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Abstract 
In this paper we look at the problem where we have to schedule n jobs with processing times 

and due dates on a single machine. The objective is to find a schedule that minimize a function 

of the sum of completion time and sum of tardiness (i,e to minimize the multiple objective 

functions (Ci,Ti)). We propose two methods for solving this simultaneous minimization 

problem to find the set of all efficient solutions, (Pareto optimal solutions). This set of all 

efficient solutions is not easy to find, therefore, it could be preferable to have an approximation 

to that set in a reasonable amount of time. Therefore branch and bound (BAB) and local search 

methods are used. 

The Particle Swarm Optimization (PSO) method is applied as new local search method on a 

set of randomly generated problems to solve machine scheduling problem with multiple 

objective functions. Comparison studies are made between Branch and Bound Methods (BAB), 

PSO and Genetic Algorithm (GA) to show which one is the better method in applications. In 

addition, tuning the parameters of every method has been suggested in order to improve the 

application of every method. A new style of development steps has been proposed to achieve 

good convergence in application. Since our problem is NP-hard, we propose new heuristic 

method like PSO and GA to find approximation solutions especially when the number of jobs 

exceeds the ability of some exact methods like complete enumeration and BAB in solving such 

problems. 

 Lastly, the proposed methods results are compared for this multi-objective scheduling 

problem. Computational experience is found that these local search algorithms solve problem to 

'2000 'jobs with reasonable time. 

 

Key words: Multiple objective Scheduling, 
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1. Introduction 

1.1 Terminology 
The function to be maximized or 

minimized with or without subject to certain 

constraints is called the objective function. 

A schedule  for the minimum problem is 

said to be feasible if it satisfies the 

corresponding constraints. The set of all 

feasible schedules are called the set of 

solutions. 

For many years, scheduling researches 

focused on single (objective) performance 

measures. In most real world, a scheduling 

application, with more than one performance 

measure is of interest. The multi-criteria 

(multi-objective) have received significant 

attention in recent years (Nagar et al. 1995). 

The multi-criteria scheduling problem can 

be stated as follows. There are n jobs to be 

processed on a single machine, each job i 

has processing time pi and due date di at 

which ideally should be completed. 

Penalties are incurred whenever a job i is 
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completed earlier or later than its due date 

di. Multi-criteria optimization with 

conflicting objective functions provides a set 

of Pareto optimal solutions, rather than one 

optimal solution. This set includes the 

solution that no other solution is better than 

with respect to all objective functions. In the 

literature, there are two approaches for 

multi-criteria scheduling problems: the 

hierarchical approach and the 

simultaneous approach. In the hierarchical 

approach, one of the two criteria is 

considered as the primary criterion and the 

other one is considered as the secondary 

criterion. The problem is to minimize the 

primary criterion while breaking ties in 

favor of the schedule has minimum 

secondary criterion value. The studies by 

Chang and Su (2001) 
(1)

 and Chen and Qi 

(1997) 
(2)

 are examples of hierarchical 

minimization problem with earliness and 

tardiness costs. 

For the simultaneous approach, there are 

two types; the first one is to find the sum of 

these objectives. The second one typically 

generates all efficient schedules (set of 

Pareto optimal solutions) and selects the 

one that yields the best composite objective 

function value of the criteria. Several studies 

by Van Wessenhove and Gelder (1980) 
(3)

, 

Hoogeveen J. (1996) 
(4)

, Alasaf (2007) 
(5)

, 

Findi (2012) 
(6)

 and Hoogeveen J. (2005) 
(7)

 

are examples of simultaneous minimization 

scheduling problems. 

This research effort proposes two 

different approaches to find efficient (Pareto 

optimal solutions) for  1/ /(Ci,Ti) problem 

by using Branch and Bound (BAB) 

method from one side and,  Particle Swarm 

Optimization (PSO) and Genetic 

Algorithm (GA) as two new local search 

methods from the other side, for multi-

criteria scheduling problem. 

The meaning of the Particle Swarm 

Optimization (PSO) refers to a relatively 

new family of algorithms that may be used 

to find optimal (or near optimal) solutions to 

numerical and qualitative problems. PSO is 

an extremely simple algorithm that seems to 

be effective for optimizing a wide range of 

Applications 
(7)

. 

Genetic Algorithms (GA’s) are a class 

of optimization algorithms. GA’s attempt to 

solve problems through modeling a 

simplified version of genetic process. There 

are many problems for which a GA 

approach is useful. It is, however, 

untraditional if assignment is such a problem 
(8)

. 

This problem, like all deterministic 

scheduling problems belongs to class of 

simultaneous optimization, which are well 

known to be NP-hard since the 1/ / Ti is 

NP-hard 
(9)

. 

 

1.2 Notations and Basic Concepts 
The following notation will be used in this 

paper: 

n   : number of jobs 

pi  : processing time of job i 

di  : due date of job i 

Ci  : completion time of job i 

Ti  : the tardiness of job i 

SPT  : shortest processing time 

EDD  : Earliest due date 

BAB  : Branch and Bound 

MSP : machine scheduling problem 

MOF :  multi-objective function 

pbest : previous best position 

 

The following sequencing rules and basic 

concepts are used in this paper: 

SPT rule: Jobs are sequencing in non-

decreasing order of pi, this SPT (shortest 

processing time) rule is used to minimize 

Ci for 1/ /Ci problem 
(10)

. 

EDD rule: Jobs are sequencing in non-

decreasing order of di, this EDD (Earliest 

due date) rule is used to minimize Tmax for 

1/ /Tmax 
(11)

. 

Definition 
(11)

: The term optimize in a 

multi-criteria decision making problem 
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refers to a solution around which there is no 

way of improving any objective without 

worsening the other objective. 

Definition 
(12)

: A feasible schedule  is 

Pareto optimal (PO), or non-dominated 

(efficient) with respect to the performance 

criteria f and g if there is no feasible 

schedule  such that both f()f() and 

g()g(), where at least one of the 

inequalities is strict. 

 

Emmon's Theorem 
(2)

: For the 1/ /Ti 

problem, if pipj and didj then there exists 

an optimal sequencing in which job i 

sequencing before job j. 

 

Al-Magraby's Lemma 
(2)

: For the 1/ /Ti 

problem, if dj


n

1i

ip , then there exists an 

optimal sequence in which job j sequencing 

last. 

 

Smith Backward Algorithm (SBA) 
(2)

 

This algorithm is used to solve 1/ id /Ci 

problem, the main steps of this algorithm: 

Step(1): set t=


n

Nj

jp , k=n, N={1,…,n}. 

Step(2): Find a job jN such that 

(1) jd t, (2) pjpi for each iN and 

jd t, then assign job j in position k. 

Step(3): Set t=t-pj, N=N-{j} and k=k-1, if 

k>1 goto step(2), otherwise stop. 

 

The organization of this paper is as 

follows: in section two we present multiple 

objective problems. Section three and four 

present the mathematical model and discuss 

the BAB, PSO and GA methods. 

Implementation, experimental results, 

analysis and conclusions are given in the last 

sections.            

 

1. Multiple Objective Problems 

 
The Machine Scheduling Problems 

(MSP) plays a very important role in most 

manufacturing and production systems as 

well as in most information processing 

environment. Scheduling theory has been 

developed to solve problems occurring in for 

instance production facilities. The basic 

scheduling problem can be described as 

finding for each of the tasks, which are also 

called jobs, an execution interval on one of 

the machines that are able to execute it, such 

that all side-constraints are met; obviously, 

this should be done in such a way that the 

resulting solution, which is called a 

schedule, is best possible, that is, it 

minimizes the given objective function 
(13)

. 

