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Abstract

In this paper we look at the problem where we have to schedule n jobs with processing times
and due dates on a single machine. The objective is to find a schedule that minimize a function
of the sum of completion time and sum of tardiness (i,e to minimize the multiple objective
functions (XC;,XT;)). We propose two methods for solving this simultaneous minimization
problem to find the set of all efficient solutions, (Pareto optimal solutions). This set of all
efficient solutions is not easy to find, therefore, it could be preferable to have an approximation
to that set in a reasonable amount of time. Therefore branch and bound (BAB) and local search
methods are used.

The Particle Swarm Optimization (PSO) method is applied as new local search method on a
set of randomly generated problems to solve machine scheduling problem with multiple
objective functions. Comparison studies are made between Branch and Bound Methods (BAB),
PSO and Genetic Algorithm (GA) to show which one is the better method in applications. In
addition, tuning the parameters of every method has been suggested in order to improve the
application of every method. A new style of development steps has been proposed to achieve
good convergence in application. Since our problem is NP-hard, we propose new heuristic
method like PSO and GA to find approximation solutions especially when the number of jobs
exceeds the ability of some exact methods like complete enumeration and BAB in solving such
problems.

Lastly, the proposed methods results are compared for this multi-objective scheduling
problem. Computational experience is found that these local search algorithms solve problem to
'2000 'jobs with reasonable time.

Key words: Multiple objective Scheduling, feasible schedules are called the set of
Branch and Bound, Genetic solutions.

Algorithm, Particle Swarm For many years, scheduling researches

Optimization. focused on single (objective) performance

measures. In most real world, a scheduling

1. Introduction application, with more than one performance

1.1 Terminology measure is of interest. The multi-criteria

(multi-objective) have received significant
attention in recent years (Nagar et al. 1995).
The multi-criteria scheduling problem can
be stated as follows. There are n jobs to be
processed on a single machine, each job i
has processing time p; and due date d; at
which ideally should be completed.
Penalties are incurred whenever a job i is

The function to be maximized or
minimized with or without subject to certain
constraints is called the objective function.
A schedule o for the minimum problem is
said to be feasible if it satisfies the
corresponding constraints. The set of all
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completed earlier or later than its due date
di.  Multi-criteria  optimization  with
conflicting objective functions provides a set
of Pareto optimal solutions, rather than one
optimal solution. This set includes the
solution that no other solution is better than
with respect to all objective functions. In the
literature, there are two approaches for
multi-criteria  scheduling problems: the
hierarchical approach and the
simultaneous approach. In the hierarchical
approach, one of the two criteria is
considered as the primary criterion and the
other one is considered as the secondary
criterion. The problem is to minimize the
primary criterion while breaking ties in
favor of the schedule has minimum
secondary criterion value. The studies by
Chang and Su (2001) ® and Chen and Qi
(1997) @ are examples of hierarchical
minimization problem with earliness and
tardiness costs.

For the simultaneous approach, there are
two types; the first one is to find the sum of
these objectives. The second one typically
generates all efficient schedules (set of
Pareto optimal solutions) and selects the
one that yields the best composite objective
function value of the criteria. Several studies
by Van Wessenhove and Gelder (1980) ©,
Hoogeveen J. (1996) . Alasaf (2007) ©,
Findi (2012) © and Hoogeveen J. (2005) )
are examples of simultaneous minimization
scheduling problems.

This research effort proposes two
different approaches to find efficient (Pareto
optimal solutions) for 1/ /(ZC;,XT;) problem
by using Branch and Bound (BAB)
method from one side and, Particle Swarm
Optimization  (PSO) and  Genetic
Algorithm (GA) as two new local search
methods from the other side, for multi-
criteria scheduling problem.

The meaning of the Particle Swarm
Optimization (PSO) refers to a relatively
new family of algorithms that may be used
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to find optimal (or near optimal) solutions to
numerical and qualitative problems. PSO is
an extremely simple algorithm that seems to
be effective for optimizing a wide range of
Applications .

Genetic Algorithms (GA’s) are a class
of optimization algorithms. GA’s attempt to
solve problems through modeling a
simplified version of genetic process. There
are many problems for which a GA
approach is useful. It is, however,
tgltraditional if assignment is such a problem

This problem, like all deterministic
scheduling problems belongs to class of
simultaneous optimization, which are well
known to be NP-hard since the 1/ / XT; is
NP-hard ©.

1.2 Notations and Basic Concepts
The following notation will be used in this

paper:
n . number of jobs

o . processing time of job i

d; . due date of job i

Ci :completion time of job i

T; . the tardiness of job i

SPT : shortest processing time
EDD Earliest due date

BAB Branch and Bound

MSP machine scheduling problem
MOF multi-objective function
pbest previous best position

The following sequencing rules and basic
concepts are used in this paper:

SPT rule: Jobs are sequencing in non-
decreasing order of pj, this SPT (shortest
processing time) rule is used to minimize
>C; for 1/ /=C; problem @9,

EDD_rule: Jobs are sequencing in non-
decreasing order of d;, this EDD (Earliest
due date) rule is used to minimize Tnax for
1 ITinax .,

Definition ®Y: The term optimize in a
multi-criteria  decision making problem
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refers to a solution around which there is no
way of improving any objective without
worsening the other objective.

Definition ®?: A feasible schedule o is
Pareto optimal (PO), or non-dominated
(efficient) with respect to the performance
criteria f and g if there is no feasible
schedule © such that both f(r)<f(oc) and
g(m)<g(c), where at least one of the
inequalities is strict.

Emmon's Theorem ®: For the 1/ /=T,
problem, if pi<p; and di<d; then there exists
an optimal sequencing in which job i
sequencing before job j.

Al-Magraby's Lemma @: For the 1/ /XT;

problem, if deZpi, then there exists an
i=1

optimal sequence in which job j sequencing

last.

Smith Backward Algorithm (SBA) ¥
This algorithm is used to solve 1/d./ZC;
problem, the main steps of this algorithm:
Step(1): sett=> p;, k=n, N={1,...,n}.
jeN
Step(2): Find a job jeN such that
(1) d;>t, (2) pj=pi for each ieN and

d;>t, then assign job j in position k.

Step(3): Set t=t-p;, N=N-{j} and k=k-1, if
k>1 goto step(2), otherwise stop.

The organization of this paper is as
follows: in section two we present multiple
objective problems. Section three and four
present the mathematical model and discuss
the BAB, PSO and GA methods.
Implementation,  experimental  results,
analysis and conclusions are given in the last
sections.

1. Multiple Objective Problems
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The Machine Scheduling Problems
(MSP) plays a very important role in most
manufacturing and production systems as
well as in most information processing
environment. Scheduling theory has been
developed to solve problems occurring in for
instance production facilities. The basic
scheduling problem can be described as
finding for each of the tasks, which are also
called jobs, an execution interval on one of
the machines that are able to execute it, such
that all side-constraints are met; obviously,
this should be done in such a way that the
resulting solution, which is called a
schedule, is best possible, that is, it
minimizes the given objective function 2.

