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Abstract 
In this paper the steady-state approximation (SSA) method has been applied to 

determine an effect of small friction on deformation of tall solid cylinders in the axial 

compression. Where a first order solution is represent compression of a solid cylinder. The 

zero order solution (with no friction) is trivial and can be obtained from  a general law with 

no difficulty. 
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1. Introduction  
 

The steady-state approximation 

(SSA) has been applied in axisymmetric 

compression of a solid cylinder , typically 

argue that some of the intermediates are 

highly reactive, so that they are removed 

as fast as they are made. Then set the 

corresponding rates of change to zero. 

What we are saying is not that these rates 

are identically zero, of course, but that 

they are much smaller than the other rates 

of reaction. The steady-state 

approximation is often surprisingly 

accurate, but the classical arguments lack 

rigor and don’t lead to any satisfying 

mathematical generalization which can be 

used to improve on the approximation. 

There is mathematical model which build 

on the (SSA) and provide the required 

generalization .Slow manifold theory: The 

curves or surfaces which arise from the 

(SSA) can in fact be understood as 

approximations to slow invariant 

manifolds of the differential equations .To 

understand the (SSA), we will find that we 

are led to problems in which the small 

parameter multiplies a derivative. 
(1)

 

Axial and plane-strain compression 

tests are widely used for the determination 

of stress-strain data, ductile fracture 

conditions and friction laws. In the case of 

the determination of stress-strain curves, 

one of the principal limitations of the test 

is caused by friction . Also, one of the 

ideal basic tests for determining 

workability diagram assumes the axial 

compression with no friction 
(2)

. In such 

conditions, the friction stress is very small. 

For example, assuming Coulomb’s 

frictional law the coefficient of friction has 

been evaluated to less than 0.01 or even 

0.001. 
(3)

  

 

2. Formulating the Mathematical 

Model 
Consider a solid cylinder of initial 

radius R0 and the height 2H0 subject to 

compression between two parallel, well-

lubricated plates, and introduce a 

cylindrical coordinate system (Fig.1a). The 

side surface of the cylinder is stress free. 

The radial and axial components of the 

velocity will be denoted by ur and uz, 

respectively, and the non-zero components 

of the stress tensor in the cylindrical 

coordinates by rr, , zz, and rz. The 

plates move with a velocity of the 

magnitude u0 which may depend on the 
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current half-height of the cylinder, H. 

Because of symmetry, it is sufficient to 

find the solution at 0z  .
(4)

 

Obviously, 

0

dH
u

dt
    (1) 

where t is the time, and 

0zu u    (2) 

at z H . At the axis of symmetry, r = 0, 

0ru       and     0rz    (3) 

Also, at the plane of symmetry, z = 0, 

0zu       and     0rz    (4) 

 

                   
 

  
 

Figure 1: shapes of cylinders compressed 

without (a) and with (b) friction  

 

The boundary conditions Eqns. (2) through 

(4) are valid independently of barreling of 

the free surface. Barreling develops 

because of friction. It is supposed in the 

present paper that the friction stress, f , is 

small and is given by 

( , )rz f r H     ,         1    (5) 

at z = H. In general, the function  

depends on physical quantities such as the 

tangent velocity at the friction surface or 

the normal stress acting on this surface. 

However, it will be seen later that for the 

case under consideration it can be 

represented in the form of (5). If 0   

barreling develops (Fig.1b) and the 

conditions at the free boundary are: 

0n       and     0n    (6) 

where n  and n  are the components of 

the traction vector. In the case of 

deformation with no barreling, Eqn. (6) 

reduces to 

0rr       and     0rz    (7) 

at r = R, where )(HRR   is the current 

radius of the cylinder. The shape of the 

free surface can be described as 

 ,r R z H    (8) 

A direct problem consists of prescribing 

the function   involved in Eqn. (5). Then, 

the function  involved in (8) should be 

found from the solution. A great difficulty 

here is that the function  is in fact 

unknown since the direct measurement of 

the friction stress is very difficult and 

many methods of experimental 

determination of the friction stress are 

based of measurements of geometric 

parameters . On the other hand, the current 

shape of the free surface can be found 

experimentally with a high accuracy 
(4)

. a 

general solid constitutive law has the 

following form :  

ij ijs  ,  (9) 

2

3

2
Yijijss   (10) 



Basrah Journal of Science (A)                                                           Vol.34(2), 151-156, 2016 
 

153 

 

where ij  are the components of the strain 

rate tensor, ijs  are the components of the 

stress deviator tensor,  is non-negative 

multiplier, and 
Y  is the tensile yield 

stress. 
Y  may depend on the equivalent 

strain rate eq , the equivalent strain eq  

defined respectively by 

2

3
eq ij ij   ,           

eq

eq

d

dt


 ,  (11) 

and other internal variables. Equation (9) 

includes the incompressibility equation. 