For many years, scheduling researchers 

focused on single regular performance 

measures that are non-decreasing in job 

completion time. 

Typically, each criterion has been studied 

separately, even though most real life 

scheduling problems involve multiple 

criteria 
(14)

. However few studies considered 

multiple criteria together. Three types of 

multiple criteria problem can be identified. 

The first of these types of problems involves 

identifying all sequence that minimizes the 

first objective. One of these sequences that 

minimize a second objective is chosen as the 

optimal sequence for that problem this 

approach is called hierarchical approach. 

The second of these multiple criteria 

problems, when the criteria are weighted 

differently, an objective functions and 

transform the problem into a single criterion 

scheduling problem. This approach is called 

simultaneous optimization along with the 

third type of multiple criteria problems 
(15)

. 

The third one of these multiple criteria 

problems is going to consider both criteria 

as equally important. The problem now is to 

find a sequence that does well on both 

objectives. 
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Scheduling problem is specific case of 

the multiple objective (multi-criteria) 

scheduling problems can be formulated as 

follows: minimize or maximize 

F(s)=(f1(s),(f2(s),…,fk(s)) s.t. sS where s is 

a solution, S is the set of feasible solutions, 

k is number of objectives in the problem, 

F(s) is the image of s in the k-objective 

space and each fi(s), i=1,…,k represents one 

(minimization or maximization) objective. 

In many problems, the aim is to obtain 

the optimal arrangement of group of discrete 

entities in such a way that the additional 

requirements and constraints (if they exist) 

are satisfied. If the problem is a multi-

objective one, various criteria exist to 

evaluate the equality of solution and there is 

an objective (Min. or Max.) attached to each 

of these criteria 
(15)

. 

The literature on multiple objective 

problems for single machine problems is 

summarized by Dileepan and Sen (1988) 
(16)

, 

Fry et al. (1989) 
(17)

, Hoogeveen J. (1992) 
(18)

, Lee and Vairaktarakis (1993) 
(19)

 and 

Nagar et al. (1995) 
(20)

 provide a detailed for 

MSP’s. 
 

3. Mathematical Model and 

Analysis 
The problem of scheduling N={1,2,…,n} 

the set of n  jobs which are processed on a 

single machine to minimize the multi-

criteria may be stated as follows. Each job 

iN has is to be processed on a single 

machine which can handle only one job at a 

time, job i has a processing time pi and due 

date di, all jobs are available for processing 

at a time zero. 

If a schedule =(1,2,…,n) is given,  then 

the earliest completion time 



i

1j

ji pC for 

each job i can be  computed  and 

consequently  the tardiness of job i 

Ti=max{Ci-di,0} is easy to compute. Our 

objective is to find a schedule S (where S 

is the set of all feasible schedule) that 

minimizes the multi-criteria (Ci,Ti) for 

the 1/ /(Ci,Ti) problem. 

This problem belongs to simultaneous 

optimization and written as: 

 

Min { Ci , Ti } 

Subject to 

Ci  pi, i=1,2,…,n. 

Ti   Ci-di, i=1,2,…,n.    …(P1) 

Ti  0, i=1,2,…,n. 

 

It's clear that there are two special cases 

for the problem (P1). The first one is  

1/ /Lex(Ci , Ti ) problem which can be 

written as: 

 

Min { Ti } 

Subject to    





n

1i

iC ,     …(P2) 

where 



n

1i

i )SPT(C  

 

Its well-known for the problem (P2), the 

object Ci is more important than Ti since 

the multi-criteria object is Lex(Ci ,Ti). It's 

clearly a feasible schedule for (P2) is 

obtained by SPT rule in which Ci is 

optimal. 

The only chance to minimize Ti is to 

use the special cases for the jobs with the 

same processing times (see section 3.1). 

The second one is 1/ / Ci + Ti problem 

which can be written as: 

 

Min { Ci + Ti } 

Subject to 

Ci  pi, i=1,2,…,n. 

Ti   Ci-di,  i=1,2,…,n.  …(P3) 

Ti  0, i=1,2,…,n. 

 

The aim for the problem (P3) is to find a 

processing order of the jobs on a single 

 

 

 



Basrah Journal of Science (A)  Vol.34(2), 113-132, 2016 

117 

 

machine to minimize the sum of total 

completion times and the total tardiness, 

which is a single object and can be 

minimized by BAB method. 

For multi-criteria, if the objectives can be 

optimized individually, then we can deduce 

that the set of efficient solutions have no 

more elements only one with extreme values 

of the individul objective functions. The 

above fact can be seen in the following 

special cases: 

Case (1): A schedule  obtained by ordering 

the jobs in a non-decreasing order of thier 

processing times (SPT-rule) is optimal for 

both objectives (Ci,Ti) if d(i)+p(i)C(i+1) 

for all i=1,2,…,n-1. 

Case (2): From Emman's theorem, if the 

SPT and EDD rules are identical then there 

exist only one effeceint solution for (P1). 

Case (3): If pi=p, i, p is positive integer 

and a schedule  obtained by ordering the 

jobs in a non-decreasing order of due dates 

(EDD-rule) is optimal for both objectives 

(Ci,Ti).  

Case (4): If di=d, i, d is positive integer 

and a schedule  obtained by ordering the 

jobs in a non-decreasing order of processing 

times (SPT-rule) is optimal for both 

objectives (Ci,Ti).  

Note that case (3) and case (4) are special 

cases of case (2). 

Case (5): From Al-Magrapy lemma, if dj




n

1i

ip , and }p{maxp i
Ni

j


 , and this also 

satisfies for each job kN-{j}, then there 

exists only one efficient solution for (P1).  

Proposition (1): 

There exists an efficient solution for 

problem (P1) that satisfies the SPT rule. 

Proof: 

1. Suppose first, that all processing times 

are different. The unique SPT sequence 

(SPT
*
) gives the absolute minimum of 

Ci. Hence there is no sequence  SPT
*
 

such that: 

    



n

1i

*

i

n

1i

i )SPT(C)(C  and 





n

1i

*

i

n

1i

i )SPT(T)(T   …(1) 

with at least one strict inequality. 

2. If more than one SPT sequence exists 

(jobs with equal processing times), let 

SPT
*
 be a sequence satisfying the SPT 

rule and the jobs with equal processing 

times are ordered in EDD rule satisfy the 

special case (2) above to minimize 

Ti(SPT
*
). Note that if we have SPT

*
 is 

not unique we can prove that every SPT
*
 

sequence is an efficient, it is clear that 

sequence that do not satisfy the SPT rule 

cannot dominate an SPT
*
 sequence (1). 

Note if  is an SPT but not SPT
*
 

sequence it cannot dominate SPT
*
 since: 

    



n

1i

*

i

n

1i

i )SPT(C)(C and 





n

1i

i

n

1i

*

i )(T)SPT(T   

 …(2) 

Hence all SPT
*
 sequences are efficient. 

Proposition (2): If Tmax(EDD)=0, then there 

exists an efficient sequence for  

1/ /(Ci,Ti) problem obtained by Smith 

backward algorithm (SBA).  

Proof: If Tmax(EDD)=0, then it's clear that 

SBA gives a schedule with Cidi for each 

iN and this schedule also gives minimum 

Ci and with Ti=0. This schedule cannot 

dominated by any other schedule since Ci 

is minimum for all schedules with Ti=0. 

Hence this schedule obtained by SBA is 

efficient for 1/ /(Ci,Ti) problem. 

Note that the purpose of any algorithm 

process is to find for each problem instance 

a feasible solution called optimal that 

minimize their objective function. This usual 

meaning of the optimum makes no sense in 

the multi-criteria case because it doesn't 

exist in most of the cases, a solution 

optimizing all objectives simultaneously. 
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Hence we search for feasible solutions 

yielding the best compromise among 

objectives that constitutes a so called 

efficient solution set.  
   