For many years, scheduling researchers
focused on single regular performance
measures that are non-decreasing in job
completion time.

Typically, each criterion has been studied
separately, even though most real life
scheduling  problems involve multiple
criteria ““. However few studies considered
multiple criteria together. Three types of
multiple criteria problem can be identified.
The first of these types of problems involves
identifying all sequence that minimizes the
first objective. One of these sequences that
minimize a second objective is chosen as the
optimal sequence for that problem this
approach is called hierarchical approach.
The second of these multiple criteria
problems, when the criteria are weighted
differently, an objective functions and
transform the problem into a single criterion
scheduling problem. This approach is called
simultaneous optimization along with the
third type of multiple criteria problems %,

The third one of these multiple criteria
problems is going to consider both criteria
as equally important. The problem now is to
find a sequence that does well on both
objectives.
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Scheduling problem is specific case of
the multiple objective  (multi-criteria)
scheduling problems can be formulated as
follows: minimize or maximize
F(s)=(f1(s),(f2(s),...,fk(s)) s.t. seS where s is
a solution, S is the set of feasible solutions,
k is number of objectives in the problem,
F(s) is the image of s in the k-objective
space and each fi(s), i=1,...,k represents one
(minimization or maximization) objective.

In many problems, the aim is to obtain
the optimal arrangement of group of discrete
entities in such a way that the additional
requirements and constraints (if they exist)
are satisfied. If the problem is a multi-
objective one, various criteria exist to
evaluate the equality of solution and there is
an objective (Min. or Max.) attached to each
of these criteria ™.

The literature on multiple objective
problems for single machine problems is
summarized by Dileepan and Sen (1988) 9,
Fry et al. (1989) ®”, Hoogeveen J. (1992)
@8 | ee and Vairaktarakis (1993) ™ and
Nagar et al. (1995) ®” provide a detailed for
MSP’s.

3. Mathematical Model and
Analysis

The problem of scheduling N={1,2,...,n}
the set of n jobs which are processed on a
single machine to minimize the multi-
criteria may be stated as follows. Each job
ieN has is to be processed on a single
machine which can handle only one job at a
time, job i has a processing time p; and due
date d;, all jobs are available for processing
at a time zero.

If a schedule 6=(1,2,...,n) is given, then

the earliest completion time C, :ijfor
=1
each job i can be computed and
consequently the tardiness of job i
Ti=max{C;-d;,0} is easy to compute. Our
objective is to find a schedule ceS (where S
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is the set of all feasible schedule) that
minimizes the multi-criteria (XC;,XT;) for
the 1/ /(XC;,T;) problem.

This problem belongs to simultaneous
optimization and written as:

Min { G, 2T, }

Subject to

Ci = pi, 1=1,2,....n.

Ti > Ci-d;, i=1,2,...n. ...(P1)
Ti >0, 1=1,2,....n.

It's clear that there are two special cases
for the problem (P;). The first one is
1/ /Lex(ZC; , £T; ) problem which can be
written as:

Min { ZT; }
Subject to

i=1

where A=>"C,(SPT)

i=1

.(P2)

Its well-known for the problem (P2), the
object XC; is more important than XT; since
the multi-criteria object is Lex(ZC; ,XT;). It's
clearly a feasible schedule for (P,) is
obtained by SPT rule in which ZC; is
optimal.

The only chance to minimize XT; is to
use the special cases for the jobs with the
same processing times (see section 3.1).

The second one is 1/ / C; + XT; problem
which can be written as:

Min { >Ci+ ZTi}

Subject to

Ci > pi, 1=1,2,....n.

T; > Ci-d;, i=1,2,....n. ...(P3)
Ti =0, 1=1,2,....n.

The aim for the problém (Ps) is to find a
processing order of the jobs on a single
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machine to minimize the sum of total
completion times and the total tardiness,
which is a single object and can be
minimized by BAB method.

For multi-criteria, if the objectives can be
optimized individually, then we can deduce
that the set of efficient solutions have no
more elements only one with extreme values
of the individul objective functions. The
above fact can be seen in the following
special cases:

Case (1): A schedule o obtained by ordering
the jobs in a non-decreasing order of thier
processing times (SPT-rule) is optimal for
both objectives (ZCi,XT;) if do)+Po(i)<Co(i+1)
for all i=1,2,...,n-1.

Case (2): From Emman's theorem, if the
SPT and EDD rules are identical then there
exist only one effeceint solution for (P,).
Case (3): If pi=p, Vi, p is positive integer
and a schedule o obtained by ordering the
jobs in a non-decreasing order of due dates
(EDD-rule) is optimal for both objectives
(ZCi.ZTh).

Case (4): If di=d, Vi, d is positive integer
and a schedule o obtained by ordering the
jobs in a non-decreasing order of processing
times (SPT-rule) is optimal for both
objectives (£C;,XT;).

Note that case (3) and case (4) are special
cases of case (2).

Case (5): From Al-Magrapy lemma, if dj>

> p;, andp, =max{p;}, and this also
i=1 '€

satisfies for each job keN-{j}, then there
exists only one efficient solution for (Py).
Proposition (1):

There exists an efficient solution for
problem (P,) that satisfies the SPT rule.
Proof:

1. Suppose first, that all processing times
are different. The unique SPT sequence
(SPT") gives the absolute minimum of
¥Ci. Hence there is no sequence o= SPT"
such that:
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Zn:Ci(G) < Zn:Ci(SPT*) and
iTi (c) < iTi (SPT") (D

with at least one strict inequality.

2. If more than one SPT sequence exists
(jobs with equal processing times), let
SPT be a sequence satisfying the SPT
rule and the jobs with equal processing
times are ordered in EDD rule satisfy the
special case (2) above to minimize
STi(SPT). Note that if we have SPT is
not unique we can prove that every SPT"
sequence is an efficient, it is clear that
sequence that do not satisfy the SPT rule
cannot dominate an SPT sequence (1).
Note if o is an SPT but not SPT
sequence it cannot dominate SPT since:

D Ci(c) =D C,(SPT") and

i=1 i=1
D T(SPT) <> Ti(o)
i=1 i=1

(2)
Hence all SPT sequences are efficient.
Proposition (2): If Thx(EDD)=0, then there
exists an  efficient  sequence  for
1/ /(ZC;,XZT;) problem obtained by Smith
backward algorithm (SBA).
Proof: If Tmax(EDD)=0, then it's clear that
SBA gives a schedule with C;<d; for each
ieN and this schedule also gives minimum
2C; and with XT;=0. This schedule cannot
dominated by any other schedule since XC;
is minimum for all schedules with XT;=0.
Hence this schedule obtained by SBA is
efficient for 1/ /(ZC;,XT;) problem.

