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Abstract 

This paper proposes a semi-analytic technique to solve the second order singular eigenvalue problems 

for ordinary differential equation with boundary conditions using oscillator interpolation. The 

technique finds the eigenvalue and the corresponding nonzero eigenvector which represent the solution 

of the equation in a certain domain. Illustrative examples are presented, which confirm the theoretical 

predictions provided to demonstrate the efficiency and accuracy of the proposed method where the 

suggested solution compared with other methods.Also, proposed a new formula developed to estimate 

the error help reduce the accounts process and show the results are improved. The existing bvp code 

suite designed for the solution of boundary value problems was extended with a module for the 

computation of eigenvalues and eigen functions. 

 

Key words:Eigenvalue problems, Singular 

eigenvalue problems. 

1. Introduction 

The eigenvalue problems (EVP′s) involves 

finding an unknown coefficient ( eigenvalue ) λ 

and the corresponding nonzero eigenvector that 

satisfy the solution of the problem 
(1)

.  

The eigenvalue problems can be used in a variety 

of problems in science and engineering. For 

example, quadratic eigenvalue problems arise in 

an oscillation analysis with damping
(2), (3)

and 

stabilityproblems in fluid dynamics 
(4)

, and the 

three-dimensional (3D)Schrödinger equationcan 

result in a cubic eigenvalue problem 
(5)

. 

         Similarly, the study of higher order systems 

of differential equations leads to a matrix 

polynomial of degree greater than one 
(5)

. 

However, its applications are more complicated 

than standard and generalized eigenvalue 

problems, one reason is in the difficulty in 

solving the EVPs. Polynomial eigenvalue 

problems are typically solved by linearization 
(6), 

(7)
.Rachůnková et al.,

(8)
 study the solvability of 

large types of nonlinear singular problems for 

ordinary differential equations. Hammerling et 

al.,
(9)

 concerned with the computation of 

eigenvalues and eigenfunctions of singular 

eigenvalue problems(EVPs) arising in ordinary 

differential equations, two different numerical 

methods to determine values for the 

eigenparameter such that the boundary value 
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problem has nontrivial solutions 

are considered. The first approach incorporates a 

collocation method. The second solution 

approach represents a matrix method.Tawfiq and 

Mjthap
(10)

suggest a  semi analytic technique to 

solve a class of singular eigenvalue problem. 

This paper suggest a semi-analytic technique to 

solve singular eigenvalue problems (SEVP′s) 

using osculator interpolation polynomial. That is, 

propose a series solution of singular eigenvalue 

problems with singularity of first-, second- and 

third- kinds by means of the osculator 

interpolation polynomial. The proposed method 

enables us to obtain the eigenvalue and 

corresponding nonzero eigenvector of the second 

order singular boundary value problem (SBVP).  

 

2. Singular Boundary Value 

Problem 

The general form of the second order two point 

boundary value problem (TPBVP) is: 

       y′′ + P(x) y′ + Q(x) y = 0, a ≤ x ≤ b,        (1) 

y(a) = A and y(b) = B, where A, B ϵ R 

          There are two types of a point x0 [0,]: 

Ordinary point and Singular point. 

A function y(x) is analytic at x0 if it has a power 

series expansion at x0 that converges to y(x) on 

an open interval containing x0. A point x0 is an 

ordinary point of the ODE (1), if the functions 

P(x) and Q(x) are analytic at x0. Otherwise x0 is a 

singular point of the ordinary differential 

equations. On the other hand if P(x) or Q(x) are 

not analytic at x0 then x0 is said to be a singular 

point 
(8)

. 

Definition 1.1
(11)

 

            A TPBVP associated to the second order 

differential equation (2) is singular if one of the 

following situations occurs:  

• 0 and/or 1 are infinite; 

• fis unbounded at some x0[0, 1]; 

• fis unbounded at some particular value of y or 

y′. 