4. Methods of Approach 

  

There are approaches that can be used for 

solving multi-criteria scheduling problems, 

which are to find the set of efficient 

solutions or at least approximation to it. It is 

clear that this set of all efficient solutions is 

difficult to find. Therefore, it could be 

preferable to have an approximation to that 

set in a reasonable amount of time. 

We will introduce two methods of 

approach to solve multi-criteria scheduling 

problem (P1) for finding the set of efficient 

solutions. 

  

4.1 Branch and Bound Method for (P1) 
This method, depend on the techniques of 

branch and bound (BAB) algorithm with 

some modifications. The BAB method is 

characterized by its branching procedure, 

upper and lower bounding procedures and 

search strategy. 

We present a constructive BAB 

algorithm to find all or some of the efficient 

solutions (Pareto optimal points (POP)) 

when the two criteria Ci and Ti are of 

simultaneous interest in problem (P1). The 

main idea of this BAB algorithm is 

depending on properties of BAB algorithm 

and some modifications such as using the 

definition of efficient solutions and without 

reset the upper bound (UB) at the last level 

of BAB method. The main steps of the BAB 

algorithm as follows: 

Step(1): Find the proposed UB by SPT rule, 

that is sequencesing the job in non-

decreasing order of their processing time pi, 

i=1,2,...,n, for this order  calculate Ci() 

and Ti() and set UB=(Ci(),Ti()) at 

the parent node of the search tree. UB is 

efficient by proposition (1) and add this 

efficient solution to the set of POP. If 

Tmax(EDD)=0, then there exists an efficient 

sequence obtained by proposition (2), and 

also add this efficient solution to the set of 

POP.  

Step(2):For each partial sequence of jobs  

(i.e., for each node in the search tree), 

compute the lower bound LB() as follows: 

LB()=exact cost of  + cost of S (where S 

the set of unsequence jobs), obtained by 

sequence the jobs in SPT rule. 

Step(3):Branch from each node with LB() 

 UB. 

Step(4):At each node of the last level of the 

BAB method, if (Ci,Ti) denote the 

outcome, then add this outcome to the set of 

POP, unless it is dominated by the 

previously obtained POP. 

Step(5): Stop. 

 

4.2 Local Search Methods for (P1) 
Evolutionary Algorithms (EAs) 

(21)
 

have been shown to be successful for a wide 

range of optimization problems. While these 

algorithms work well for many optimization 

problems in practice, a satisfying and 

rigorous mathematical understanding of 

their performance is an important challenge 

in the area of evolutionary computing 
(22)

. 

 

4.2.1 Genetic Algorithms 
(23) 

Genetic Algorithms (GA’s) are search 

algorithms based on the mechanics of 

natural selection and natural genetics. GA is 

an iterative procedure, which maintains a 

constant size population of candidate 

solution. During each iteration step 

(Generation) the structures in the current 

population are evaluated, and, on the basic 

of those evaluations, a new population of 

candidate solutions formed. The basic GA 

cycle shown in figure (1). 
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An abstract view of the GA is: 

Generation=0; 

Initialize G(P); {G=Generation ; 

P=Population} 

Evaluate G(P); 

While (GA has not converged or terminated) 

Generation = Generation + 1; 

Select G(P) from G(P-1); 

Crossover G(P); 

Mutate G(P); 

Evaluate G(P); 

End (While) 

Terminate the GA. 

 

4.2.2 Particle Swarm Optimization 

Particle Swarm Optimization (PSO) 
has found applications in a lot of areas. In 

general, all the application areas that the 

other evolutionary techniques are good at 

are good application areas for PSO 
(7)

. 

PSO was originally developed by a 

social-psychologist J. Kennedy and an 

electrical engineer R. Eberhart in 1995 and 

emerged from earlier experiments with 

algorithms that modeled the flocking 

behavior seen in many species of birds. It is 

yet another optimization algorithm that falls 

under the soft computing umbrella that 

covers genetic and evolutionary computing 

algorithms as well 
(24)

. 

PSO is an extremely simple concept, and 

can be implemented without complex data 

structure. No complex or costly 

mathematical functions are used, and it 

doesn’t require a great amount of memory 
(25)

. The facts of PSO has fast convergence, 

only a small number of control parameters, 

very simple computations, good 

performance, and the lack of derivative 

computations made it an attractive option for 

solving the problems. 

The PSO algorithm depends in its 

implementation in the following two 

relations: 

vid=w*vid+c1*r1*(pid-xid)+c2*r2*(pgd -xid) 

     …(3a) 

xid = xid + vid    …(3b) 

where c1 and c2 are positive constants, r1 

and  r2  are random function in the range 

[0,1], xi=(xi1,xi2,…,xid) represents the i
th

 

particle; pai=(pi1,pi2,…,pid) represents the 

(pbest) best previous position (the position 

giving the best fitness value) of the i
th

 

particle; the symbol g represents the index 

of the best particle among all the particles in 

the population,  v=(vi1,vi2,…,vid) represents 

the rate of the position change (velocity) for 

particle i 
(7)

. 

The original procedure for implementing 

PSO is as follows:   

1. Initialize a population of particles with 

random positions and velocities on d-

dimensions in the problem space. 

2. PSO operation includes: 

a. For each particle, evaluate the 

desired optimization fitness function 

in d variables. 

b. Compare particle's fitness evaluation 

with its pbest. If current value is 

better than pbest, then set pbest equal 

to the current value, and pai equals to 

the current location xi. 

c. Identify the particle in the 

neighborhood with the best success 

so far, and assign it index to the 

variable g. 

d. Change the velocity and position of 

the particle according to equation 

(3a) and (3b). 

3. Loop to step (2) until a criterion is met. 

Old 

 Population 

Selection Mutation 

Mating 
Crossover 

Evaluation 

Figure (1) Basic cycle of GA. 

New 

 Population 
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Like the other evolutionary algorithms, a 

PSO algorithm is a population based on 

search algorithm with random initialization, 

and there is an interaction among population 

members. Unlike the other evolutionary 

algorithms, in PSO, each particle flies 

through the solution space, and has the 

ability to remember its previous best 

position, survives from generation to 

another. 

A number of factors will affect the 

performance of the PSO. These factors are 

called PSO parameters, these parameters 

are 
(24)

: 

1. Number of particles in the swarm affects 

the run-time significantly, thus a balance 

between variety (more particles) and 

speed (less particles) must be sought. 

2. Maximum velocity (vmax) parameter. 

This parameter limits the maximum 

jump that a particle can make in one 

step.  

3. The role of the inertia weight w, in 

equation (3a), is considered critical for 

the PSO’s convergence behavior. The 

inertia weight is employed to control the 

impact of the previous history of 

velocities on the current one. 

4. The parameters c1 and c2, in equation 

(3a), are not critical for PSO’s 

convergence. However, proper fine-

tuning may result in faster convergence 

and alleviation of local minima, c1 than a 

social parameter c2 but with c1 + c2 = 4.  

5. The parameters r1 and r2 are used to 

maintain the diversity of the population, 

and they are uniformly distributed in the 

range [0,1]. 

 

4.2.3 Analysis of Number of Efficient 

Solutions 
As our main aim in this research is to 

identify the set of all efficient solutions, we 

should try to hold the entire set (i.e., the set 

of all efficient solutions). 

It's clear from special cases of the 

problem (P1) above (section 3.1), if the 

criteria (objectives) can be optimized 

individually, we can deduce the set of 

efficient solutions have only one element 

with extreme values of the individual 

objective functions. Since our algorithm 

depends on BAB method, we can sure that a 

solution is truly an efficient solution. We 

proved that the SPT rule is one the efficient 

solution, hence we can determine if some 

solutions of the BAB method are dominated 

by the SPT solution and other solutions. 