Note that the purpose of any algorithm
process is to find for each problem instance
a feasible solution called optimal that
minimize their objective function. This usual
meaning of the optimum makes no sense in
the multi-criteria case because it doesn't
exist in most of the cases, a solution
optimizing all objectives simultaneously.
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Hence we search for feasible solutions
yielding the best compromise among
objectives that constitutes a so called
efficient solution set.

4. Methods of Approach

There are approaches that can be used for
solving multi-criteria scheduling problems,
which are to find the set of efficient
solutions or at least approximation to it. It is
clear that this set of all efficient solutions is
difficult to find. Therefore, it could be
preferable to have an approximation to that
set in a reasonable amount of time.

We will introduce two methods of
approach to solve multi-criteria scheduling
problem (P;) for finding the set of efficient
solutions.

4.1 Branch and Bound Method for (P,)

This method, depend on the techniques of
branch and bound (BAB) algorithm with
some modifications. The BAB method is
characterized by its branching procedure,
upper and lower bounding procedures and
search strategy.

We present a constructive BAB
algorithm to find all or some of the efficient
solutions (Pareto optimal points (POP))
when the two criteria XC; and XT; are of
simultaneous interest in problem (P;). The
main idea of this BAB algorithm is
depending on properties of BAB algorithm
and some modifications such as using the
definition of efficient solutions and without
reset the upper bound (UB) at the last level
of BAB method. The main steps of the BAB
algorithm as follows:

Step(1): Find the proposed UB by SPT rule,
that is sequencesing the job in non-
decreasing order of their processing time pj,
i=1,2,...,n, for this order o calculate ~Ci(c)
and XTi(c) and set UB=(2Ci(c),XTi(o)) at
the parent node of the search tree. UB is
efficient by proposition (1) and add this
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efficient solution to the set of POP. If
Tmax(EDD)=0, then there exists an efficient
sequence obtained by proposition (2), and
also add this efficient solution to the set of
POP.

Step(2):For each partial sequence of jobs o
(i.e., for each node in the search tree),
compute the lower bound LB(c) as follows:
LB(c)=exact cost of o + cost of S’ (where S’
the set of unsequence jobs), obtained by
sequence the jobs in SPT rule.
Step(3):Branch from each node with LB(c)
< UB.

Step(4):At each node of the last level of the
BAB method, if (XC;j,XT;) denote the
outcome, then add this outcome to the set of

POP, wunless it is dominated by the
previously obtained POP.
Step(5): Stop.

4.2 Local Search Methods for (P12

Evolutionary Algorithms (EAs) @Y
have been shown to be successful for a wide
range of optimization problems. While these
algorithms work well for many optimization
problems in practice, a satisfying and
rigorous mathematical understanding of
their performance is an important challenge
in the area of evolutionary computing ¢2.

4.2.1 Genetic Algorithms &

Genetic Algorithms (GA’s) are search
algorithms based on the mechanics of
natural selection and natural genetics. GA is
an iterative procedure, which maintains a
constant size population of candidate
solution. During each iteration step
(Generation) the structures in the current
population are evaluated, and, on the basic
of those evaluations, a new population of
candidate solutions formed. The basic GA
cycle shown in figure (1).
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Old New
Population Population

Figure (1) Basic cycle of GA.

An abstract view of the GA is:
Generation=0;
Initialize G(P);
P=Population}
Evaluate G(P);
While (GA has not converged or terminated)

Generation = Generation + 1;

Select G(P) from G(P-1);

Crossover G(P);

Mutate G(P);

Evaluate G(P);
End (While)
Terminate the GA.

{G=Generation ;

4.2.2 Particle Swarm Optimization

Particle Swarm Optimization (PSO)
has found applications in a lot of areas. In
general, all the application areas that the
other evolutionary techniques are good at
are good application areas for PSO ).

PSO was originally developed by a
social-psychologist J. Kennedy and an
electrical engineer R. Eberhart in 1995 and
emerged from earlier experiments with
algorithms that modeled the flocking
behavior seen in many species of birds. It is
yet another optimization algorithm that falls
under the soft computing umbrella that
covers genetic and evolutionary computing
algorithms as well %,

PSO is an extremely simple concept, and
can be implemented without complex data
structure.  No  complex or  costly
mathematical functions are used, and it
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doesn’t require a great amount of memory
@5 The facts of PSO has fast convergence,
only a small number of control parameters,
very simple computations, good
performance, and the lack of derivative
computations made it an attractive option for
solving the problems.

The PSO algorithm depends in its

implementation in the following two
relations:
Vig=W*Vig+C1*I1*(Pig-Xia) +C2*12* (Pgd ~Xid)
...(3a)
Xid = Xid * Vid ...(3b)

where ¢; and ¢, are positive constants, r;
and r, are random function in the range
[0,1], Xi=(Xi1,Xiz,...,Xia) represents the i
particle; pai=(pi1,Piz.-..,pid) represents the
(pbest) best previous position (the position
giving the best fitness value) of the i
particle; the symbol g represents the index
of the best particle among all the particles in
the population, Vv=(Vi1,Viz,...,Vig) represents
the rate of the position change (velocity) for
particle i 7.

The original procedure for implementing
PSO is as follows:

1. Initialize a population of particles with
random positions and velocities on d-
dimensions in the problem space.

2. PSO operation includes:

a. For each particle, evaluate the
desired optimization fitness function
in d variables.

b. Compare particle's fitness evaluation
with its pbest. If current value is
better than pbest, then set pbest equal
to the current value, and pa; equals to
the current location X;.

c. ldentify the particle in the
neighborhood with the best success
so far, and assign it index to the
variable g.

d. Change the velocity and position of
the particle according to equation
(3a) and (3b).

3. Loop to step (2) until a criterion is met.
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Like the other evolutionary algorithms, a
PSO algorithm is a population based on
search algorithm with random initialization,
and there is an interaction among population
members. Unlike the other evolutionary
algorithms, in PSO, each particle flies
through the solution space, and has the

ability to remember its previous best
position, survives from generation to
another.

A number of factors will affect the
performance of the PSO. These factors are
called PSO parameters, these parameters
are @9:

1. Number of particles in the swarm affects
the run-time significantly, thus a balance
between variety (more particles) and
speed (less particles) must be sought.

2. Maximum velocity (Vmax) parameter.
This parameter limits the maximum
jump that a particle can make in one
step.

3. The role of the inertia weight w, in
equation (3a), is considered critical for
the PSO’s convergence behavior. The
inertia weight is employed to control the
impact of the previous history of
velocities on the current one.

4. The parameters ¢; and ¢, in equation
(3a), are not critical for PSO’s
convergence. However, proper fine-
tuning may result in faster convergence
and alleviation of local minima, c; than a
social parameter ¢, but with ¢; + ¢, = 4.

5. The parameters r; and r, are used to
maintain the diversity of the population,
and they are uniformly distributed in the
range [0,1].

