Strongly FI-HOLLOW-LIFTING MODULES

Saad A. ALsaadi¹ and Nedal Q. Saaduon²

Department of mathematics, College of science, University of AL-Mustansiriya.¹²

Saadalsaadi08@ yahoo. com

<u>Abstract</u>

In this paper, we introduce and study the concept of strongly FI-hollow-lifting modules. As proper stronger concept of FI-hollow-lifting modules which is a proper generalization of strongly lifting modules. We say that an R-module M called strongly FI- hollow-lifting module if every fully invariant submodule N of M with M/N is hollow there exists a fully invariant direct summand K of M such that K coessential submodule N in M. Many characterizations and properties of strongly FI-hollow-lifting modules are given and the relation between this type of module and some other known of modules are discussed.

1.Introduction

Recall that an R-module M is a lifting if every submodule N of M contains a direct summand such that K coessential submodule N in M [1].Following (N.Orhan, D.keskin and R.Tribak introduced the concept hollow-lifting modules as a generalization of lifting modules). An R-module M is called Hollow –lifting if every submodule N of M such that M/N is hollow has coessential

submodule that is a direct summand of M [2]. On other direction, Y.T.alebi and T.Amoozegar are introduced (strongly) FI-lifting modules as a generalization of lifting module. An R-module M is called (strongly) FI-Lifting if every fully invariant submodule N of M contains a (fully invariant) direct summand such that K coessential submodule N in M [3].Recently, FI-hollow-lifting modules introduced as a proper generalization of Hollow-lifting modules [4]. An R-module M is FI-hollow-lifting if every fully invariant submodule N of M such that M/N is hollow has coessential submodule that is a direct summand of M.Recall that an R-module is strongly lifting module if every submodule N of M contains a stable direct summand such that K coessential submodule N in M [5].

In this paper, we introduce and study the concept of strongly FI-hollow-lifting modules. As a stronger concept of hollow-lifting module and generalization of strongly lifting module. We say that is a strongly FI- hollow-lifting module if every fully invariant submodule N of M with M/N is hollow there exists a fully invariant direct summand K of M such that K coessential submodule N in M. Many characterizations and properties of strongly FI-hollow-lifting modules are given.

Throughout this paper R will denote arbitrary associative ring with identity and all R-modules are unitary left R-module, $N \subseteq M$ will mean N is a submodule of an R-module M. Let M be a module and N be a submodule of M. N is called a small submodule of M (denoted by $N \ll M$) if for any $X \subseteq M$, M=N+X implies X=M. An R- module M is called(FI-) hollow if every proper (fully invariant) submodule is small in M[6] (4). The module M is called local if has a unique maximal submodule Ν which contains all proper submodules of M. Let K, N be submodules of M such that $K \subseteq N \subseteq M$. Recall that K is called

coessential submodule of N in M (briefly $K \subseteq_{ce} N$ in M) if N/K \ll M/K. A submodule N of M is called a coclosed submodule of M if N has no proper coessential submodule in M. If N and L are submodules of M, then N is called a supplement of L, if N + L = M and N \cap L \ll N. An R-module M is called supplemented module if every submodule of M is supplement.

Recall that a submodule K of M is fully invariant if $g(K) \subseteq K$ for all $g \in End(M)$. An R-module M is called duo if every submodule of M is fully invariant [7]. Moreover, a submodule of an Rmodule M is a called a stable if $f(N) \subseteq N$ for each homomorphism $f:N \rightarrow M$. An R-module is called fully stable if every submodule of M is stable[8].

2-Strongly FI-Hollow-lifting modules

As a proper stronger concept of hollow-lifting module. We introduce the following concept:

Definition(2-1):An R-module M is strongly FI-Hollow-lifting if for every fully invariant submodule N of M with $\frac{M}{N}$ is hollow, there exists a fully invariant direct summand K of M such that $K \subseteq_{ce} N$ in M.