Also we proved that if Tmax(EDD)=0, then 

SBA gives one of the efficient solution for 

problem (P1). 

 

4.3 Branch and Bound Method for 

Problem (P3) 

The main aim for problem (P3) is to find 

a schedule  of the jobs on a single machine 

to minimize C(i)+T(i), S, where S is 

the set of all feasible solutions. 

 

4.3.1 Derivation of Lower Bound for 

Problem (P3) 

Consider the formulation of the problem 

(P3), the problem can be decomposed into 

two subproblems with a simple structure. 

Then the lower bound of the problem (P3) is 

calculated as follows: 

Consider the two subproblems (SP1) and 

(SP2) as follows: 

}C{minZ
n

1j

)j(
S

1 





  

s.t. 

C(j)  p(j),  j=1,2,…,n. 

C(j)  C(j-1) + p(j),j=2,3,…,n.      …(SP1) 

 

}T{minZ
n

1j

)j(
S

2 





  

s.t. 

T(j) = C(j) - d(j),  j=1,2,…,n.      …(SP2) 

T(j)  0,  j=1,2,…,n. 
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Its clear that for the decomposition, (SP1) 

and (SP2) have simpler structure than (P3), 

and thus appear easily first to solve 

optimality for (SP1) to get Z1 by applying 

shortest processing time (SPT) rule. Second, 

to get a lower bound for (SP2), let  be the 

sequence jobs and S be the set of 

unsequence jobs. 

Hence  

)S(T)(T)(LB
Si

i

i

i
 



 

Where )(T
i

i 


exact cost of  and 

)S(T
Si

i




is obtained by using lower bound 

methods. 

If we ignore the cost(S), we get a weak 

lower bound for (SP2). 

Now calculate Z1 to be the minimum 

value for (SP1) and LB() to be the lower 

bound for (SP2), then applying the following 

result: 

 

Theorem (1) (Hoogeveen H., 2005): 

 Z1+LB()  Z, where Z1 is the minimum 

objective function value of (SP1), LB() is a 

lower bound for (SP2) and Z is the minimum 

objective value of (P3). 

 

4.3.2 Derivation of Upper Bound for 

Problem (P3) 

We propose to use a simple heuristic 

solution which is obtained by ordering the 

jobs in SPT rule to provide an initial upper 

bound (UB) on the MOF. Let , 

=((1),(2),...,(n)) be such ordered, then: 








 
n

1j

)j(

n

1j

)j( TCUB   …(4) 

 

5. Implementation of Local Search 

Methods for (P1) 

Obviously the problems including more 

than one criterion are more difficult. So 

there is a need for local search methods to 

treat a large size instances problem. This is 

the main aim of the present paper. 

Effectively, evolving methods or can be 

called Local Search methods like PSO and 

GA have demonstrated their ability to solve 

multi objective problems to find the 

approximation set of efficient solutions for 

the problem (P1). 

In this section, we are going to describe 

the two methods of local search. The first is 

the PSO as the main new method, and the 

second, is GA as a comparative method to 

compare the results obtained from the two 

methods in order to find which is better. 

Before we discuss each of the methods, 

we have to talk about the common basics 

between the two methods, these basics are: 

1. Problem Definition 

The most prominent member of the rich 

set of combinatorial optimization 

problems is undoubtedly the Machine 

Scheduling Problem (MSP). In order to 

find the set of POP, we solve the 

problem (P1) of minimizing (Ci,Ti). 

Obviously, this scheduling problem is 

example of NP-complete, the work area 

to be explored grows exponentially 

according with number of jobs, and so 

does. In general, if n jobs were must be 

arranged in a single machine, then the 

general complexity is n!. 

2. Problem Representation 

The solution representation should be an 

integer vector. In this particular 

approach we accept schedule 

representation which is described as a 

sequence of jobs. 

3. Initial Population 

For the initialization process we can 

either use some heuristics starting from 

different jobs, or we can initialize the 

population by a random sample of 

permutation of N={1,2,…,n}. 
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5.1 Use of GA in MSP 
Now we will discuss the use of GA first, 

since it has been used before in MSP for 

many times. 

1. Genetic Operators 

 Selection Operator 

This method uses the roulette wheel 

selection method. The sequence with 

low fitness has a higher probability of 

contributing one or more offspring to 

the next generation. 

 Crossover Operator 
The strength of genetic algorithms 

arises from the structured information 

exchange of crossover combinations 

of highly fit individuals. So what we 

need is a crossover-like operator that 

would exploit important similarities 

between chromosomes. For that 

purpose the crossover used in this 

algorithm is the Order Crossover 

(OX) 
(26)

, this operator chooses two 

random crossover points, for example, 

if the parents are: 

v1 : 7 9 8 2 5 1 6 3 4 

v2 : 9 5 6 4 8 3 2 7 1 
 

 
7 9 * 2 5 1 6 * * 

9 * 4 2 8 3 * 7 * 
 

 
7 9 2 * * * 5 1 6 

 
9 6 4 * * * 8 3 7 

 

 
o1 7 9 2 4 8 3 5 1 6 

o2 9 6 4 2 5 1 8 3 7 

 

 Mutation Operator 

After the new generation has been 

determined, the chromosomes are 

subjected to a low rate mutation 

process. For this example applies two 

mutation operators to introduce 

genetic diversity into the evolving 

population of permutation. The first 

operator is a simple two point 

mutation, which randomly selects two 

elements in the chromosome and swap 

them (1 10 8 4 5 6 7 9 3 2) becomes (1 

10 3 4 5 6 7 9 8 2). The second 

operator is a shuffle mutation, which 

shunts the permutations forward by a 

random number of places; thus  

(1 10 3 4 5 6 7 9 8 2) shuffled forward 

six places becomes (6 7 9 3 2 1 10 8 4 

5). 

 

2. Genetic Parameters  

For MSP, from our experience, the 

following parameters are preferred to be 

used: population size (pop_size=20), 

probability of crossover (Pc=0.7), 

probability of mutation Pm =0.1 and 

some hundreds number of generations. 

 

5.2 Use of PSO in MSP 

For MSP, from our experience, the 

following parameters are preferred to be 

used: Number of Particles (N_Par=20,30), 

Maximum velocity (vmax=Number of Jobs 

(n)), Minimum velocity (vmin=1), Inertia 

Weight (w[0.4,0.9]). First acceleration 

parameter (c1[0.5,2]), Second acceleration 

parameter (c2=c1), Diversity of the 

population Maintenance (random 

r1,r2[0,1]) and some hundreds number of 

generations. 

 

6. Experimental Results of BAB, 

GA & PSO Implementation for (P1) 
For the problem (P1), a simulation has 

been constructed in order to apply the BAB, 

GA & PSO. 

Table (1) shows the CPU time results of 

applying BAB method in order to get a set 

of efficient solutions, on samples of 

different jobs with 10 experiments for each. 

The results of CPU time compared with 

results obtained from complete enumeration 

(CE) method, which generate all solutions 

for n10. 
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Table (1) the CPU time results of applying BAB and CE on (P1) for n=7,..,15. 