4.2.3 Analysis of Number of Efficient
Solutions
As our main aim in this research is to
identify the set of all efficient solutions, we
should try to hold the entire set (i.e., the set
of all efficient solutions).
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It's clear from special cases of the
problem (P;) above (section 3.1), if the
criteria  (objectives) can be optimized
individually, we can deduce the set of
efficient solutions have only one element
with extreme values of the individual
objective functions. Since our algorithm
depends on BAB method, we can sure that a
solution is truly an efficient solution. We
proved that the SPT rule is one the efficient
solution, hence we can determine if some
solutions of the BAB method are dominated
by the SPT solution and other solutions.
Also we proved that if Ty (EDD)=0, then
SBA gives one of the efficient solution for
problem (P,).

4.3 Branch and Bound Method for

Problem (Ps3)
The main aim for problem (P3) is to find
a schedule o of the jobs on a single machine
to minimize ZCG(i)+ZT0(i), ceS, where S is
the set of all feasible solutions.

4.3.1 Derivation of Lower Bound for
Problem (P3)

Consider the formulation of the problem
(P3), the problem can be decomposed into
two subproblems with a simple structure.
Then the lower bound of the problem (Ps) is
calculated as follows:

Consider the two subproblems (SP;) and
(SP>) as follows:

Zl = Telsn{z Cq( j)}
=1

s.t.
CG(J') 2 Ps(j) 7=12,...n.
Co@) 2 Co-1) *+ Poi)j=2,3,...,n. | ...(SPy)
Z,= T!SH{ZTG(D}
j=1
s.t.
TG(J') = CG(J') - dc(j), j=1,2,...,n. ...(SPz)
Tog) 2 0, j=1,2,....n.
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Its clear that for the decomposition, (SP;)
and (SP,) have simpler structure than (P3),
and thus appear easily first to solve
optimality for (SP;) to get Z; by applying
shortest processing time (SPT) rule. Second,
to get a lower bound for (SP,), let ¢ be the
sequence jobs and S’ be the set of
unsequence jobs.

Hence

LB(c) = > Ti(o) + 2 Ti(S)

iec ieS

Where > T(c)exact cost of o and

ico

ZTi (S") is obtained by using lower bound
ieS'

methods.

If we ignore the cost(S'), we get a weak
lower bound for (SP>).

Now calculate Z; to be the minimum
value for (SP;) and LB(c) to be the lower
bound for (SP>), then applying the following
result:

Theorem (1) (Hoogeveen H., 2005):
Z1+LB(c) < Z, where Z; is the minimum
objective function value of (SP;), LB(o) is a
lower bound for (SP2) and Z is the minimum
objective value of (P3).

4.3.2 Derivation of Upper Bound for
Problem (P3)

We propose to use a simple heuristic
solution which is obtained by ordering the
jobs in SPT rule to provide an initial upper
bound (UB) on the MOF. Let o,
6=(o(1),5(2),...,6(n)) be such ordered, then:

UB:Z;CG(D +Zl:TG(j) ..(4
= =

5. Implementation of Local Search
Methods for (P,)
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Obviously the problems including more
than one criterion are more difficult. So
there is a need for local search methods to
treat a large size instances problem. This is
the main aim of the present paper.

Effectively, evolving methods or can be
called Local Search methods like PSO and
GA have demonstrated their ability to solve
multi  objective problems to find the
approximation set of efficient solutions for
the problem (P).

In this section, we are going to describe
the two methods of local search. The first is
the PSO as the main new method, and the
second, is GA as a comparative method to
compare the results obtained from the two
methods in order to find which is better.

Before we discuss each of the methods,
we have to talk about the common basics
between the two methods, these basics are:
1. Problem Definition

The most prominent member of the rich

set of combinatorial optimization

problems is undoubtedly the Machine

Scheduling Problem (MSP). In order to

find the set of POP, we solve the

problem (P1) of minimizing (£C;XT;).

Obviously, this scheduling problem is

example of NP-complete, the work area

to be explored grows exponentially
according with number of jobs, and so
does. In general, if n jobs were must be
arranged in a single machine, then the
general complexity is n!.
2. Problem Representation

The solution representation should be an

integer vector. In this particular

approach we accept schedule

representation which is described as a

sequence of jobs.
3. Initial Population

For the initialization process we can

either use some heuristics starting from

different jobs, or we can initialize the
population by a random sample of
permutation of N={1,2,...,n}.
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5.1 Use of GA in MSP
Now we will discuss the use of GA first,
since it has been used before in MSP for
many times.
1. Genetic Operators

e Selection Operator
This method uses the roulette wheel
selection method. The sequence with
low fitness has a higher probability of
contributing one or more offspring to
the next generation.

e Crossover Operator

The strength of genetic algorithms
arises from the structured information
exchange of crossover combinations
of highly fit individuals. So what we
need is a crossover-like operator that
would exploit important similarities
between chromosomes. For that
purpose the crossover used in this
algorithm is the Order Crossover
(OX) ©® this operator chooses two
random crossover points, for example,
if the parents are:

Vi '798’251‘634

V2 956/(483271

9
*

* O

2 *  *
2 7 *

5
8

79 *|2 5 1
=~ 9 * 4(2 8 3

e Mutation Operator
After the new generation has been
determined, the chromosomes are
subjected to a low rate mutation
process. For this example applies two
mutation  operators to introduce
genetic diversity into the evolving
population of permutation. The first
operator is a simple two point
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mutation, which randomly selects two
elements in the chromosome and swap
them (110845679 3 2) becomes (1
1034567 9 8 2). The second
operator is a shuffle mutation, which
shunts the permutations forward by a
random number of places; thus
(110345679 8 2) shuffled forward
six places becomes (6 793211084
D).

2. Genetic Parameters
For MSP, from our experience, the
following parameters are preferred to be
used: population size (pop_size=20),
probability of crossover (Pc=0.7),
probability of mutation Pm =0.1 and
some hundreds number of generations.

5.2 Use of PSO in MSP

For MSP, from our experience, the
following parameters are preferred to be
used: Number of Particles (N_Par=20,30),
Maximum velocity (Vmax=Number of Jobs
(n)), Minimum velocity (Vmin=1), Inertia
Weight (we[0.4,0.9]). First acceleration
parameter (c;[0.5,2]), Second acceleration
parameter  (c,=c;), Diversity of the
population Maintenance (random
r1,r2€[0,1]) and some hundreds number of
generations.

6. Experimental Results of BAB,

GA & PSO Implementation for (P,)

For the problem (P;), a simulation has
been constructed in order to apply the BAB,
GA & PSO.