Remarks and Examples (2-2):

1-Every strongly FI-hollow-Lifting module is FI-hollow-Lifting but the converse is not true in general. For example $Z/2Z \oplus Z/8Z=M$ as Z-

module is FI-hollow-Lifting [4].But M is not strongly FI-hollow-lifting module since N==(Z/2Z) \bigoplus (4Z/8Z) is submodule of M which is not small in M and N does not contain any nonzero fully invariant direct summand of M.

2-Every FI-hollow (resp. hollow) module is strongly FI-hollow-lifting module. In fact, Suppose that M is FI-hollow and let A be fully invariant submodule of M. So A is small A=(0)+A with (0) is a fully invariant direct summand of M and A<< M .So by (pro.(2.5)) then M is strongly FI-hollow-lifting.

(Z/4Z) is hollow-lifting but M is not strongly FIhollow-lifting since $N=(Z/2Z) \oplus (2Z/4Z)$ is a submodule of M which is not small in M and N does not contain any non-zero fully invariant direct summand of M.

4-Every strongly (FI)-lifting is strongly FI-hollow-lifting. But the converse is not true in general.

5-If M Duo module then the following concept are equivalent:

1-M is strongly FI-hollow-lifting module.

2-M is FI-hollow-lifting module.

3-Hollow-lifting modules.

Now, we give some characterizations of strongly FI-hollow-lifting modules.

Theorem (2.3): An *R*-module *M* is strongly FIhollow-lifting if and only if for every fully invariant submodule *N* of *M* with $\frac{M}{N}$ hollow, there exists a fully invariant direct summand *K* of *N* such that $M = K \oplus K^*$ and $N \cap K^* \ll K^*$.

Proof: Let N be a fully invariant submodule of M with $\frac{M}{N}$ hollow.Since M is strongly FI-hollowlifting then there is a fully invariant direct summand K of M such that $K \subseteq_{ce} N$ in M and $M = K \bigoplus K^*$, where $K^* \subseteq M$. Let $(N \cap K^*) + X =$ K^* , where X submodule K^*. So $M = K + K^* = K +$ $(N \cap K^*) + X$. Now, $\frac{M}{K} = \frac{K + (N \cap K^*)}{K} + \frac{X + K}{K}$. But $K \subseteq_{ce} N$ in M and $K + (N \cap K^*) \subseteq N$. Therefore by proposition [1, p.20], $K \subseteq_{ce} (K + (N \cap K^*))$ in M and so M = X + K. Since $M = K \oplus K^*$ and $K \cap K^* = 0, X \subseteq K^*$ thus $K \cap X = 0$ and hence $M = K \oplus X$ this implies $X = K^*$ Thus $N \cap K^* < K^*$.

Conversely, let *N* be a fully invariant submodule of *M* such that $\frac{M}{N}$ is hollow, then by our assumption, there exists a fully invariant direct summand *K* of *N* such that $M = K \bigoplus K^*$ and $N \cap K^* \ll K$. Now, we want to show that $K \subseteq_{ce} N$ in M. Let $\frac{N}{K} + \frac{X}{K} = \frac{M}{K}$ where X is a submodule of M containing K, then M = N + X. By modular law, $N = N \cap M = N \cap (K \bigoplus K^*) = K \bigoplus (N \cap K^*)$, hence $M = N + X = K + (N \cap K^*) + X$. But $N \cap K^* \ll K^*$, therefore $N \cap K^* \ll M$. So M = K + X = X and hence $K \subseteq_{ce} N$ in M. Thus M is strongly FI-hollowlifting. \Box

By the same manner of the proof of Theorem (2.3), we can give another characterization of strongly FI-hollow -lifting module.

Proposition(2.4): An R-module M is strongly FIhollow-lifting if and only if for every fully invariant submodule N of M with $\frac{M}{N}$ hollow, there exists a fully invariant direct summand K of N such that $M = K \oplus K^*$ and $N \cap K^* \ll M$. \Box

Recall that an R-module M is lifting if and only if every submodule N of M can written in the form N=A \bigoplus S where A is a direct summand of M and S << M[1].We have analogous result for strongly FI-hollow -Lifting modules.