Table (1) the CPU time results of applying BAB and CE on (P1) for n=7,..,15. 

n 
Experiments times/sec CE 

1 2 3 4 5 6 7 8 9 10 Av Av
*
 Av 

7 0.01 0.0 0.08 0.02 0.01 0.06 0.01 0.05 0.05 0.04 0.03 0.03 0.01 

8 0.25 0.01 0.40 0.14 0.06 0.09 0.03 0.01 0.05 0.09 0.11 0.11 0.63 

9 0.07 0.06 0.03 0.01 0.03 0.03 0.18 0.02 0.39 0.2 0.11 0.11 6.32 

10 0.12 0.08 2.52 0.09 0.10 1.60 0.04 0.30 0.57 0.40 0.58 0.37 63.1 

11 0.31 2.26 1.12 0.18 0.08 0.70 0.06 0.07 0.34 0.03 0.52 0.32 --- 

12 0.14 1.43 3.00 0.25 0.22 0.70 2.27 0.19 1.26 8.71 1.82 1.05 --- 

13 12.48 0.40 0.26 0.35 6.76 0.49 0.36 3.67 0.20 1.58 2.65 1.50 --- 

14 1.838 40.3 4.11 2.01 139.6 0.73 8.97 1.61 0.07 369.1 56.7 22.1 --- 

15 6.18 1.31 1711 3.30 19.1 8962 1025 2.72 385.6 3.95 1212 351 --- 

 

 

Note: 

1. The shaded cells are representing the 

most extreme time point. 

2. Av.: denotes the average time for CE, 

where Av
*
.: is the average without the 

extreme time point for BAB. 

3. No average time for CE method when 

n>10. 

 

Table (2) shows the results of applying BAB 

on different examples of (P3). 

 

 

 

Table (2) the results of applying BAB on different examples of (P3). 

n (efficient solutions of P1)=(Ci+Ti)=optimal Solutions of P3 Lev. 
Time/sec 

Lev. Tot. 

20 

(1075+742)=1817*,(1079+735)=1814,(1085+727)=1812,(1081+730)=1811, 

(1083+725)=1808,(1083+727)=1810,(1079+730)=1809,(1083+725)=1808, 

(1080+727)=1807,(1081+725)=1806 
7 0.16 3.48 

40 

(3106+2381)=5487*,(3106+2379)=5485,(3111+2373)=5484, 

(3112+2371)=5483, 

(3107+2375)=5482 

13 0.18 55.9 

60 

(7163+6142)=13305*,(7165+6139)=13304,(7164+6139)=13303, 

(7164+6138)=13302,(7166+6135)=13301,(7166+6134)=13300, 

(7169+6129)=13298,(7165+6131)=13296,(7172+6123)=13295, 

(7167+6127)=13294,(7166+6126)=13292,(7168+6122)=13290, 

(7167+6121)=13288,(7169+6117)=13286,(7168+6116)=13284, 

(7169+6114)=13283,(7170+6112)=13282,(7169+6112)=13281 

13 33.9 --- 

80 

(12404+10915)=23319*,(12409+10899)=23308,(12408+10899)=23307, 

(12414+10892)=23306,(12414+10888)=23302,(12412+10888)=23300, 

(12419+10880)=23299,(12416+10881)=23297,(12416+10880)=23296, 

(12420+10875)=23295,(12420+10874)=23294,(12420+10873)=23293, 

(12424+10868)=23292,(12423+10866)=23289,(12423+10865)=23288, 

(12425+10859)=23284,(12427+10853)=23280,(12429+10847)=23276, 

(12429+10844)=23273,(12429+10840)=23269,(12429+10839)=23268 

18 1200 --- 

 

Notes: 

1. The symbol * assigns the result obtained 

from applying SPT to (P3) problem. 

2. Lev. means the level of BAB with last 

optimal solution. 

3. Tot. means the total time for applying 

BAB. 
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4. The symbol --- in time filed means the 

time which more than 30 minutes. 

5. The bold value in solutions filed 

represents the optimal value of (P3) 

problem. 

6. Its very important result can obtained 

from finding the optimal solutions of (P3) 

problem is that we can find the real (not 

approximate) efficient solutions of (P1) 

problem for n=30,40,… with sizes can't 

obtained by applying modified BAB or 

any local search methods. 

 When using the parameters mentioned 

above, the best (near) efficient solutions of 

(P1), time and number of iterations for best 

(near) efficient solutions of (P1) results are 

showed, in table (3) and table (4) which are 

obtained when applying GA & PSO 

methods respectively, for number of jobs 

n=3,…,10, with number of generations, for 5 

experiments for each number of jobs, using 

the following abbreviations: 

1. n: Number of jobs. 

2. Values of problem (P1): 

 Ex: Experiment number. 

 EffV: Efficient Value(s) of (P1) of each 

experiment using CE. 

 BV: Best Value(s) of (P1) of each 

experiment. 

 MBV: Minimum Best Value. 

 ABV: Average of Best Values(s) of (P1) 

for all experiments. 

 ASPT: Average value of the SPT 

schedules for (P1) for all experiments. 

3. AAE : Average of Absolute Error. 

EffV

ABVEffV
AAE


  

4. Values of Time: 

 CT: Complete Time for finishing each 

experiment. 

 MCT: Minimum Complete Time. 

 BT: Best Time to obtain best value(s) 

of (P1) of each experiment. 

 MBT: Minimum Best Time. 

 ABT: Average of Best Times of (P1) of 

all experiments. 

5. NI: Number of Iterations of best value(s) 

of (P1) of experiment. 

6. Number of Iterations 

 MNI: Minimum Number of Iterations. 

 ANI: Average Number of Iterations. 

7. Number of Efficient Solutions: 

 LES: number of Local Efficient 

Solutions. 

 RES: number of Real Efficient 

Solutions. 

 ALES: Average of number of Local 

Efficient Solutions. 

 

Table (3) Applying GA method on (P1) for n=3,..,10. 

n Ex 
Values of (P1) Time/sec 

NI 
RES Best Value ABV CT BT ABT 

3 

1 (14,2) (14,2) 

(31,3) 

0 0 

0 

1 

2 (35,4) (35,4) 0 0 1 

3 (42,8),(46,6) (42,8),(46,6) 0 0 1,2 

4 (33,0) (33,0) 0 0 1 

5 (30,0) (30,0) 0 0 1 

4 

1 (22,4) (22,4) 

(44,9) 

0 0 

0 

1 

2 (62,15),(65,11) (62,15),(65,11) 1 0 3,1 

3 (54,12) (54,12) 0 0 6 

4 (44,5),(45,3),(51,2) (44,5),(45,3),(51,2) 0 0 2,5,3 

5 (40,9),(46,7) (40,9),(46,7) 0 0 1,22 

5 

1 (33,8),(39,5) (33,8),(39,5) 

(47,8) 

0 0 

0 

1,2 

2 (47,7),(48,5),(49,2) (47,7),(48,6),(48,5) 1 0 7,11,49 

3 (40,5),(43,1) (40,5),(43,1) 0 0 1,30 



Basrah Journal of Science (A)  Vol.34(2), 113-132, 2016 

125 

 

4 (48,6),(52,3),(56,1) (48,6),(52,3) 0 0 2,13 

5 (68,15) (68,15) 0 0 1 

6 

1 (55,22),(59,19) (55,22),(59,19) 

(92,38) 

1 0 

0 

2,3 

2 
(70,15),(71,12),(72,11), 

(75,10),(76,9) 

(71,12),(72,11), 

(75,10),(76,9) 
0 0 

2,30,39, 

54 

3 (117,43) (117,43) 1 0 3 

4 (104,51),(110,49) (104,51),(110,49) 0 0 5,40 

5 
(115,62),(116,58),(120,57), 

(121,56),(122,55) 

(115,62),(116,58), 

(120,57),(121,56) 
1 0 

15,19, 

24,47 

7 

1 
(75,31),(80,29),(82,28), 

(83,26) 

(75,31),(80,30), 

(82,28),(83,26) 

(101,41) 