Table (1) shows the CPU time results of
applying BAB method in order to get a set
of efficient solutions, on samples of
different jobs with 10 experiments for each.
The results of CPU time compared with
results obtained from complete enumeration
(CE) method, which generate all solutions
for n<10.
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Table (1) the CPU time results of applying BAB and CE on (P,) for n=7,..,15.
Table (1) the CPU time results of applying BAB and CE on (P;) for n=7,..,15.
0 Experiments times/sec CE

1 | 2] 31 4] 5 | 6] 7 | 8] 9 | 101]Av]|]AV]| Av

71001 | 00 ]0.08]002| 001 ]0.06]0.01 005 005 ] 0.04 |0.030.03]0.01

8 1025 /0.01]040|0.14)| 006 | 0.09 | 0.03 |0.01| 0.05 | 0.09 | 0.11 | 0.11] 0.63

9 1007 |0.06/0.03]001] 003 |0.03]0.18 002|039 | 02 |0.11)0.11]6.32

10]0.12 | 0.08 | 252 | 0.09| 0.10 | 1.60 | 0.04 | 0.30 | 0.57 | 0.40 | 0.58 | 0.37 | 63.1

11031 226|112 |0.18| 0.08 | 0.70 | 0.06 |0.07 | 0.34 | 0.03 | 0.52 | 0.32 | ---

121014 1143|300 025|022 | 0.70 | 227 |0.19] 1.26 | 8.71 | 1.82 | 1.05| ---

131248 0.40] 0.26 |0.35| 6.76 | 0.49 | 0.36 |3.67 | 0.20 | 1.58 | 2.65 | 150 | ---

1411.838 | 40.3 | 411 | 2.01 1396 | 0.73 | 897 | 161 | 0.07 |369.1| 56.7 | 22.1 | ---

15]6.18 | 1311711330 | 19.1 | 8962 | 1025 | 2.72 | 385.6 | 3.95 | 1212 | 351 | ---

3. No average time for CE method when

Note: n>10.
1. The shaded cells are representing the

most extreme time point. Table (2) shows the results of applying BAB
2. Av.. denotes the average time for CE, on different examples of (Ps3).

where Av'.: is the average without the
extreme time point for BAB.

Table (2) the results of applying BAB on different examples of (Ps).

Time/sec
Lev. | Tot.

n | (efficient solutions of P1)=(ZCi+XT;)=optimal Solutions of P; | Lev.

(1075+742)=1817* (1079+735)=1814,(1085+727)=1812,(1081+730)=1811,
20 | (1083+725)=1808,(1083+727)=1810,(1079+730)=1809,(1083+725)=1808, | 7 | 0.16 | 3.48
(1080+727)=1807,(1081+725)=1806
(3106+2381)=5487* (3106+2379)=5485,(3111+2373)=5484,
40 | (3112+2371)=5483, 13 | 0.18 | 55.9
(3107+2375)=5482
(7163+6142)=13305*,(7165+6139)=13304,(7164+6139)=13303,
(7164+6138)=13302,(7166+6135)=13301,(7166+6134)=13300,
(7169+6129)=13298,(7165+6131)=13296,(7172+6123)=13295,
(7167+6127)=13294,(7166+6126)=13292,(7168+6122)=13290,
(7167+6121)=13288,(7169+6117)=13286,(7168+6116)=13284,
(7169+6114)=13283,(7170+6112)=13282,(7169+6112)=13281
(12404+10915)=23319* (12409+10899)=23308,(12408+10899)=23307,
(12414+10892)=23306,(12414+10888)=23302, (12412+10888)=23300,
(12419+10880)=23299,(12416+10881)=23297,(12416+10880)=23296,
80 | (12420+10875)=23295,(12420+10874)=23294, (12420+10873)=23293, 18 | 1200
(12424+10868)=23292,(12423+10866)=23289,(12423+10865)=23288,
(12425+10859)=23284,(12427+10853)=23280, (12429+10847)=23276,
(12429+10844)=23273,(12429+10840)=23269, (12429+10839)=23268

60 13 33.9

Notes: 2. Lev. means the level of BAB with last
1. The symbol * assigns the result obtained optimal solution.
from applying SPT to (P3) problem. 3. Tot. means the total time for applying
BAB.
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The symbol --- in time filed means the
time which more than 30 minutes.

The bold value in solutions filed
represents the optimal value of (P3)
problem.

Its very important result can obtained
from finding the optimal solutions of (Ps)
problem is that we can find the real (not
approximate) efficient solutions of (Py)
problem for n=30,40,... with sizes can't
obtained by applying modified BAB or
any local search methods.

When using the parameters mentioned

above, the best (near) efficient solutions of
(P1), time and number of iterations for best
(near) efficient solutions of (P;) results are
showed, in table (3) and table (4) which are
obtained when applying GA & PSO
methods respectively, for number of jobs
n=3,...,10, with number of generations, for 5
experiments for each number of jobs, using
the following abbreviations:

e ABV: Average of Best Values(s) of (P1)
for all experiments.

e ASPT: Average value of the SPT
schedules for (P;) for all experiments.

3. AAE : Average of Absolute Error.

_|[Effv-ABV]|
~ Effv

4. Values of Time:

e CT: Complete Time for finishing each
experiment.

e MCT: Minimum Complete Time.

e BT: Best Time to obtain best value(s)
of (P,) of each experiment.

e MBT: Minimum Best Time.

e ABT: Average of Best Times of (P;) of
all experiments.

5. NI: Number of Iterations of best value(s)

of (P,) of experiment.

6. Number of Iterations

e MNI: Minimum Number of lterations.