3. Other Singular Problems 

       Consider four kinds of singularities 
(12)

: 

 The first kind is the singularity at one of the 

ends of the interval [0, 1]; 

 The second kind is the singularity at both 

ends of the interval [0, 1]; 

 The third kind is the case of a singularity in 

the interior of the interval; 

 The fourth and final kind is simply treating 

the case of a regular differential equation on 

an infinite interval.  

In this paper, we focus of the first  three kinds.    

Note 

         One deals of this thesis is to solve singular 

eignvalue problems with specific boundary 

conditions as the form:  

 (x- a)
m 

y′′ = λ f(x, y, y′); 0≤ x ≤1, a ϵ [0,1]   (2)  

where m is integer and f is nonlinear functions.

 

4. Osculator Interpolation Polynomial 
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In this paper we use two-point osculatory 

interpolation polynomial; essentially this is a 

generalization of interpolation using Taylor 

polynomials. The idea is to approximate a 

function y by a

polynomialP in which values of y and 

any number of its derivatives at given points are 

fitted by the corresponding function values and 

derivatives of P 
(13)

.  

We are particularly concerned with fitting 

function values and derivatives at the two end 

points of a finite interval, say [0, 1], i.e., P
(j)

(xi) = 

f
(j)

(xi),  j = 0, . . . , n, xi = 0, 1, where a useful and 

succinct way of writing oscillatory 

interpolantP2n+1 of degree 2n + 1 was given for 

example by Phillips 
(14)

 as: 

P2n+1(x)=


n

j 0

{y )( j (0)q
j
(x)+(-1) j y(j)(1)q

j
(1-x)},(3) 

q
j
(x)=(x j /j!)(1-x) 1n 





jn

s 0







 

s

sn
x

s
=Q j (x)/j!, (4) 

so that (3) with (4) satisfies: 

y )( j (0)=
)(

12

j

nP  (0), y )( j (1)=
)(

12

j

nP  (1), j=0,1, 2,…, n 

.implying that  P2n+1 agrees with the 

appropriately truncated Taylor series for y about 

x = 0 and x = 1. We observe that (3) can be 

written directly in terms of the Taylor 

coefficients    and    about x = 0 and x = 1 

respectively, as: 

P2n+1(x) = 


n

j 0

{   Q j (x) + (-1)   Q j (1-x)},(5) 

5. Solution of Second Order Singular 

Eigenvalue Problems   

In this section, we suggest a semi-analytic 

techniquewhich is based on oscillatory 

interpolating polynomials P2n+1andTaylor series 

expansion to solve 2
nd

 order singular eigenvalue 

Problems (SEVP′s).   

          A general form of 2
nd

 order SEVP's is (if 

the singular point is x = 0): 

x
m

 y
"
(x) = λ f( x, y, y

'
 ),0 ≤  x ≤ 1;        (6a) 

where f are in general nonlinear functions of 

their arguments and m is integer. 

Subject to the boundary condition(BC): 

  In the case Dirichlet BC: y(0)= A,y(1) = 

B,where A, B ϵ R             (6b) 

  In the case Neumann BC:y′(0)= A,y′(1) = 

B,whereA, Bϵ R          (6c) 

  In the case Cauchy or mixed BC: y(0)= A, y′(1) 

= B, where A, B ϵ R           (6d).Or 

y′(0)= A, y(1) = B, where A, B ϵ R           (6e)    

             Now, to solve this problems by 

suggested method doing the following steps: 

Step one:-  

        Evaluate Taylor series of y(x) about x = 0, 

i.e., 

y=





0i

i

i xay =a 0 +a 1 x+


2i

a i x i      (7a)        

where y(0) = a0, y'(0) = a1, y"(0) / 2! = a2, …, 

y
(i)

(0) / i! = ai , i= 3, 4,… 

        And evaluate Taylor series of y(x) about x = 

1, i.e., 

y =





0
)1(

i

i

i xby =b 0 +b 1 (x-1)+


2i

b i (x-1) i (7b) 

where y(1) = b0, y'(1) = b1, y"(1) / 2! = b2 , … , 

y
(i)

(1) / i! = bi ,  i = 3, 4,… 

Step two:- 

j

http://en.wikipedia.org/wiki/Cauchy_boundary_condition
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        Insert the series form (7a) into equation (6a) 

and put x = 0, then equate the coefficients of 

powers of x to obtain a2. 