2 0,1 

0 

3,57, 

131,141 

2 (76,23),(80,21),(84,19) 
(76,23),(80,21), 

(84,19) 
1 0,1 

140,232, 

,257 

 

3 (143,59),(147,58) (143,59) 1 0 137 

4 (63,21),(64,20) (64,20) 1 0 127 

5 
(148,70),(150,68),(152,65) 

(155,63) 

(148,70),(150,68), 

(152,65),(155,63) 
1 0,1 

2,172, 

173,191 

8 

1 (89,44),(90,41), (93,40) 
(89,44),(90,41), 

(93,40) 

(143,74) 

2 
1,2, 

2 

1 

269,913, 

270 

2 
(179,95),(181,94),(198,92), 

(201,91) 

(179,95),(181,94), 

(199,93),(203,92) 
1 1 158,42 

3 

(136,74),(137,73),(138,72), 

(140,70),(141,69),(142,68), 

(146,67),(153,66) 

(136,74),(138,72) 

(140,70),(144,69), 

(146,68),(153,66) 

2 1,2 

11,132, 

801,480, 

747,393 

4 (194,114),(195,110),(196,108) 
(194,114),(195,110), 

(196,111) 
1 1 

426,114, 

623 

5 (118,39) (118,39) 1 1 208 

9 

1 (115,45),(117,43),(135,41) (115,45),(118,46) 

(180,92) 

4 3,2 

1 

1703,1462 

2 (246,123),(249,120),(254,118) 
(246,123),(251,122), 

(256,121) 
3 0,3 

30,35, 

1145 

3 (103,37),(107,34),(115,33) (103,37),(107,34) 3 0,1 1338,159 

4 (243,149),(244,146),(245,144) (243,149),(244,147) 3 1,2 556,1288 

5 (191,106),(192,102),(193,101) (193,103) 2 1 1597 

10 

1 
(148,72),(149,69),(150,67), 

(153,66) 
(150,67) 

(189,106) 

7 5 

4 

3124 

2 (147,55),(148,53),(159,52) (148,59),(149,58) 7 3,4 2143,2706 

3 (319,228) (319,228) 7 3 1738 

4 

(121,59),(122,57),(123,55), 

(124,54),(125,53),(127,52), 

(129,51),(131,50),(135,49) 

(122,57),(123,55), 

(128,53),(135,50) 
8 

2,1, 

6,8 

1405,325, 

4192,8520 

5 (207,116),(208,115),(211,114) (207,117),(208,116) 7 7,5 5878,4415 

Table (4) Applying PSO method on (P1) for n=3,..,10. 

n Ex 
Values of (P1) Time/sec 

NI 
RES Best Value ABV CT BT ABT 

3 

1 (14,2) (14,2) 

(31,3) 

0 0 

0 

1 

2 (35,4) (35,4) 0 0 1 

3 (42,8),(46,6) (42,8),(46,6) 1 0 1,2 

4 (33,0) (33,0) 0 0 1 

5 (30,0) (30,0) 0 0 1 

4 

1 (22,4) (22,4) 

(44,9) 

0 0 

0 

1 

2 (62,15),(65,11) (62,15),(65,11) 0 0 3,1 

3 (54,12) (54,12) 0 0 1 
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4 (44,5),(45,3),(51,2) (44,5),(45,3),(51,2) 1 0 6,1,19 

5 (40,9),(46,7) (40,9),(46,7) 0 0 2,15 

5 

1 (33,8),(39,5) (33,8),(39,5) 

(47,8) 

0 0 

0 

37,3 

2 (47,7),(48,5),(49,2) (47,7),(48,6),(49,2) 1 0 8,22,4 

3 (40,5),(43,1) (40,5),(43,1) 0 0 13,98,5 

4 (48,6),(52,3),(56,1) (48,6),(56,2) 0 0 12,89 

5 (68,15) (68,15) 0 0 17 

6 

1 (55,22),(59,19) (55,22),(63,20) 

(93,38) 

0 0 

0 

39,1 

2 
(70,15),(71,12),(72,11), 

(75,10),(76,9) 

(70,15),(71,12), 

(72,11),(76,9) 
0 0 

28,2, 

20,42 

3 (117,43) (117,43) 0 0 34 

4 (104,51),(110,49) (104,51),(110,49) 0 0 79,73 

5 
(115,62),(116,58),(120,57), 

(121,56),(122,55) 

(117,58),(120,57), 

(121,56),(122,55) 
0 0 

6,73, 

60,44 

7 

1 
(75,31),(80,29),(82,28), 

(83,26) 
(75,31),(82,28) 

(101,41) 

1 0,1 

0 

8,250 

2 (76,23),(80,21),(84,19) (76,23),(80,21) 1 0,1 
82,3 

 

3 (143,59),(147,58) (143,59) 1 0 119 

4 (63,21),(64,20) (64,20) 1 0 127 

5 
(148,70),(150,68),(152,65) 

(155,63) 

(148,70),(151,69), 

(152,65),(155,63) 
1 0,1 

258,249, 

1,177 

8 

1 (89,44),(90,41),(93,40) (90,41) 

(144,72) 

1 0 

0 

488 

2 
(179,95),(181,94),(198,92), 

(201,91) 
(179,95) 1 1 977 

3 

(136,74),(137,73),(138,72), 

(140,70),(141,69),(142,68), 

(146,67),(153,66) 

(136,74),(138,72) 

(141,69),(142,68) 
1 0 

104,72, 

949,288 

4 (194,114),(195,110),(196,108) (194,114),(197,108) 1 0 288,12 

5 (118,39) (118,39) 1 0 546 

9 

1 (115,45),(117,43),(135,41) (115,45),(134,43) 

(181,92) 

2 1 

0 

1333,107 

2 (246,123),(249,120),(254,118) (246,123),(254,122) 2 0,1 222,946 

3 (103,37),(107,34),(115,33) 
(103,37),(107,34), 

(117,33) 
2 0,1 

77,356, 

834 

4 (243,149),(244,146),(245,144) (245,151),(247,146) 2 1 1880,141 

5 (191,106),(192,102),(193,101) (194,102) 1 0 829 

10 

1 
(148,72),(149,69),(150,67), 

(153,66) 

(151,77),(153,71), 

(154,67) 

(190,107) 

6 1,2 

4 

143,1693, 

976 

2 (147,55),(148,53),(159,52) (147,55) 5 1 747 

3 (319,228) (321,229) 4 1 1563 

4 

(121,59),(122,57),(123,55), 

(124,54),(125,53),(127,52), 

(129,51),(131,50),(135,49) 

(122,57),(125,53), 

(133,51) 

 

4 
2,0, 

3 

3190,2, 

4988 

5 (207,116),(108,115),(211,114) (211,119) 4 0 364 

 
Notes: 

1. In tables (3,4), for n=3,..,6, 100 iterations 

are used, for 7, 500 iterations, for 8, 1000 

iterations, for 9, 2500 iterations while for 

10, 6000 iterations are being used. 

2. It’s important to note that the set of 

efficient solutions (POP) of (P1) for each 

experiment obtained by using complete 

enumeration. The complete enumeration, 

of course, difficult to be applied for jobs 

more than 10 jobs. For this reason the 

results of complete enumeration are not 

mentioned in the tables (6,7) which are 

included more than 10 jobs. 
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In table (5) a comparison has been made 

between the results of applying GA (G) and 

PSO (P) obtained from tables (3,4) 

respectively, for values of (P1), time and 

number of iterations for chosen n=4,7,10. 