1. n: Number of jobs. e ANI: Average Number of Iterations.
2. Values of problem (Py): 7. Number of Efficient Solutions:
® Ex: Experiment number. e LES: number of Local Efficient
e EffV: Efficient Value(s) of (P1) of each Solutions.
experiment using CE. e RES: number of Real Efficient
e BV: Best Value(s) of (P1) of each Solutions.
experiment. e ALES: Average of number of Local
e MBYV: Minimum Best Value. Efficient Solutions.
Table (3) Applying GA method on (P,) for n=3,..,10.
n | Ex Values of (P,) Time/sec NI
RES Best Value ABV | CT [ BT | ABT
1 (14,2) (14,2) 00 1
2 (35,4) (35,4) 0o 1
33 (42,8),(46.6) (42,8),(46,6) G313 [0 0] o 1,2
4 (33,0) (33,0) 0o 1
5 (30,0) (30,0) 0o 1
1 (22,4) (22,4) 0] o0 1
2 (62,15),(65,11) (62,15),(65,11) 1]o0 3.1
43 (54,12) (54,12) @9 [0 0] o 6
4 (44,5),(45,3),(51,2) (44,5),(45,3),(51,2) 0o 253
5 (40,9),(46,7) (40,9),(46,7) 0o 1,22
1 (33,8),(39,5) (33,8),(39,5) 0] o0 12
5 [ 2 (47,7),(48 5),(49,2) (47,7),(486),(485) | 478 [ 1 ] 0 | 0 7,11,49
3 (40,5),(43,1) (40,5),(43,1) 0] o0 1,30
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4 (48,6),(52,3),(56,1) (48,6),(52,3) 0]o 2,13
5 (68,15) (68,15) 0] o0 1
1 (55,22),(59,19) (55,22),(59,19) 1]o0 23
) (70,15),(71,12),(72,11), (71,12),(72,11), o | o 2,30,39,
(75,10),(76,9) (75,10),(76,9) 54
6| 3 (117,43) (117,43) (9238 | 1 | 0 0 3
4 (104,51),(110,49) (104,51),(110,49) 0]o0 5,40
5 | (11562),(116,58),(120,57), (115,62),(116,58), 11 o 15,19,
(121,56),(122,55) (120,57),(121,56) 24,47
1 (75,31),(80,29),(82,28), (75,31),(80,30), > | o1 3,57,
(83,26) (82,28),(83,26) ’ 131,141
140,232,
2 (76,23),(80,21),(84,19) (76’%321’(151%21)' 1 {01 257
7 ’ (101,41) 0
3 (143,59),(147,58) (143,59) 1] 0 137
4 (63,21),(64,20) (64,20) 1] 0 127
: (148,70),(150,68),(152,65) (148,70),(150,68), 1 |oa 2,172,
(155,63) (152,65),(155,63) ’ 173,191
(89,44),(90,41), 1,2, 269,913,
1 (89,44),(90,41), (93,40) (93,40 2 |7 270
(179,95),(181,94),(198,92), (179,95),(181,94),
2 (201,91) (199,93),(203,92) 11 158,42
8 (136,74),(137,73),(138,72), (136,74),(138,72) (143.74) 1 11,132,
3 | (140,70),(141,69),(142,68), (140,70),(144,69), : 2 |12 801,480,
(146,67),(153,66) (146,68),(153,66) 747,393
(194,114),(195,110), 426,114,
4 | (194,114),(195,110),(196,108) (196.111) 1] 1 693
5 (118,39) (118,39) 1] 1 208
1 (115,45),(117,43),(135,41) (115,45),(118,46) 4 |32 1703,1462
2 | (246,123),(249,120),(254,118) | (246:128),(251.122), 3 |03 30,35,
9 (256,121) (180.92) 1 1145
3 (103,37),(107,34),(115,33) (103,37),(107,34) : 3 |01 1338,159
4 | (243,149),(244,146),(245,144) | (243,149),(244,147) 3 |12 556,1288
5 | (191,106),(192,102),(193,101) (193,103) 2 |1 1597
(148,72),(149,69),(150,67),
1 (153.66) (150,67) 715 3124
2 (147,55),(148,53),(159,52) (148,59),(149,58) 7 | 34 2143,2706
10 |- (121.,59) ((3;122%27?)(123 55) 19220 (189.106) |———— 4 L
e D ey (122,57),(123,55), 2,1, 1405,325,
4 | (124,54),(125,53),(12752), | 158 53y 135 50) 8 |68 4192,8520
(129,51),(131,50),(135,49) UOIASIS ’ ’
5 | (207,116),(208,115),(211,114) | (207,117),(208,116) 7 |75 5878,4415
Table (4) Applying PSO method on (P;) for n=3,..,10.
n | Ex Values of (P,) Time/sec NI
RES Best Value ABV CT | BT | ABT
1 (14,2) (14,2) 0 0 1
2 (35,4) (35,4) 0 0 1
313 (42,8),(46,6) (42,8),(46,6) (31,3) 1] 0 0 1,2
4 (33,0) (33,0) 0] o0 1
5 (30,0) (30,0) 00 1
1 (22,4) (22,4) 0 0 1
42 (62,15),(65,11) (62,15),(65,11) (44,9) 0] 0 0 31
3 (54,12) (54,12) 0] 0 1
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4 (44,5),(45,3),(51,2) (44,5),(45,3),(51,2) 1]0 6,1,19

5 (40,9),(46,7) (40,9),(46,7) 0] 0 2,15

1 (33,8),(39,5) (33,8),(39,5) 00 37,3

2 (47,7),(48,5),(49,2) (47,7),(48,6),(49,2) 1]0 8,22,4

5| 3 (40,5),(43,1) (40,5),(43,1) (47,8) 0|0 0 13,98,5

4 (48,6),(52,3),(56,1) (48,6),(56,2) 0] 0 12,89

5 (68,15) (68,15) 0] 0 17

1 (55,22),(59,19) (55,22),(63,20) 00 39,1

5 (70,15),(71,12),(72,11), (70,15),(71,12), o | o 28,2,

(75,10),(76,9) (72,11),(76,9) 20,42
6| 3 (117,43) (117,43) (9338) | 0 | O 0 34
4 (104,51),(110,49) (104,51),(110,49) 00 79,73
5 (115,62),(116,58),(120,57), (117,58),(120,57), o | o 6,73,
(121,56),(122,55) (121,56),(122,55) 60,44
(75,31),(80,29),(82,28),
1 (83.26) (75,31),(82,28) 1101 8,250
2 (76,23),(80,21),(84,19) (76,23),(80,21) 1 |01 823
"3 (143,59),(147,58) (143,59) (103,41) 15 O 119
4 (63,21),(64,20) (64,20) 1]0 127
5 (148,70),(150,68),(152,65) (148,70),(151,69), 1 | o1 258,249,
(155,63) (152,65),(155,63) ' 1,177
1 (89,44),(90,41),(93,40) (90,41) 110 488
(179,95),(181,94),(198,92),
2 (201.91) (179,95) 1] 1 977
8 | 4 Eiig;g;gj{gg;gigggg (13674)(13872) | (14472) | | | o | O | 10472
(146.67) (153.66) (141,69),(142,68) 949,288

4 | (194,114),(195,110),(196,108) | (194,114),(197,108) 1]0 288,12

5 (118,39) (118,39) 1] 0 546

1 (115,45),(117,43),(135,41) (115,45),(134,43) 2 |1 1333,107

2 | (246,123),(249,120),(254,118) | (246,123),(254,122) 2 |01 222,946

103,37),(107,34), 77,356,
o | 3| (10837)107,34)(11533) | ¢ (11)7(,33) )| (18192 | 2 |01 | o i

4 | (243,149),(244,146),(245,144) | (245,151),(247,146) 2 |1 1880,141

5 | (191,106),(192,102),(193,101) (194,102) 1]0 829

1 (148,72),(149,69),(150,67), (151,77),(153,71), 6 | 12 143,1693,

(153,66) (154,67) ’ 976

2 (147,55),(148,53),(159,52) (147,55) 5 |1 747

3 (319,228) (321,229) 4 | 1 1563

10 (12159),(122,57),(123,55), | (122.57).(125,53), | 1°0:107) 20 4 $10.2
4 (124,54),(125,53),(127,52), (133,51) 4 |1 4988
(129,51),(131,50),(135,49)
5 | (207,116),(108,115),(211,114) (211,119) 4 1 0 364
Notes: experiment obtained by using complete
1. In tables (3,4), for n=3,..,6, 100 iterations enumeration. The complete enumeration,
are used, for 7, 500 iterations, for 8, 1000 of course, difficult to be applied for jobs
iterations, for 9, 2500 iterations while for more than 10 jobs. For this reason the
10, 6000 iterations are being used. results of complete enumeration are not

2. It’s important to note that the set of mentioned in the tables (6,7) which are
efficient solutions (POP) of (P;) for each included more than 10 jobs.