Theorem (2.5): The following statement are equivalent for an R-module M:

1- M is strongly FI- hollow-lifting.

2-Every fully invariant submodule N of M such that M/N is hollow, can be written as N=K \bigoplus L with K is a fully invariant direct summand of M and L<< *M*.

3-Every fully invariant submodule N of M such that M/N hollow, there exists a fully invariant direct summand K of M such that N=K+L and L << M.

Proof: (1 \Rightarrow 2) Let N be a fully invariant submodule of M such that $\frac{M}{N}$ hollow. Since M is strongly FIhollow-lifting, there exists a fully invariant direct summand K of M such that $K \subseteq_{ce} N$ in M and = $K \oplus K^*$, where $K^* \subseteq M$. By modular law, $N = N \cap M = N \cap (K \oplus K^*) = K \oplus (N \cap K^*)$. We want to show that $N \cap K^* << K^*$. Let $X \subseteq K^*$ with $(N \cap K^*) + X = K$, then N + X = M. Now, $\frac{M}{K} = \frac{N+K}{K} = \frac{N}{K} + \frac{X+K}{K}$. Since $K \subseteq_{ce} N$ in M, then M = X + K. But $M = K \oplus K^*$ and $X \subseteq K^*$, therefore $X = K^*$. Let $L = N \cap K^*$. Thus $N = K \oplus L$ with K is a fully invariant direct summand of M and L<<M.

$(2\Rightarrow 3)$: It is obvious

 $(3\Rightarrow1)$: let *N* be a fully invariant submodule of *M* with $\frac{M}{N}$ hollow. Then by our assumption N = K + L, where *K* is a fully invariant direct summand of *M* and $L \ll M$ such that $M = K \oplus K^*$, for some $K^* \subseteq M$. Since K^* is a supplement of *K* in *M*, and since $L \ll M$, then by [11, p.348] K^* is a supplement of K + L = N in *M*. So $N \cap K^* < K$.*Thus by Theorem (2.3), *M* is strongly FI-hollow-lifting.

Since by [13,Lemma(2.1.6)], every fully invariant direct summand are stable so we can rewrite all results in this paper with " fully invariant direct summand " being replaced by "stable direct summand " for example, we can restate theorem (2.5).

Proposition (2.6): The following statement are equivalent for an R-module M:

1- M is strongly FI- hollow-lifting.

2-Every fully invariant submodule N of M such that M/N is hollow, can be written as $N=K \bigoplus L$ with K is a stable direct summand of M and L << M.

3-Every fully invariant submodule N of M such that M/N hollow, there exists a stable direct summand K of M such that N=K +L and L << M. \Box

It is well-known that, if M is lifting module then every coclosed submodule of M is a direct summand[1]. For strongly FI-hollow-lifting we have the following.

Proposition (2.7): Let M be strongly FI-hollowlifting module. Then every fully invariant coclosed submodule K of M with $\frac{M}{K}$ hollow is a direct summand of M.

Proof: Let K be a fully invariant coclosed submodule of M such that $\frac{M}{K}$ is hollow. Since M is strongly FI-hollow-lifting, then there is a fully invariant direct summand N of M such that N $\subseteq_{ce} K$ in M Since K is a coclosed submodule of M, then N=K. So K is a direct summand of M.

Following [4], a finite direct sum of FI- hollowlifting module is FI-hollow-lifting. But we can see that a direct sum of strongly FI-hollow-lifting need not be strongly FI-hollow-lifting For example, Z-module Z_p and Z_{p3} are strongly FIhollow-lifting (where p is a prime number). Since Z_p and Z_{p3} are hollow (see (Remarks (2.2), (2)).Then $Z_p \oplus Z_{p3}$ is not strongly FI-hollow-lifting as Z-module. Now, we give a condition under which a direct sum of strongly FI-hollow-lifting modules is strongly FI-hollow-lifting.