 

Table (5) Comparison results between GA & PSO methods on (P1) for n=4,7,10. 

n Ex 

Values of (P1) ALES Time/sec 
NI 

EffV 
BV ABV LES/RES CT BT ABT 

G P G P G P G P G P G P G P 

4 

1 (22,4) (22,4) (22,4) 

(44,9) (44,9) 

1.2 1.2 

0 0 0 0 

0 0 

1 1 

2 
(62,15) 

(65,11) 

(62,15) 

(65,11) 

(62,15) 

(65,11) 
1 0 0 0 

3 

1 

3 

1 

3 (54,12) (54,12) (54,12) 0 0 0 0 6 1 

4 

(44,5) 

(45,3) 

(51,2) 

(44,5) 

(45,3) 

(51,2) 

(44,5) 

(45,3) 

(51,2) 1 1 

0 1 0 0 

2 

5 

3 

6 

1 

19 

5 
(40,9) 

(46,7) 

(40,9) 

(46,7) 

(40,9) 

(46,7) 
0 0 0 0 

1 

22 

2 

15 

7 

1 

(75,31) 

(80,29) 

(82,28) 

(83,26) 

(75,31) 

(80,30) 

(82,28) 

(83,26) 

(75,31) 

(82,28) 

(101,41) (101,41) 

2.6 2 

2 1 
0 

1 

0 

1 

0 0 

3 

57 

131 

141 

8 

250 

2 

(76,23) 

(80,21) 

(84,19) 

(76,23) 

(80,21) 

(84,19) 

(76,23) 

(80,21) 
1 1 

0 

1 

0 

1 

140 

232 

257 

 

82 

3 

 

3 
(143,59) 

(147,58) 
(143,59) (143,59) 1 1 0 0 137 119 

4 
(63,21) 

(64,20) 
(64,20) (64,20) 

0.9 0.7 

1 1 0 0 127 127 

5 

(148,70) 

(150,68) 

(152,65) 

(155,63) 

(148,70) 

(150,68) 

(152,65) 

(155,63) 

(148,70) 

(151,69) 

(152,65) 

(155,63) 

1 1 
0 

1 

0 

1 

2 

172 

173 

191 

258 

249 

1 

177 

10 

1 

(148,72) 

(149,69) 

(150,67) 

(153,66) 

(150,67) 

(151,77) 

(153,71) 

(154,67) 

(189,106) (190,107) 

2.2 1 

7 6 5 0 

4 0 

3124 

143 

1693 

976 

2 

(147,55) 

(148,53) 

(159,52) 

(148,59) 

(149,58) 
(147,55) 7 5 

3 

4 

1 

2 

2143 

2706 
747 

3 (319,228) (319,228) (321,229) 7 4 3 1 1738 1563 

4 

(121,59) 

(122,57) 

(123,55), 

(124,54) 

(125,53) 

(127,52) 

(129,51) 

(131,50) 

(135,49) 

(122,57) 

(123,55) 

(128,53) 

(135,50) 

(122,57) 

(125,53) 

(133,51) 

 0.6 0.4 

8 4 

2 

1 

6 

8 

1 

1405 

325 

4192 

8520 

3190 

2 

4988 

5 

(207,116) 

(108,115) 

(211,114) 

(207,117) 

(208,116) 
(211,119) 7 6 

7 

5 

2 

0 

5878 

4415 
364 
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The average values, time and number of 

iterations for best values of problem (P1) 

results are showed, in table (6) and table (7) 

which are obtained when applying GA and 

PSO methods respectively, from chosen 

number of jobs n=20(10)100, 100(100)1000 

and 2000, for 10 experiments for each 

number of jobs. 

 

 

Table (6) Applying GA method on (P1) for chosen n=20,..,2000. 

n 
Values of (P1) Time/sec NI 

ASPT MBV ABV AAE MCT MBT ABT MNI ANI 

20 (784,579) (669,435) (859,643) (0.095,0.110) 1 0 1 419 1156 

30 (1863,1528) (1910,1572) (2147,1798) (0.152,0.176) 2 0 1 216 1007 

40 (3279,2826) (3133,2673) (3847,3390) (0.173,0.200) 1 0 2 93 1189 

50 (5367,4767) (5591,5037) (6480,5861) (0.207,0.230) 1 0 1 3 662 

60 (7398,6718) (8174,7477) (9210,8506) (0.245,0.266) 2 0 1 2 706 

70 (9654,8859) (11189,10378) (12270,11456) (0.271,0.293) 1 0 1 1 747 

80 (11380,10457) (13505,12486) (14948,13993) (0.314,0.338) 2 0 1 3 626 

90 (16127,15088) (19213,18103) (20614,19545) (0.278,0.295) 2 0 1 1 402 

100 (20013,18877) (23825,22750) (26050,24887) (0.302,0.318) 2 0 1 1 754 

200 (76815,74457) (99691,97318) (103178,100788) (0.343,0.354) 6 0 1 2 497 

300 (172822,169340) (225938,222610) (237666,234143) (0.375,0.383) 8 0 1 1 302 

400 (316213,311418) (401726,396955) (430451,425620) (0.361,0.367) 13 0 3 1 290 

500 (486835,480862) (647428,641474) (672989,666986) (0.382,0.387) 17 0 3 2 237 

600 (694731,687549) (942467,935042) (963142,955924) (0.386,0.390) 27 0 4 1 294 

700 (946289,937878) (1287845,1279258) (1311518,1303071) (0.386,0.389) 35 0 0 1 7 

800 (1226999,1217444) (1655960,1646540) (1710498,1700911) (0.394,0.397) 46 0 5 1 300 

900 (1577954,1567071) (2140353,2129737) (2188328,2177419) (0.387,0.390) 57 0 0 1 6 

1000 (1927674,1915686) (2610974,2599115) (2682704,2670689) (0.392,0.394) 70 0 0 1 9 

2000 (7727745,7703649) (10711403,10687729) (10862863,10838728) (0.406,0.407) 889 0 1 1 4 

Table (7) Applying PSO method on (P1) for chosen n=20,..,2000. 

n 
Value of (P1) Time/sec NI 

ASPT MBV ABV AAE MCT MBT ABT MNI ANI 

20 (784,579) (651,412) (848, 636) (0.081,0.099) 1 0 0 30 471 

30 (1863,1528) (1834,1509) (2070,1726) (0.111,0.129) 1 0 1 500 1181 

40 (3279,2826) (3076,2617) (3751,3285) (0.144,0.162) 1 0 1 81 1095 

50 (5367,4767) (5224,4663) (6250,5629) (0.164,0.181) 1 0 1 9 921 

60 (7398,6718) (7730,7035) (8730,8038) (0.180,0.197) 1 0 1 166 952 

70 (9654,8859) (0789,9984) (11761,10951) (0.218,0.236) 1 0 1 193 761 

80 (11380,10457) (12692,11702) (14294,13350) (0.256,0.277) 2 0 1 275 1004 

90 (16127,15088) (18248,17226) (19828,18754) (0.229,0.243) 2 0 1 78 845 

100 (20013,18877) (22844,21662) (24940,23779) (0.246,0.260) 2 0 2 5 1092 

200 (76815,74457) (94373,92003) (100017, 97631) (0.302,0.311) 5 0 3 207 1257 

300 (172822,169340) (220151,216721) (229363,225847) (0.327,0.334) 9 1 6 158 1744 

400 (316213,311418) (397074,392312) (421116,416287) (0.332,0.337) 13 0 5 169 1160 

500 (486835,480862) (630853,624771) (657546,651548) (0.351,0.355) 16 1 5 190 902 

600 (694731,687549) (926224,918964) (942695,935485) (0.357,0.361) 21 1 11 139 1408 

700 (946289,937878) (1265690,1257332) (1287138,1278696) (0.360,0.363) 27 1 6 56 699 

800 (1226999,1217444) (1621930,1612515) (1676956,1667375) (0.367,0.370) 32 0 16 19 1455 

900 (1577954,1567071) (2123093,2111958) (2151797,2140887) (0.364,0.366) 37 2 9 217 756 

1000 (1927674,1915686) (2589187,2577336) (2644285,2632265) (0.372,0.374) 53 1 19 44 1008 

2000 (7727745,7703649) (10521335,10497652) (10706914,10682784) (0.386,0.387) 228 6 104 228 1988 
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Note: In tables (6) and (7), for 

n=(20,10,100), 2000 iterations are used, for 

n=(200,100,1000), 3000 iterations, while for 

2000, 5000 iterations are being used. 