126



Basrah Journal of Science (A)

Vol.34(2), 113-132, 2016

In table (5) a comparison has been made
between the results of applying GA (G) and

respectively, for values of (P;), time and
number of iterations for chosen n=4,7,10.

PSO (P) obtained from tables (3,4)
Table (5) Comparison results between GA & PSO methods on (P;) for n=4,7,10.
Values of (P, ALES Time/sec NI
N = BV ABV LES/RES| CT BT | ABT
G P G P G| PJ|]Gg|P|G|P|G|P]| G P
1 (22,4) (22,4) (22,4) ojofo]o 1 1
(62,15) (62,15) (62,15) 3 3
2| (6511) | (6511) | (65.11) 1211201701070 1| 1
3 | (54,12) (54,12) (54,12) ojofo]o0 6 1
4 (44,5) (44,5) (44,5) (44,9) (44,9) olo| 2 6
4 (45,3) (45,3) (45,3) 0[1[0]0 5 1
(51,2) (51,2) (51,2) 1|1 3 19
(40,9) (40,9) (40,9) 1 2
S| @en | @67 | (467) 010700 22 | 15
(75,31) (75,31) 3
L | (8029 (80,30) (75,31) 2111010 57 8
(82,28) (82,28) (82,28) 101 131 | 250
(83,26) (83,26) 141
140
(76,23) (76,23) (76.23) 26| 2 0lo 30 | 82
2 | (80,21) (80,21) (80.21) 1117, 57 | 3
(84,19) (84,19) :
7 (101,41) | (101,41) 00
(143,59)
3 (147 58) (143,59) | (143,59) 111010 137 | 119
(63,21)
4 (64.20) (64,20) (64,20) 111|010 127 | 127
(148,70) | (148,70) | (148,70) 09 | 07 2 | 258
g | (150,68) | (150,68) | (151,69) ' Tl ]0]0 172 | 249
(152,65) | (152,65) | (152,65) 101 173 | 1
(155,63) | (155,63) | (155,63) 191 | 177
83’8’23 (151,77) 143
1 : (150,67) | (153,71) 716|5]|0 3124 | 1693
(150,67)
(15366) (154,67) 976
(147.55) (148,59) w200 3 (1 2143
2 | (148,53) : (147,55) 715 747
(15952) (149,58) 4|2 2706
3 | (319,228) | (319,228) | (321,229) 714 1 1738 | 1563
(121,59)
10 ((112232257)) (189,106) | (190,107) 40
U0l (122,57) | (122,57) 2 1405
(124,54) 3190
4 | (12553 (123,55) | (125,53) slalll; 325 | 7
(12752) (128,53) | (133,51) 6 4192 | 4000
(12951) (135,50) 06 | 04 8 8520
(131,50)
(135,49)
(207,116)
5 | (108,115) gg;ﬁg (211,119) 716 g (2) iig 364
(211,114) :
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The average values, time and number of
iterations for best values of problem (P,)
results are showed, in table (6) and table (7)

which are obtained when applying GA and
PSO methods respectively, from chosen

Table (6) Applying GA method on (P,) for chosen n=20,..,2000.

number of jobs n=20(10)100, 100(100)1000
and 2000, for 10 experiments for each
number of jobs.

Values of (P,)

ASPT MBV ABV AAE MCT ABT | MNI | ANI
20 (784,579) (669,435) (859,643) (0.095,0.110) | 1 0 1 | 419 | 1156
30 (1863,1528) (1910,1572) (2147,1798) (0.152,0.176) | 2 0 1 | 216 | 1007
40 (3279,2826) (3133,2673) (3847,3390) (0.173,0.200) | 1 0 2 93 | 1189
50 (5367,4767) (5591,5037) (6480,5861) (0.207,0230) | 1 0 1 3 [ 662
60 (7398,6718) (8174,7477) (9210,8506) (0.245,0.266) | 2 0 1 2 | 706
70 (9654,8859) (11189,10378) (12270,11456) (0.271,0293) | 1 0 1 1 | 747
80 (11380,10457) (13505,12486) (14948,13993) (0.314,0.338) | 2 0 1 3 |62
90 (16127,15088) (19213,18103) (20614,19545) (0.278,0295) | 2 0 1 1 | 402
100 (20013,18877) (23825,22750) (26050,24887) (0.302,0.318) | 2 0 1 1 | 754
200 (76815,74457) (99691,97318) (103178,100788) | (0.343,0.354) | 6 0 1 2 | 497
300 | (172822,169340) (225938,222610) (237666,234143) | (0.375,0.383) | 8 0 1 1 | 302
400 | (316213,311418) (401726,396955) (430451,425620) | (0.361,0.367) | 13 0 3 1 | 290
500 | (486835,480862) (647428,641474) (672989,666986) | (0.382,0.387) | 17 0 3 2 | 237
600 | (694731,687549) (942467,935042) (963142,955924) | (0.386,0.390) | 27 0 4 1 | 294
700 | (946289,937878) | (1287845,1279258) | (1311518,1303071) | (0.386,0.389) | 35 0 0 1 7
800 | (1226999,1217444) | (1655960,1646540) | (1710498,1700911) | (0.394,0.397) | 46 0 5 1 | 300
900 | (1577954,1567071) | (2140353,2129737) | (2188328,2177419) | (0.387,0.390) [ 57 0 0 1 6
1000 | (1927674,1915686) | (2610974,2599115) | (2682704,2670689) | (0.392,0.394) | 70 0 0 1 9
2000 | (7727745,7703649) | (10711403,10687729) | (10862863,10838728) | (0.406,0.407) | 889 0 1 1 4
Table (7) Applying PSO method on (P;) for chosen n=20,..,2000.
n Value of (P,)
ASPT MBV ABV AAE MCT ABT | MNI | ANI
20 (784,579) (651,412) (848, 636) (0.081,0099) | 1 0 0 30 [ 4711
30 (1863,1528) (1834,1509) (2070,1726) (0.111,0129) | 1 0 1 | 500 | 1181
40 (3279,2826) (3076,2617) (3751,3285) (0.144,0162) | 1 0 1 81 | 1095
50 (5367,4767) (5224,4663) (6250,5629) (0.164,0.181) | 1 0 1 9 [ 921
60 (7398,6718) (7730,7035) (8730,8038) (0.180,0197) | 1 0 1 | 166 | 952
70 (9654,8859) (0789,9984) (11761,10951) (0.218,0236) | 1 0 1 | 193 | 761
80 (11380,10457) (12692,11702) (14294,13350) (0.256,0277) | 2 0 1 | 275 | 1004
90 (16127,15088) (18248,17226) (19828,18754) (0.229,0243) | 2 0 1 78 | 845
100 (20013,18877) (22844,21662) (24940,23779) (0.246,0.260) | 2 0 2 5 [1092
200 (76815,74457) (94373,92003) (100017, 97631) (0.3020311) | 5 0 3 | 207 [ 1257
300 | (172822,169340) (220151,216721) (229363,225847) | (0.327,0.334) | 9 1 6 | 158 | 1744
400 | (316213,311418) (397074,392312) (421116,416287) [ (0.332,0.337) | 13 0 5 | 169 | 1160
500 | (486835,480862) (630853,624771) (657546,651548) | (0.351,0.355) | 16 1 5 | 190 | 902
600 | (694731,687549) (926224,918964) (942695,935485) | (0.357,0.361) | 21 1 11 | 139 | 1408
700 | (946289,937878) | (1265690,1257332) | (1287138,1278696) | (0.360,0.363) | 27 1 6 56 | 699
800 | (1226999,1217444) | (1621930,1612515) | (1676956,1667375) | (0.367,0.370) | 32 0 16 | 19 [ 1455
900 | (1577954,1567071) | (2123093,2111958) | (2151797,2140887) | (0.364,0.366) | 37 2 9 | 217 | 756
1000 | (1927674,1915686) | (2589187,2577336) | (2644285,2632265) | (0.372,0.374) | 53 1 19 | 44 [ 1008
2000 | (7727745,7703649) | (10521335,10497652) | (10706914,10682784) | (0.386,0.387) | 228 6 104 | 228 | 1988
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Note: In
n=(20,10,100), 2000 iterations are used, for
n=(200,100,1000), 3000 iterations, while for

