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Abstract

In this paper, we introduce and study the concept of strongly Fl-hollow-lifting modules. As proper

stronger concept of Fl-hollow-lifting modules which is a proper generalization of strongly lifting modules.

We say that an R-module M called strongly FI- hollow-lifting module if every fully invariant submodule N

of M with M/N is hollow there exists a fully invariant direct summand K of M such that K coessential

submodule N in M. Many characterizations and properties of strongly Fl-hollow-lifting modules are given and

the relation between this type of module and some other known of modules are discussed.

1.Introduction

Recall that an R-module M is a lifting if every
submodule N of M contains a direct summand
such that K coessential submodule N in M
[1].Following (N.Orhan, D.keskin and R.Tribak
introduced the concept hollow-lifting modules as a
generalization of lifting modules). An R-module M
is called Hollow —lifting if every submodule N of

M such that M/N is hollow has coessential

submodule that is a direct summand of M [2]. On
other direction, Y.T.alebi and T.Amoozegar are
introduced (strongly) FI-lifting modules as a
generalization of lifting module. An R-module M
is called (strongly) FI-Lifting if every fully
invariant submodule N of M contains a (fully

invariant) direct summand such that K coessential
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submodule N in M [3].Recently, FI-hollow-lifting
modules introduced as a proper generalization of
Hollow-lifting modules [4]. An R-module M is FI-
hollow-lifting if every fully invariant submodule N
of M such that M/N is hollow has coessential
submodule that is a direct summand of M.Recall
that an R-module is strongly lifting module if every
submodule N of M contains a stable direct
summand such that K coessential submodule N

in M [5].

In this paper, we introduce and study the concept
As a

concept of hollow-lifting module and

of strongly FI-hollow-lifting modules.
stronger
generalization of strongly lifting module. We say
that is a strongly FI- hollow-lifting module if
every fully invariant submodule N of M with
M/N is hollow there exists a fully invariant direct

summand K of M such that K coessential
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submodule N in M. Many characterizations and
properties of strongly FI-hollow-lifting modules

are given.

Throughout this paper R will denote arbitrary
associative ring with identity and all R-modules
are unitary left R-module, N € M will mean N is
a submodule of an R-module M. Let M be a
module and N be a submodule of M. N is called a
small submodule of M (denoted by N« M) if for
any X € M, M=N+X implies X=M. An R- module
M is called(FI-) hollow if every proper (fully
invariant) submodule is small in M[6] (4). The
module M is called local if has a unique maximal
N  which proper
submodules of M. Let K, N be submodules of M
such that K< N& M. Recall that K is called

submodule contains all

2-Strongly FI-Hollow-lifting modules

As a proper stronger concept of hollow-lifting
module. We introduce the following concept:

Definition(2-1):An R-module M is strongly FI-
Hollow-lifting if for every fully invariant
submodule N of M with < is hollow, there exists a

fully invariant direct summand K of M such that
K<, N in
M.

Remarks and Examples (2-2):

1-Every strongly Fl-hollow-Lifting module is FI-
hollow-Lifting but the converse is not true in
general. For example Z/2Z @ Z/8Z=M as Z-
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coessential submodule of N in M (briefly K S N
in M) if N/JK« M /K. A submodule N of M is
called a coclosed submodule of M if N has no
proper coessential submodule in M. If N and L are
submodules of M, then N is called a supplement of
L,ifN+L=Mand NN L& N.An R-module M
is called supplemented module if every submodule
of M is supplement.

Recall that a submodule K of M is fully invariant
if g(K) € Kforall g€ End (M).AnR-module
M is called duo if every submodule of M is fully
invariant [7]. Moreover, a submodule of an R-
module M is a called a stable if f(N) < N for each
homomorphism f:N—M. An R-module is called

fully stable if every submodule of M is stable[8].

module is FI-hollow-Lifting [4].But M is not
strongly Fl-hollow-lifting module since N==
Z2/27) @ (4Z/8Z) is submodule of M which is not
small in M and N does not contain any nonzero
fully invariant direct summand of M.

2-Every Fl-hollow (resp. hollow) module is
strongly  Fl-hollow-lifting module. In fact,
Suppose that M is Fl-hollow and let A be fully
invariant submodule of M. So A is small A=(0)+A
with (0) is a fully invariant direct summand of M
and A<< M .So by (pro.(2.5)) then M is strongly
FI-hollow-lifting.
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3-The class of hollow- Lifting modules and the
class of strongly Fl-hollow-lifting modules are
different. In fact, the Z-module M=(Z/2Z) &
(Z/4Z) is hollow-lifting but M is not strongly FI-
hollow-lifting since N= (Z/2Z) @ (2Z/4Z) is a
submodule of M which is not small in M and N
does not contain any non-zero fully invariant
direct summand of M.