Proposition (2.8):Let $M =_{i=1}^{n} \bigoplus M_i$ where M_i is fully invariant submodule of M. If M_i is strongly FI-hollow-lifting, then M is strongly FI-hollow-lifting.

proof :suppose $M = {}_{i=1}^{n} \bigoplus M_i$ where M_i is fully invariant submodule of M. Let N be fully invariant submodule of M such that $\frac{M}{N}$ is hollow module. Since $\frac{M1+N}{N} + \ldots + \frac{Mn+N}{N} = \frac{M}{N}$ there exist $i \in \{1,\ldots n\}$ such that $\frac{M}{N} = \frac{Mi+N}{N} \cong \frac{Mi}{Mi \cap N}$. Thus

Mi since N is is hollow fully invariant Mi∩N submodule of M then $N=_{i=1}^{n} \bigoplus N \cap M_i$ and $N \cap$ fully invariant of M_i. Now, since M_i is Mi strongly FI-hollow-lifting then $N \cap M_i = B_i \bigoplus S_i$ where B_i is fully invariant direct summand of M_i and $S_i \ll M_i$. Now since B_i is fully invariant of M_i $1 \le i \le n$ and M_i is fully invariant for all submodule then B_i fully invariant of M submodule of M. Also B_i is a direct summand of M_i and M_i a direct summand of M then B_i a direct summand of M. New, let $B = \underset{i=1}{\overset{n}{\longrightarrow}} B_i$ and $S = \underset{i=1}{\overset{n}{\oplus}} S_i$. But $S = \underset{i=1}{\overset{n}{\oplus}} S_i \ll M$ since (a finite sum of small is a small)[9], then $N=B \oplus S$ where B is fully invariant direct summand of M and S «M. Hence M is strongly FI-hollow-lifting.

Proposition (2.9): Let *M* be a strongly FI- hollowlifting module. If M = X + Y, where *Y* is a fully invariant direct summand of *M* and *X* is a fully invariant submodule of M with $\frac{M}{X \cap Y}$ is hollow, then *Y* contains a supplement submodule of *X* in M.

Proof: Let M be a strongly FI-hollow-lifting and M=X+Y, where Y is a fully invariant direct summand of M. Since the intersection of two fully invariant submodule is fully invariant [3]. Since M is strongly FI-hollow-lifting, then by Theorem (2.4). New, $X \cap Y = N \oplus S$, where N is a fully invariant direct summansd of M and S << M. But Yis a fully invariant direct summand of M and $S \subseteq Y$, therefore by[9] $S \ll Y$. Let N^* be a submodule of M such that $M = N \oplus N^*$. Thus by modular low, $Y = Y \cap M = Y \cap (N \oplus N^*) = N \oplus$ $(Y \cap N^*)$. Let $N_1 = Y \cap N^*$, this implies that M = $X + Y = X + N + N_1 = X + N_1$. We want to show that N_1 is a supplement of X in M. By modular law, $X \cap Y = X \cap Y \cap (N \bigoplus N_1) = N \bigoplus (X \cap N_1).$

Let $\pi 1 : N \bigoplus N_1 \to N_1$ be the natural projection map. So we have, $X \cap N_1 = \pi 1(N \bigoplus (X \cap N_1)) = \pi 1(X \cap Y) =$ $\pi 1(N \bigoplus S) = \pi 1(S)$.Since

 $S \ll Y = N \oplus N_1$, then by [10], $\pi 1(S) \ll N_1$ and

hence $X \cap N_1 \ll N_1$. Thus N_1 is a supplement of X in M and N_1 is contained in Y. \Box

Let M be an R-module. Recall that an R-module P is called Projective if for any epimorphism φ : $M \rightarrow N$ and for any homomorphism f: $P \rightarrow N$ there is homomorphism h: $P \rightarrow M$ such that $f = \varphi h$. Also an *R*-module *P* is called projective cover of *M* if, *P* is projective and there exists an epimorphism φ : $P \rightarrow M$ with $ker\varphi << P[10]$.