Equations (9) and (10) should be 

complemented with the equilibrium 

equations. In the cylindrical coordinates, 

the non-trivial equations have the 

following form 

  
1

0rr zr
rr

r z r


 
 

 
   

 
,     

1
0rz zz

rz
r z r

 


 
  

 
. (12) 

 

3. Zero Order Solution  
 

The zero order solution, 0  , is trivial 

for the constitutive equations in their 

general form. The stress distribution is 

given by 

0rz rr         and     
zz Y     (13) 

This representation satisfies the stress 

boundary conditions of Eqns. (3) and (4), 

the condition (5) at 0  , and the 

boundary conditions (7). Equation (10) is 

also satisfied. The distribution (13) is 

compatible with the equilibrium equations 

(12) if Y  is independent of z. Assume the 

velocity field in the form: 

H

z
uu z 0      and     0

2
r

ru
u

H
   (14) 

Then, the components of the strain rate 

tensor are : 

0

2
rr

u

H
   ,   0

zz

u

H
   ,   0rz . (15) 

It follows from Eqn. (15) the 

incompressibility equation is satisfied and 

from Eqns. (15) and (11) that eq and 

eq are independent of the space 

coordinates. The latter means that 
Y  is 

independent of the space coordinates and 

thus the equilibrium equations are 

satisfied. It is possible to verify by 

substitution of Eqns. (13) and (15) into (9) 

that the latter is also satisfied. Using (10) 

and the solution (15) the multiplier in the 

flow rule (9) is determined in the form:   

)eq,eq(YH2

0u3


  .  (16) 

 

4. First Order  Approximation 
 

The first order approximation is restricted 

by: 

0( , )Y eq eq const     .  (17) 

All values of the order )(O  will be 

noticed by upper tilde. Thus, the flow rule 

and incompressibility equation take now 

the form: 

rzs~rz
~

  ,    )s~rs~(
~

r
~

  ,  

)rs~2zs~(r
~

2z
~

  , 

0
~

z
~

r
~

  .  (18) 

The yield criterion (10) in the first 

approximation gives: 

0zs~2s~rs~   .   (19) 

As a result, one can obtain the following 

linear relationships between the 

components of the stress deviator and 

strain rate tensor: 


~

r
~

s~2rs~2  ,  0~ zs .   (20) 

Substituting the aforementioned formulae 

in the equilibrium conditions one can 

obtain, after some algebra, the equation in 

terms of strain rate components:  
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   0zr
~

r

1

r2r

2

2z

2
~

r
~

zr

1

zr

2

2

1





























































 .

 (21) 

At the top of the specimen, the boundary 

conditions follow from (2), (14) and (5): 

0
Hz

)z,r(zu~ 


,     

)H,r(
Hz

)z,r(rzs~ 


,  (22) 

At the symmetry plane, 0z  , and  the 

symmetry axis, 0r  , the respective 

boundary conditions (3) and (4) transform 

to: 

0
0z

)z,r(zu~ 


,       0
0z

)z,r(rzs~ 


.  (23) 

and: 

0
0r

)z,r(ru~ 


,       0
0r

)z,r(rzs~ 


. (24) 

Finally, the free boundary conditions (6) 

can be written in the main terms as: 

0
Rrrs~~ 


 ,  (25) 

)H,z(zzRrrzs~  


,  (26) 

where ~  is the first order approximation 

for pressure. Note that the boundary 

condition (25) has to be considered as the 

initial condition in order to solve Cauchy 

problem for the following equilibrium 

equation: 















































z

ru~

r

zu~

z2

1
ru~

r

1

rr

1
zs~

r

~

r
 ,  (27) 

when the first term approximation for the 

velocities, strain rate tensor and the stress 

deviator is found, so that the right-hand 

side of (27) is known. Note also that the 

function )H,z(  satisfies the following 

additional condition due to material 

incompressibility: 

0
H

0

dz)H,z(  . (28) 