4-Every strongly (FI)-lifting is strongly FI-hollow-
lifting. But the converse is not true in general.

5-1f M Duo module then the following concept are
equivalent:

1-M is strongly Fl-hollow-lifting module.
2-M is Fl-hollow-lifting module.
3-Hollow-lifting modules.

Now, we give some characterizations of strongly
Fl-hollow-lifting modules.

Theorem (2.3): An R-module M is strongly FI-
hollow-lifting if and only if for every fully

invariant submodule N of M with % hollow, there

exists a fully invariant direct summand K of N
suchthat M = K@K*and N N K* << K™,

Proof: Let N be a fully invariant submodule of M
with % hollow.Since M is strongly FI-hollow-

lifting then there is a fully invariant direct
summand K of M such that K <., N in M and
M = K@K*, where K* € M. Let (NNK") +X =

K*, where Xsubmodule K*. So M=K + K*=K +
M K+(NNK*) X+K But

(NN K*)+X. Now, — = <
K S, Nin M andK+ (NNnK*) € N. Therefore
by proposition [ 1 ,p.20], K S (K+ (N NK*))
in M and so M =X + K. Since M = K®K* and
KNK*=0,X< K* thus KnX=0 and hence
M = K®X this implies X = K* Thus NnK* <<
K*.

Conversely, let N be a fully invariant submodule
of M such that % is hollow, then by our
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assumption, there exists a fully invariant direct
summand K of N such that M = K@K*and

NNnK*<< K.* Now, we want to show that

KC,NinM Lt >+2=U
K K K

submodule of M containing K, then M = N + X.
By modular law,
N=NnNM=Nn (KOK)=K® (N nK*), hence
M=N+X=K+(N N K*)+X. But NnK*<<K*
therefore N N K* << M. So M=K+X=X and hence
K €. N in M. Thus M is strongly FI-hollow-
lifting. o

where Xis a

By the same manner of the proof of Theorem
(2.3), we can give another characterization of
strongly Fl-hollow -lifting module.

Proposition(2.4): An R-module M is strongly FI-
hollow-lifting if and only if for every fully

invariant submodule N of M with % hollow, there

exists a fully invariant direct summand K of N
suchthat M = K@K and NNK* << M. o

Recall that an R-module M is lifting if and only if
every submodule N of M can written in the form
N=A @ S where A is a direct summand of M and
S << M[1].We have analogous result for strongly
Fl-hollow -Lifting modules.

Theorem (2.5): The following statement are

equivalent for an R-module M:
1- M is strongly FI- hollow-lifting .

2-Every fully invariant submodule N of M such
that M/N is hollow, can be written as N=K @ L
with K is a fully invariant direct summand of M
and L<< M .

3-Every fully invariant submodule N of M such
that M/N hollow , there exists a fully invariant
direct summand K of M such that N=K +L and L
<< M.

Proof: (1=2) Let N be a fully invariant submodule
of M such that % hollow. Since M is strongly FI-
hollow-lifting, there exists a fully invariant direct
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summand K of M such that KS.. N in M and
= K@®K* , where K*< M. By modular law,
N=NNnM=Nn(KGK") =K@(NNnK"). We
want to show that NN K" << K*. Let X € K*
with (NN K*) + X =K,” then N+X=M.
Now,M:w:E+ﬂ.SinceK Ce.e N in M,
K K K K

then M =X+ K. But M = KK* and X & K*,
therefore X = K*. Let L= NN K*. Thus N=K@®L
with K is a fully invariant direct summand of M
and L<<M.

(2=3): It is obvious

(3=1): let N be a fully invariant submodule of M
with % hollow. Then by our assumption N = K +

L, where K is a fully invariant direct summand of
M and L << M such that M = K@K*, for some
K* < M. Since K™ is a supplement of Kin M,
and since L << M, then by [11 , p.348] K*is a
supplement of K+L=N in M.So NNK* <
< K.*Thus by Theorem (2.3), M is strongly FI-
hollow-lifting.

Since by [13,Lemma(2.1.6)], every fully invariant
direct summand are stable so we can rewrite all
results in this paper with " fully invariant direct
summand " being replaced by “stable direct
summand " for example, we can restate theorem
(2.5).

Proposition (2.6): The following statement are
equivalent for an R-module M:

1- M is strongly FI- hollow-lifting .

2-Every fully invariant submodule N of M such
that M/N is hollow, can be written as N=K @ L
with K is a stable direct summand of M and
L<< M.