It well known that is not be every module has Projective cover. We give a conditions under a quotient of strongly FI-hollow-lifting module to have Projective cover.

Proposition(2.10): Let *M* be a projective strongly FI-hollow-lifting module then For every fully invariant submodule *N* of *M* such that $\frac{M}{N}$ is hollow, $\frac{M}{N}$ has a projective cover.

Proof: Let *N* be a fully invariant submodule *N* of *M* such that $\frac{M}{N}$ is hollow. Since *M* is strongly FI-hollow-lifting module, then by Theorem (2.3), there exists a submodule *K* of *N* such that $M=K\oplus K^*$, for some $K^*\subseteq M$ and $N \cap K^* << K^*$.

Now, consider the following two short exact sequences:

$$0 \rightarrow N \xrightarrow{i_1} N + K^* \xrightarrow{T_1} \frac{N + K^*}{N} \rightarrow 0$$

$$0 \ \rightarrow \ N \cap K^* \xrightarrow{i_2} \ K^* \xrightarrow{T_2} \ \frac{K^*}{N \cap K^*} \ \rightarrow 0$$

Where i_1 , i_2 are the inclusion maps and T_1 , T_2 are the natural epimorphism. By the (second isomorphism theorem), $\frac{M}{N} = \frac{N+K^*}{N} \cong \frac{K^*}{N \cap K^*}$. Since *M* is a projective and K^* is a fully invariant direct summand of *M*, then K^* is a projective. But *ker* T_2 $= N \cap K^* << K^*$, therefore K^* is a projective cover of $\frac{K^*}{N \cap K^*}$. Since $\frac{M}{N} \cong \frac{K^*}{N \cap K^*}$, thus $\frac{M}{N}$ has a projective cover.

We assert that every strongly FI-hollow-lifting module is FI-hollow-lifting but the converse is not true in general.

Proposition(2.11):

If an R-module M is FI-hollow-lifting SS-module then M is strongly FI-hollow-lifting

<u>Proof:</u> Let N be a fully invariant sub module of M with $\frac{M}{N}$ is hollow.Since M is FI-hollow-lifting there exits direct summand D of M where $D \subseteq_{ce} N$. But M is SS-module hence D is fully invariant sub module. So M is strongly FI-hollow- lifting.

Remark: The concepts of strongly FI-hollowlifting modules and SS-modules are different. For example, Z as Z-module is SS-module which is not strongly FI-hollow-lifting. In other hand $M = Z_{p^{\infty}}$ $\bigoplus Z_{p^{\infty}}$ is strongly FI- hollow-lifting[12],

which is not SS-module [13, remark and example (2.2.9)].

Corollary(2.12):

If an R-module M is FI-hollow-lifting fully stable then M is strongly FI-hollow-lifting

<u>Corollary(2.13)</u>: If an R-module M is FI-hollowlifting indecomposable module then M is strongly FI-hollow-lifting.

<u>**Corollary(2.14):**</u> A commutative ring R is FIhollow-lifting then R is strongly FI-hollow-lifting. **Lemma**(2.15): If R-module M is strongly FIhollow-lifting, then every fully invariant submodule N of M with $\frac{M}{N}$ hollow has supplement K^* in M and N $\cap K^*$ is a direct summand in N.