tables

(6)

and

(),

2000, 5000 iterations are being used.

for

number

of

PSO (P) obtained from
respectively, for values of (P;), time and
iterations

tables

from

n=20(10)100, 100(100)1000 and 2000.

In table (8) a comparison has been made
between the results of applying GA (G) and

Table (8) Comparison results between GA & PSO on (P;) for chosen n.

(6.7)

chosen

Value of (Py) Time NI
n ABV AAE MCT ABT ANI
G P G P G| P|G|P]| G P
40 (3847,3390) (3751,3285) (0.173,0.200) | (0.144,0.162) | 1 | 1 |2 | 1 ] 1189|1095
70 (12270,11456) (11761,10951) (0.271,0.293) | (0.218,0236) | 1 | 1 [ 1 | 1 | 747 | 761
100 (26050,24887) (24940,23779) (0.302,0.318) | (0.246,0.260) | 2 | 2 |1 | 2 | 754 [1092
400 (430451,425620) (421116,416287) | (0.361,0.367) | (0.332,0.337) | 13 [ 13 | 3 | 5 | 290 | 1160
700 | (1311518,1303071) | (1287138,1278696) | (0.386,0.389) | (0.360,0.363) | 35 [ 27 | 0 | 6 7 | 699
1000 | (2682704,2670689) | (2644285,2632265) | (0.392,0.394) | (0.372,0.374) | 70 | 53 | 0 | 19 | 9 | 1008
2000 | (10862863,10838728) | (10706914,10682784) | (0.406,0.407) | (0.386,0.387) | 889 | 228 | 1 | 104 | 4 | 1988
Figure (2) describes comparison chart e Smparison chart between GA & PSO for (Sum Ci , Sum T7)
which shows the relation between value of 8
problem (P1) and number of iterations when o
applying GA & PSO on (P,) for n=10. s 51333]\
ot | (R
Comparison chart between GA & PSO for (Sum Ci , Sum Ti) - Z \ .
o \

(SumCi,SumTi)

\SWLH

0 50100 175 250 325 400 475 550 625 700 775 850 925 1000 1100 11751250 1350 1450
Iterations

Figure (2) comparison chart of applying
GA & PSO on (P,), n=10, NI=1500.

Figure (3) describes comparison chart
which shows the relation between values of
(P1) and number of iterations when applying
GA & PSO for n=150.

0 100 250 400 SSO 700 850 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800
Iterations

Figure (3) comparison chart of applying GA
& PSO on (P,), n=150, N1=3000.
Figure (4) describes comparison chart
which is shows the relation between values
of AAE of (P;) and number of iterations
when applying GA & PSO for n=180.

Comparison chart between GA & PSO for AAE for (SumCi, Sum Ti)

041

! [=Pso-sci
+GA-SCI
| |=Pso-sTi
| [=oa-sTi

AAE
B

&
Number of Jobs

Figure (4) comparison chart of applying GA
& PSO on (P,;) for AAE, n=180.
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7. Analysis of Results e The results of the iterations of ABV

1. In this paper, a different number of are different and unstable for each
jobs (n) are used, starting from algorithm.

n=4(1)10, n=20(10)100, 6. Figure (3) (for n=150), shows that

n=200(100)1000 and n=2000, with
number of iterations which is suitable
to n to solve problem (P,).

. The parameters of testing the
efficiency of local search method (GA
and PSO) are calculated, these
parameters represented by, the pair
(ZC;,ZT;) of real efficient solutions
(are calculated from complete search
method for n<10), the approximated
local search best efficient solutions
(BV) and their average, the number of
best solutions (LES) and their average,
the average of absolute error, the time
which complete the single experiment,
the time of the BV and their average
and lastly, the iteration which found
the corresponding BV.

3. From table (5), for chosen n,

e Number of LES: GA is serves better

than PSO.

e The two algorithms are equals in
accuracy of resultant efficient
solutions.

e The two algorithms are
approximately equals in CT and
ABT.

e The results of the iterations of ABV
are different and unstable for each
algorithm.

4. Figure (2) (for n=10), describes an

approximated result in the results of

BV for GA & PSO.

5. From table (8), for chosen n
(20,..,2000),

e We calculate the efficiency of BV
obtained from the two algorithms
compared with efficient of SPT by
using AAE, we can conclude that
PSO is better.

e PSO is better than GA in ACT.

130

PSO is better in BV.

7. Figure (4) (for n=180), illustrates the
efficiency of PSO in giving better
accuracy than GA, but the results are
closed and the AAE increased
(accuracy are decreased) when the
number of jobs are increased.

8. BAB, GA & PSO System
Requirements for Solving problem

(Pa)

The BAB, GA & PSO methods were
tested by programming them using version
10.0 of Delphi Language and MATLAB,
and running on Processor Intel(R) Core(TM)
13 CPU, 2.53 GHz, Core(s), with Ram 1.21
GB computer.

9. Conclusions

1. From the results obtained for applying
the two local search to find an efficient
solutions for problem (P;), we can
conclude that GA is better in n=3,..,10
(low number of jobs), while PSO is
better in n=20,..,2000 (higher number of
jobs).

2. The size of solution space (n!) can be
decreasing  when  applying  the
precedence rules on each scheduling o
before join it to the population, since
some of the efficient solutions are
satisfy the precedence rules.

3. To improve the performance of GA and
PSO, we suggest making a hybrid
between the two algorithms from one
side, or between them and another local
search  algorithm e.g.  simulated
annealing and Bee algorithm, from
other side.
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