3-Every fully invariant submodule N of M such
that M/N hollow , there exists a stable direct
summand K of M such that N=K +L and L
<< M. O
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It is well-known that, if M is lifting module then
every coclosed submodule of M is a direct
summand[1]. For strongly FI-hollow-lifting we
have the following.

Proposition (2.7): Let M be strongly FI-hollow-
lifting module. Then every fully invariant coclosed

submodule K of M with %
summand of M.

hollow is a direct

Proof: Let K be a fully invariant coclosed

submodule of M such that % is hollow. Since

M is strongly Fl-hollow-lifting, then there is a
fully invariant direct summand N of M such that N
C.. K in M Since K is a coclosed submodule
of M, then N=K. So K is a direct summand of
M.

O

Following [4], a finite direct sum of FI- hollow-
lifting module is FI-hollow-lifting. But we can see
that a direct sum of strongly Fl-hollow-lifting
need not be  strongly FI-hollow-lifting For
example, Z-module Z, and Zp; are strongly FI-
hollow-lifting ( where p is a prime number). Since
Z, and Zyz are hollow (see (Remarks (2.2), (2)
).-Then Z, © Zu3 is not strongly Fl-hollow-lifting
as Z-module. Now, we give a condition under
which a direct sum of strongly Fl-hollow-lifting
modules is strongly FI-hollow-lifting.

Proposition (2.8):Let M=,_1@® M; where M; is
fully invariant submodule of M. If M; is strongly
FlI-hollow-lifting, then M is strongly FI-hollow-
lifting.

proof :suppose =1 M; where M; is fully
invariant  submodule of M. Let N be fully

invariant submodule of M such that % is hollow

. M1 +N Mn +N M .
module. Since . nN = — there exist
. M Mi+N Mi
i € {1,.n} such that —= —— = —— . Thus

N N MinN
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Mi

. fully invariant
MinN

submodule of M then N=,_7T@® Nn M; and NN
M; fully invariant of M;. Now, since M; is
strongly Fl-hollow-lifting then NN M; =B; @ S;
where B; is fully invariant direct summand of M;
and Si«< M;. Now since B; is fully invariant of M;
for all 1< i <n and M; is fully invariant
submodule of M  then B; fully invariant
submodule of M. Also B; is a direct summand of
M; and M; a direct summand of M then B; a direct
summand of M. New, let =, _1® B; and

=_1® Si. But S=,._1® S; « M since (a finite
sum of small is a small)[9], then N=B&@S where B
is fully invariant direct summand of M and S <M.
Hence M s strongly Fl-hollow-lifting.
O

is hollow since N is

Proposition (2.9): Let M be a strongly FI- hollow-
lifting module. If M =X +Y, where Y is a fully
invariant direct summand of M and X is a fully

invariant submodule of M with xMW is hollow,

then Y contains a supplement submodule of X in
M.

Proof: Let M be a strongly Fl-hollow-lifting and
M=X+Y, where Y is a fully invariant direct
summand of M. Since the intersection of two fully
invariant submodule is fully invariant [3]. Since M
is strongly Fl-hollow-lifting, then by Theorem
(2.4). New, XNY = N@®S, where N is a fully
invariant direct summansd of M and S<<M. But Y
is a fully invariant direct summand of M and
Scy, therefore by[9] S<<Y. Let N* be a
submodule of M such that M=N@N .Thus by
modular low, Y=YNM =Y n(NBN)= NG
(Y N N"). Let Ni=Y n N, this implies thatM =
X+Y=X+N+N;=X+ N;. We want to show
that N is a supplement of X in M. By modular law,
XNY=XnYN(N@N)=N® (X NNy.

Let m1: N @ N,;— N1 be the natural projection
map. So we have,
XNN;=nl(N @(XNnNy)) =nl(XnY) =
nl(N @ S) = ml1(S).Since

S << Y=N@N;,then by[10], #1(S) << N;and
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hence X N N1<< Nj. Thus N; is a supplement of X
in M and N is contained in Y. O

Let M be an R-module. Recall that an R-module P
is called Projective if for any epimorphism ¢ :
M— N and for any homomorphism f: P—N there
is homomorphism h: P—M such that f=¢h. Also
an R-module P is called projective cover of M if, P
IS projective and there exists an epimorphism
¢ : P>M with kergp << P[10].

It well known that is not be every module has
Projective cover. We give a conditions under a
quotient of strongly FI-hollow-lifting module to
have Projective cover.

Proposition(2.10): Let M be a projective strongly
Fl-hollow-lifting module then For every fully

invariant submodule N of M such that% is hollow,

M . .
i~ has a projective cover.

Proof: Let N be a fully invariant submodule N of
M such that % is hollow. Since M is strongly FI-

hollow-lifting module, then by Theorem (2.3),
there exists a submodule K of N such that
M=K®K, forsome K< Mand N N K <<K .