Insert the series form (7b) into equation (6a) and 

put x = 1, then equate the coefficients of powers 

of (x-1) to obtain b2. 

 

 

Step three:- 

Derive equation (6a) with respect to x, to get new 

form of equation say (8) as follows: 

mx
m-1

 y
"
(x) + x

m

dx

yyxdf
xy

)',,(
)('''   ,(8)                 

then, insert the series form (7a) into equation (8) 

and put x = 0 and equate the coefficients of 

powers of x to obtain a3, again insert the series 

form (7b) into equation (8) and put x = 1, then 

equate the coefficients of powers of (x-1) to 

obtain b3. 

Step four:- 

        Iterate the aboveprocess many times to 

obtain a4, b4 then a5, b5 and so on, that is, to get ai 

and bi for all i ≥ 2, the resulting equations can be 

solved using MATLAB version 7.10, to obtain ai 

andbi for all i2. 

Step five:- 

        The notation implies that the coefficients 

depend only on the indicated unknown's a0, a1, 

b0, b1, and λ, use the BC′s to get two coefficients 

from these, therefore, we have only two 

unknown coefficients and λ. Now, we can 

construct two point osculatory interpolating 

polynomial P2n+1(x) by insert these coefficients ( 

aiۥs and biۥs) as the following:  

P2n+1(x) = 


n

j 0

{    Q j (x) + (-1) j    Q j (1-x) }, (9)     

q j (x)= (x j / j!)(1-x) 1n 




jn

s 0







 

s

sn
x

s
 = Q j (x)/j!,  

Step six:- 

         To find the unknowns coefficients integrate 

equation (6a) on [0, x] to obtain: 

x
m

y'(x) – m x
m-1

y(x) + m(m–1) 
x

0

s
m-2 

y(s) ds – λ 
x

0

f(s, 

y, y') ds = 0,          (10a)  

and again integrate equation (10a) on [0, x]  to 

obtain: 

x
m

y(x) –2m 
x

0

s
m-1

y(s) ds + m(m-1) 
x

0

(1-s)s
m-2

y(s)ds + 

λ 
x

0

(1-s)f(s, y, y') = 0,   (10b) 

Step seven:- 
       Putting x = 1 in Equation (10) to get: 

b1 – mb0 + m(m-1) 
1

0

 s
m-2 

y(s) ds + λ 
1

0

f(s, y, y') ds  

= 0,                     (11a)   

and 

b0 –2m 
1

0

s
m-1

y(s) ds + m(m–1) 
1

0

(1–s)s
m-2

 y(s) ds + λ


1

0

(1–s)f(s, y, y')ds =0,(11b) 

Step eight:- 

        Use P2n+1(x) which constructed in step five 

as a replacement of y(x), we see that Equation 

(11)  have only two unknown coefficients from 

a0, a1, b0, b1 and λ. If the BC is Dirichlet 

boundarycondition, that is, we have a0 and b0, 

then Equation (11) have  two unknown 

coefficients a1, b1 and λ. If the BC is Neumann, 

that is, we have a1 and b1, then equations (11) 

have  two unknown coefficients a0, b0 and λ. 

http://en.wikipedia.org/wiki/Dirichlet_boundary_condition
http://en.wikipedia.org/wiki/Dirichlet_boundary_condition
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Finally, if the BC is Cauchyor mixed condition, 

i.e., we have a0 and b1 or a1 and b0,  then 

Equation (11) have  two unknown coefficients a1, 

b0 or a0, b1 and λ. 