To solve the boundary value problem (21) 

– (24), Eqn. (21) should be transformed, 

taking into account incompressibility 

condition: 

0zu~

z
ru~

r

1

r



















, (29) 

to the form:   

0ru~2Mru~M
2z

2

ru~
4z

4










,  (30) 

Here we have introduced a new notation 

for the differential operator M  by the 

formula:  

2r

1

rr

1

2r

2
M 









 .  (31) 

Incorporating a well known property of the 

Bessel functions ,  

)mr(1J2m)mr(1MJ  , it is natural to 

seek for the solution to the problem by 

Fourier decomposition method in form: 

)z(rU)mr(1J)z,r(ru~  .  (32) 

 For the function )z(rU one immediately 

obtains the following partial differential 

equation: 

0rU4mrU
2z

2
2mrU

4z

4










,  (33) 

which has four linearly independent 

solutions of the form aze)z(rU  . Here 

parameters  jimjm)m(ja   , 

4,...,1j   can be easily calculated: 














 i

2

1

2

3
m1a , 














 i

2

1

2

3
m2a , 














 i

2

1

2

3
m3a ,                














 i

2

1

2

3
m4a .  

As a result, the solution to equation (24) 

has the form: 
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
















































2

mz
sin4C

2

mz
cos3C2

3mz

e

2

mz
sin2C

2

mz
cos1C2

3mz

e

)mr(1J

)z,r(ru~

.  

Equation (29) together with boundary 

conditions (22)1 and  (23)1  allows us to 

find the velocity component:  




























2

zkm
sin

)k(
2

D2

3zkm

e

2

zkm
sin

)k(
1

D2

3zkm

e

)r(kF

)z,r(zu~

 (34) 

where 

H

k2
km


 ,  ,....2,1k   (35) 

Incorporating all other homogeneous 

boundary conditions (22) - (24) one can 

finally obtain the solution to the problem 

in terms of velocities: 

.

1k

)rkm(1J

2

zkm
sin*

2

3zkm
sinh3

2

zkm
cos*

2

3zkm
cosh

kD
2

km

)z,r(ru~

)rkm(1J
r

1

r2

zkm
sin* 

(36)   ,

1k 2

3zkm
coshkD)z,r(zu~

























































































































 

where unknown up to now constants kD  

have to be found from the given friction 

law (22)2  using the following 

representation for the shear stress: 














































































1k

)rkm(1J

2

zkm
cos*

2

3zkm
sinh

2

zkm
sin*

2

3zkm
cosh3

kD
2

32
k

m

2

1

rzs~



 

or in term of the given function  : 

)rkm(1J
2

3Hkm
sinh*

1k
kD2

k
mk)1(

)H(4

3
)H,r(

























   

When the constants kD  are calculated, the 

deviation of the compression can be found 

from (26) with the use of (28): 

))H(Rkm(1J
2

zkm
sin

2

3zkm
sinh*

1k

kDkm

30u

H

2

3Hkm
sinh*

1k

))H(Rkm(1JkDk)1(
30u2

1
)H,z(



















































  

5.Conclusion  
The steady-state approximation 

(SSA) method has been applied to account 

the axial compression of tall solid 

cylinders with  small friction . From 

through the application of this technique 

on the problem  appeared  easy, effective 

and accurate in the calculation of the 

compression with a small friction.  
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 الصمبة الطويمة مع وجود الاحتكاك الصغير الضغط المحوري للاسطوانات لإيجاداستخدام تقريب الحالة الثابتة 
 

 *    و     ميثاق مهدي عمي**صادق عبد العزيز مهدي
 الجامعة المستنصرية –كمية التربية  –قسم عموم الحاسبات *

 دائرة الرعاية العممية –وزارة الشباب والرياضة **
 

 الخلاصة
 

جقزٍب انحانة انثابحة نححدٍد مدى جأثَز الاححكاك انصغَز عهي جشوٍه الاسطواوات انصهبة طزٍقة  طبقث فٌ هذا انبحث 

انصهبة وحم  نلأسطواوةانطوٍهة عىد انضغظ انمحورً ، حَث ان حم انزجبة الاوني نهىظاو ٍمثم انضغظ انمحورً 

 ) بدون اححكاك ( ٍعحبز حم جافه حَث ٍمكه انحصول عهَه مه انقاوون انعاو بدون صعوبة .انزجبة انصفزٍة 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