Now, consider the following two short exact
sequences:

iy T, N+k*
%

0O - N-> N+K* N 0
L L2 . 2 K

0O - NNK*'- K* - -0
NNK*

Where iy, i, are the inclusion maps and T;,T;

are the natural epimorphism. By the (second
isomorphism theorem), %= NJIFVK* = N'{:K . Since M

is a projective and K* is a fully invariant direct
summand of M, then K* is a projective. But ker T,
= N N K*<<K*, therefore K* is a projective cover
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*

K* . M M . .
of . Since — = —— , thus — has a projective
NNK* N NNK* N
cover. m

We assert that every strongly FI-hollow-lifting
module is FI-hollow-lifting but the converse is not

true in general.

Proposition(2.11):

If an R-module M is Fl-hollow-lifting SS-module
then M is strongly Fl-hollow-lifting

Proof: Let N be a fully invariant sub module of M
with % is hollow.Since M is Fl-hollow-lifting there

exits direct summand D of M where D <_..N. But
M is SS-module hence D is fully invariant sub
module. So M is strongly FI-hollow- lifting.
O

Remark: The concepts of strongly FI-hollow-
lifting modules and SS-modules are different. For
example, Z as Z-module is SS-module which is not
strongly Fl-hollow-lifting. In other hand M= Z,-

@ Z,- isstrongly FI- hollow-lifting[12],

which is not SS-module [ 13, remark and example
(2.2.9)].

Corollary(2.12):

If an R-module M is Fl-hollow-lifting fully stable
then M is strongly Fl-hollow-lifting

Corollary(2.13): If an R-module M is Fl-hollow-
lifting indecomposable module then M is strongly

FlI-hollow-lifting.

Corollary(2.14): A commutative ring R is FI-

hollow-lifting then R is strongly FlI-hollow-lifting.
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Lemma(2.15): If R-module M is strongly FI-
hollow-lifting, then every fully invariant

submodule N of M with % hollow has supplement
K*in M and NN K* is a direct summand in N.

Proof : Suppose that M is a strongly FI- hollow-
lifting module and N isa fully invariant

submodule of M such that % is hollow. Then there

is a fully invariant direct summand
submodu K of Nin M suchthatK €., N in M
and M=K@®K*, for some K* € M. By modular
law, N=NNM= N n (K®K*) = K ®(N nK*).
One can easily show that
M = N + K*. We want to show that N N K* <<
K*.Let (NNK*)+X = K*,where X € K*
SO M=K+K'=K+ (NNnK*)+ X. This
_N+X_N

impliesthatM=N+XandM—— -+ .
K K K K

Since K €., N in M,then M=X + K. But M =
K®K™*and X € K*, therefore X = K* and hence
N N K* << K*. Thus N has a supplement fully
invariant K*in M and NN K™ is a direct summand
inN. O

X+K

Finally we obtained another characterization of
strongly FI-hollow-lifting.

Theorem (2.16): An R-module M is strongly FI-
hollow-lifting if and only if for every fully

invariant submodule N of M with % hollow, there

exists an idempotent e € End(M) such that e(M)
is fully invariant submodule of M with e(M)S N
and (I-e)(N)<< (I-e)(M).

Proof: Let N be a fully invariant submodule of M
such that % hollow. Since M strongly is FI-hollow-

lifting, then by Proposition(2.4), there is a
decomposition M=X @K such that X € N with X
is fully invariant submodule of M and NNnX <<
M. Now, let e : M =X@®K —X be a Projection
mapping. Thus, it easy check that e is an
idempotent and e(X) = X S N. Also (I-e)(M)=K.
since NNX << M and K is a direct summand of
M, then NNK<< K [9].Since X € N, then
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e(M) € N. Now, (I-e)(M) = {(I-e)(m), meM} =
{(I-e) (a+b), where a€eX,beK}={(-
e)(atb)=a+b-a=b}= K.

We want show that (I-e)(N)=N n(I-e)(M).
Let x €(I-e)(N), then there is n € N such that x=(I-
e)(n)=n-e(n). Thus x€N and x €(I-e)(M).
So x € N n(I-e)(M). Hence, (I-e)(N)SN Nn(I-e)(M).
Let de Nn (I-e)(M), then de N and d €(I-
e)(M). There is y € M such that d =(I-e)(y) = y-
e(y). Thus d+e(y)=y € N, then d €(I-e)(N). So
(I-e)(N)=N n(I-e)(M)=N n K

<< K. Hence, (I-e)(N) << (I-e)(M).

let N be a invariant

submodule of M such that % is hollow. By our

Conversely, fully
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