Stepnine:-  

       In the case Dirichlet BC, we have: 
F(a1, b1, λ) = b1 – mb0 + m (m–1) 

1

0

 s
m-2 

y(s) ds + λ 
1

0

f(s, y, y') ds = 0,                (12a) 

 

G(a1, b1,λ) = b0 – 2m 
1

0

s
m-1

y(s)ds + m(m–1) 
1

0

(1–s) s
m-

2
y(s)ds + λ 

1

0

(1–s)f(s, y, y')ds = 0,(12b) 

(∂F/∂a1)(∂G/∂b1) – (∂F/∂b1)(∂G/∂a1) = 0, (12c) 

       In the case Neumann BC, we have: 

F(a0, b0,  λ ) =  b1 – mb0 + m (m–1) 
1

0

 s
m-2 

y(s) ds  

+ λ 
1

0

f(s, y, y') ds = 0,    (13a) 

G(a0, b0, λ) = b0 –2m 
1

0

s
m-1

y(s)ds + m(m–1) 
1

0

(1–s) 

s
m-2

y(s)ds + λ 
1

0

(1–s)f(s, y, y')ds = 0(13b) 

(∂F/∂a0)(∂G/∂b0) – (∂F/∂b0)(∂G/∂a0) = 0, (13c) 

       In the case mixed BC, we have: 

F(a1, b0, λ) = b1 – mb0 + m (m–1) 
1

0

 s
m-2 

y(s) ds 

 + λ 
1

0

f(s, y, y') ds = 0,   (14a) 

G(a1, b0, λ) = b0 –2m 
1

0

s
m-1

y(s)ds + m(m–1) 
1

0

(1–s) 

s
m-2

y(s)ds + λ 
1

0

(1–s)f(s, y, y')ds = 0 (14b) 

(∂F/∂a1)(∂G/∂b0) – (∂F/∂b0)(∂G/∂a1) = 0,   (14c) 

Or 

F(a0, b1, λ) =  b1 – mb0 + m (m–1) 
1

0

 s
m-2 

y(s) ds +  

λ 
1

0

f(s, y, y') ds = 0,    (15a) 

G(a0, b1, λ) = b0 –2m 
1

0

s
m-1

y(s)ds + m(m–1) 
1

0

(1–s) 

s
m-2

y(s)ds + λ 
1

0

(1–s)f(s, y, y')ds = 0,(15b) 

(∂F/∂a0)(∂G/∂b1) – (∂F/∂b1)(∂G/∂a0) = 0, (15c) 

            So, we can find these coefficients by solving the 

system of algebraic Equation (12) or (13) or (14) or (15) 

using MATLAB, so insert the value of the unknown 

coefficients into equation  (9), thus equation  (9) 

represent the solution of the problem.   

6. Example 

In this section, we investigate the method 

using example of singular eigenvalue problem. 

The algorithm was implemented in MATLAB 

7.10.  

The bvp4c solver of MATLAB has been 

modified accordingly so that it can solvesome 

class of singular eigenvalue problem as 

effectively as it previously solved eigenvalue 

problem. 

Also, we report a more conventional 

measure of the error,  namely the error relative to 

the larger of the magnitude of the solution 

component and taking advantage of having a 

continuous approximate solution, we report the 

largest error found at 10 equally spaced points in 

[0, 1].  

        The problem is an application of oxygen 

diffusion: 

http://en.wikipedia.org/wiki/Cauchy_boundary_condition
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y''   + (1 + 
x

1
(y' )+

5

53

4

)45(5

x

xexx y



 
)  =  0,  

with B.C ( Neumann case ):  y′(0) = 0,  y'(1) = - 

1, the exact solution is (Tawfiq, L. N. M. et al):  

y = - ln( x
5 

+ 4). 

          Now, we solve this problem by suggested 

method, we have the following unknowns 

coefficients a0, b0, a1, b1 and λ, we got a1 and b1 

from BC′s, then from Equation (13), we have ( 

using MATLAB ): a0 = - 1.386294361119891,    

b0 = -1.6094379124341     and λ = 1.  