 

In table (8) a comparison has been made 

between the results of applying GA (G) and 

PSO (P) obtained from tables (6,7) 

respectively, for values of (P1), time and 

number of iterations from chosen 

n=20(10)100, 100(100)1000 and 2000. 

 

 

Table (8) Comparison results between GA & PSO on (P1) for chosen n. 

n 

Value of (P1) Time NI 

ABV AAE MCT ABT ANI 

G P G P G P G P G P 

40 (3847,3390) (3751,3285) (0.173,0.200) (0.144,0.162) 1 1 2 1 1189 1095 

70 (12270,11456) (11761,10951) (0.271,0.293) (0.218,0.236) 1 1 1 1 747 761 

100 (26050,24887) (24940,23779) (0.302,0.318) (0.246,0.260) 2 2 1 2 754 1092 

400 (430451,425620) (421116,416287) (0.361,0.367) (0.332,0.337) 13 13 3 5 290 1160 

700 (1311518,1303071) (1287138,1278696) (0.386,0.389) (0.360,0.363) 35 27 0 6 7 699 

1000 (2682704,2670689) (2644285,2632265) (0.392,0.394) (0.372,0.374) 70 53 0 19 9 1008 

2000 (10862863,10838728) (10706914,10682784) (0.406,0.407) (0.386,0.387) 889 228 1 104 4 1988 

 

Figure (2) describes comparison chart 

which shows the relation between value of 

problem (P1) and number of iterations when 

applying GA & PSO on (P1) for n=10. 
 

 
 

Figure (2) comparison chart of applying 

GA & PSO on (P1), n=10, NI=1500. 

Figure (3) describes comparison chart 

which shows the relation between values of 

(P1) and number of iterations when applying 

GA & PSO for n=150. 

 

 
Figure (3) comparison chart of applying GA 

& PSO on (P1), n=150, NI=3000. 

Figure (4) describes comparison chart 

which is shows the relation between values 

of AAE of (P1) and number of iterations 

when applying GA & PSO for n=180. 

 
Figure (4) comparison chart of applying GA 

& PSO on (P1) for AAE, n=180. 
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7. Analysis of Results 
1. In this paper, a different number of 

jobs (n) are used, starting from 

n=4(1)10, n=20(10)100, 

n=200(100)1000 and n=2000, with 

number of iterations which is suitable 

to n to solve problem (P1). 

2. The parameters of testing the 

efficiency of local search method (GA 

and PSO) are calculated, these 

parameters represented by, the pair 

(Ci,Ti) of real efficient solutions 

(are calculated from complete search 

method for n10), the approximated 

local search best efficient solutions 

(BV) and their average, the number of 

best solutions (LES) and their average, 

the average of absolute error, the time 

which complete the single experiment, 

the time of the BV and their average 

and lastly, the iteration which found 

the corresponding BV. 

3. From table (5), for chosen n, 

 Number of LES: GA is serves better 

than PSO. 

 The two algorithms are equals in 

accuracy of resultant efficient 

solutions. 

 The two algorithms are 

approximately equals in CT and 

ABT. 

 The results of the iterations of ABV 

are different and unstable for each 

algorithm. 

4. Figure (2) (for n=10), describes an 

approximated result in the results of 

BV for GA & PSO. 

5. From table (8), for chosen n 

(20,..,2000), 

 We calculate the efficiency of BV 

obtained from the two algorithms 

compared with efficient of SPT by 

using AAE, we can conclude that 

PSO is better. 

 PSO is better than GA in ACT. 

 The results of the iterations of ABV 

are different and unstable for each 

algorithm. 

6. Figure (3) (for n=150), shows that 

PSO is better in BV. 

7. Figure (4) (for n=180), illustrates the 

efficiency of PSO in giving better 

accuracy than GA, but the results are 

closed and the AAE increased 

(accuracy are decreased) when the 

number of jobs are increased. 

  

8. BAB, GA & PSO System 

Requirements for Solving problem 

(P1) 
The BAB, GA & PSO methods were 

tested by programming them using version 

10.0 of Delphi Language and MATLAB, 

and running on Processor Intel(R) Core(TM) 

i3 CPU, 2.53 GHz, Core(s), with Ram 1.21 

GB computer. 

 

9. Conclusions 
1. From the results obtained for applying 

the two local search to find an efficient 

solutions for problem (P1), we can 

conclude that GA is better in n=3,..,10 

(low number of jobs), while PSO is 

better in n=20,..,2000 (higher number of 

jobs). 

2. The size of solution space (n!) can be 

decreasing when applying the 

precedence rules on each scheduling  

before join it to the population, since 

some of the efficient solutions are 

satisfy the precedence rules. 

3. To improve the performance of GA and 

PSO, we suggest making a hybrid 

between the two algorithms from one 

side, or between them and another local 

search algorithm e.g. simulated 

annealing and Bee algorithm, from 

other side. 
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 خوارزميات تقميل وقت الاتمام الكمي والتأخير الكمي لجدولة ماكنة واحدة

 فائز حسن عميد.طارق صالح عبد الرزاق و 
 قسم الرياضيات، كمية العموم، الجامعة المستنصرية، بغداد، العراق.

 خلاصةال
من الاعمال لها اوقات تنفيذ والوقت المثالي لانجاز النتاج  لماكنة  nفي هذا البحث سيتم مناقشة مسالة جدولة 

واحدة. الهدف هو ايجاد جدولة تقمل قيمة دالة مجموع وقت الاتمام ومجموع وقت التأخير )لتقميل دالة متعددة الاهداف 
(Ci,Ti) مسالة التقميل ألآني لايجاد مجموعة كل الحمول الكفوءة )حمول باريتو (. في هذا البحث نقترح طريقتين لحل

المثالية(. ان ايجاد مجموعة الحمول الكفوءة ليس بالامر الهين، لذلك، من الافضل ايجاد قيم تقريبية لمجموعة الحمول وفي 
 ( وطرق البحث المحمية.BABاوقات معقولة. لذلك تم استخدام طريقة التقيد والتفرع )

(، طريقة بحث محمية جديدة، عمى مسائل مولدة عشوائياً لحل مسائل PSOتم تطبيق طريقة امثمية السرب الجزيئي )
( PSOمكائن الجدولة متعددة الاهداف. ولان مسألتنا هي من المسائل المعقدة، فاننا نقترح استخدام طرق تقريبية جديدة مثل )

اوز عدد الاعمال امكانية بعض الطرق الحل التام مثل حل التام مثل طريقة ( لايجاد حمول تقريبية خصوصا عندما يتجGAو)
(. تم اجراء دراسة مقارنة بين طريقة التقيد والتفرع وطريقة امثمية السرب الجزيئي والخوارزمية الجينية BABالعد التام وطريقة )

 لبيان اي منها الافضل عند التطبيق.

http://engr.calvin.edu/WEBPAGE/courses/engir302/Reactivepower-PSO-wks.pdf
http://engr.calvin.edu/WEBPAGE/courses/engir302/Reactivepower-PSO-wks.pdf

