ‖     (    )      
   ‖

   [
   

   
‖     ‖

 
 

   
‖    

   ‖] 

 ‖     (    )      
   ‖

   [
   

   
‖((    )  

    
   )    ‖

       
 

   
‖    

   ‖] 

 ‖     (    )      
   ‖

   [
   

   
((    )‖  

   ‖         ‖ 
      ‖)

 
 

   
‖    

   ‖] 

 ‖     (    )      
   ‖

   [
   

   
  ‖ 

      ‖

 
 

   
‖    

   ‖] 

 ‖     (    )      
   ‖  

  [
   

   
   

 

   
] ‖       ‖   , 

n  . 

From  condition (d), we get that,  

      ‖      (    )      
    ‖  = 

0, yields           . 

Hence        ‖     (    )   

   
   ‖    ,  

implies that           . 

Conversely, we prove that (f)  ( ).  By 

using condition (15) and (18) with         

      and      , we have 

‖     (   )      
   ‖ 
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 ‖     (    )      
   ‖

   , ‖     ‖

  ‖    
   ‖- 

 ‖     (    )      
   ‖

   [ ‖  

 ((    )      
   )‖

    ‖    
   ‖] 

 ‖      (    )      
   ‖

   [  ((    )‖     ‖ 

           ‖    
   ‖)

  ‖    
   ‖] 

 ‖     (    )      
   ‖  

  (     )‖    
   ‖     as n  .                                                                                                                                             

Since condition (f) yields       ‖     

(    )      
   ‖   , implies that 

          .  

Then, we get       ‖     (    )   

   
   ‖     

implies that              
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 عمميات التكرار البعض ل استقرارية T –بين  التكافؤ
 نور صدام طارش    و    سموى سممان عبد

 .بغداد ة جامع -الصرفة معمومالتربية ابن الهيثم لكمية  -قسم الرياضيات
 

 الخلاصة
لتطبيق المطور التكرارية  مان  ة ولعممياتالمطور  ية لتكرار اا أيشيكاولعمميات  استقرارية T –نبرهن التكافؤ لفي هذا البحث  

 . سابقا نتائج الاستقرارية في البحوث المنشورةنكماشية . نتائجنا تعميم لذاتي يحقق شروط ا