 

Then from Equation (9), we have (for n = 7): 

P15 = - 0.1142318896x
15 

+ 0.7852891723x
14

 - 

2.23317271x
13 

+ 3.413936838x
12 

- 3.087794733x
11 

+ 

1.697854523x
10 

- 0.4991720457x
9
 + 0.06414729306x

8 
- 

0.25x
5
 - 1.386294361. 

For more details, Table (1) give the results for 

different nodes in the domain, for n = 7 and 

Figure (1) illustrate suggested method for n = 7. 

Abukhaled et al.,
(15)

 applying L'Hopital's rule to 

overcome the singularity at x = 0 and then the 

modified spline approach are used and got 

maximum error 7.79e
-4 

and resolution this 

problem using finite difference method then gave 

the maximum error 1.46e
-3

,but solving this 

problem by suggested method gave the 

maximum error 9.399395723974635e
-007 

see 

Table (1).The proposed method superiority 

isevident here. 

7. Error / Defect Weights 

Every known BVP software package 

reports an estimate of either the relative error or 

the maximum relative defect. The weights used 

to scale either the error or the maximum defect 

differs among BVP software. Therefore, the BVP 

component of pythODE allows users to select the 

weights they wish to use. The default weights 

depend on whether an estimate of the error or 

maximum defect is being used. If the error is 

being estimated, then the BVP component of 

pythODE uses 
(11)

. In this paper, we modify this 

package to consist SEVP′s with named 

"pythSEVPODE", which defined as: 









)(1

)()(

xp

xpxy
; 0 ≤ x ≤ 1, (16)  

where y(x) is exact solution and P(x) is 

suggested solution of SEVP′s. 

If the maximum defect is being estimated, 

then the SEVP′s component of "pythSEVPODE" 

uses: 











))('),(,(1

))('),(,()(''

12

xpxpxf
x

xpxpxf
x

xp n





;     (17) 

The relative estimate of both the error and 

the maximum defect are slightly modified from 

the one used in BVP SOLVER. 

Now, apply package (17) for the above example 

as follows: 

28571710.14285714

31

00000970.50000000

)',,(1

)',,(''

1515

151515














ppxf
x

ppxf
x

p





 

8. Conclusions 

In the present paper, we have proposed a 

semi-analytic technique to solve second order 
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singular eigenvalue problems. By using oscillator 

interpolation,  the result shown that the Semi - 

Analytic technique can be used successfully for 

finding the solution of singular eigenvalue 

problem with boundary conditions of second 

order with singular point of first, second and 

third kind. It may be concluded that this 

technique is a very powerful and efficient in 

finding highly accurate solutions for a large class 

of differential equations.  

Finally, The bvp4c solver of MATLAB has been 

modified accordingly so that it can solve some 

class of singular eigenvalue problem with 

boundary conditions as effectively as it 

previously solved non-singular BVP. 

 

 

 

 

Table 1: The exact and suggested solution for n = 7 of 

Example 

 

 

 
Figure 1: Comparison between the exact and 

suggestedsolutionof example  
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 راث الششوط الذذوديت التذليليت في دل هسائل المين الزاتيت الوٌفشدة –كفاءة التمٌيت شبه 

 

 لوً ًاجي محمد تىفيك    و   دسي صيذاى هجزاب

 

 الخلاصة

التذليليت لذل هسائل المين الزاتيت الوٌفشدة و هي الشتبت الثاًيت راث ششوط دذوديت باستخذام الاًذساج  –في هزا البذث ًمتشح التمٌيت شبه 

ثال هالتواسي التمٌيت تجذ المين الزاتيت و الوتجهاث الزاتيت الغيش الصفشيت الومابلت لها و التي توثل الذل للوعادلت ضوي هجالها9 تن عشض 

 تىضيذي يعضص و يىضخ التىلعاث الٌظشيت و كزلك الوماسًت بيي التمٌيت الومتشدت و طشق أخشي9

 