Proof: Suppose that *M* is a strongly FI- hollowlifting module and N is a fully invariant submodule of *M* such that $\frac{M}{N}$ is hollow. Then there is a fully invariant direct summand submodu *K* of *N* in M such that $K \subseteq_{ce} N$ in M and $M = K \oplus K^*$, for some $K^* \subseteq M$. By modular law, N=N \cap M= $N \cap (K \oplus K^*) = K \oplus (N \cap K^*)$. One can easily show that $M = N + K^*$. We want to show that $N \cap K^* \ll$ K^* . Let $(N \cap K^*) + X = K^*$, where $X \subseteq K^*$ So $M = K + K^* = K + (N \cap K^*) + X$. This implies that M = N + X and $\frac{M}{K} = \frac{N+X}{K} = \frac{N}{K} + \frac{X+K}{K}$. Since $K \subseteq_{ce} N$ in M, then M = X + K. But M = $K \oplus K^*$ and $X \subseteq K^*$, therefore $X = K^*$ and hence $N \cap K^* \ll K^*$. Thus N has a supplement fully invariant K^* in M and N $\cap K^*$ is a direct summand in N.

Finally we obtained another characterization of strongly FI-hollow-lifting.

Theorem (2.16): An *R*-module *M* is strongly FIhollow-lifting if and only if for every fully invariant submodule *N* of *M* with $\frac{M}{N}$ hollow, there exists an idempotent $e \in End(M)$ such that e(M)is fully invariant submodule of M with $e(M)\subseteq N$ and (I-e)(N) << (I-e)(M).

Proof: Let N be a fully invariant submodule of M such that $\frac{M}{N}$ hollow. Since M strongly is FI-hollow-lifting, then by Proposition(2.4), there is a decomposition M=X \oplus K such that X \subseteq N with X is fully invariant submodule of M and N \cap X << M. Now, let e : M = X \oplus K \rightarrow X be a Projection mapping. Thus, it easy check that e is an idempotent and e(X) = X \subseteq N. Also (I-e)(M)=K. since N \cap X << M and K is a direct summand of M, then N \cap K << K [9].Since X \subseteq N, then

 $e(M) \subseteq N.$ Now, $(I-e)(M) = \{(I-e)(m), m \in M\} = \{(I-e)(a+b), where a \in X, b \in K\} = \{(I-e)(a+b)=a+b-a=b\} = K.$

We want show that $(I-e)(N) = N \cap (I-e)(M)$. Let $x \in (I-e)(N)$, then there is $n \in N$ such that x=(I-e)(n)=n-e(n). Thus $x \in N$ and $x \in (I-e)(M)$. So $x \in N \cap (I-e)(M)$. Hence, $(I-e)(N) \subseteq N \cap (I-e)(M)$. Let $d \in N \cap (I-e)(M)$, then $d \in N$ and $d \in (I-e)(M)$. There is $y \in M$ such that d = (I-e)(y) = y-e(y). Thus $d+e(y)=y \in N$, then $d \in (I-e)(N)$. So $(I-e)(N)=N \cap (I-e)(M)=N \cap K$

<< K. Hence, (I-e)(N) << (*I*-e)(M).

Conversely, let N be a fully invariant submodule of M such that $\frac{M}{N}$ is hollow. By our

assumption there exists an idempotent $e \in$ End(M) such that e(M) is fully invariant submodule of M with $e(M) \subseteq N$ and (I-e)(N) << (I-e)e)(M). We Claim that $M=e(M) \oplus (I-e)(M)$. To show that, let $m \in M$ then m = m + e(m)e(m)=e(m)+m-e(m)=e(m)+(I-e)(m).Thus M=e(M) + (I-e)(M). Now, let $w \in e(M) \cap (I-e)(M)$. e(M), then $w = e(m_1)$ and $w = (I-e)(m_2)$, for some $m_1, m_2 \in M$. So $e(w)=e(m_1)=e((I$ $e(m_2)=e(m_2)-e(m_2)=0,$ then $e(e(m_1)) =$ $e(m_1) = 0$, hence w = 0. Thus $M = e(M) \oplus (I - E)$ e)(M). Clearly, $N \cap (I-e)(M)=(I-e)(N)$.Since (I $e(N) \ll (I-e)(M)$, then $N \cap (I-e)(M) \ll (I-e)(M)$ e)(M), thus M is strongly FI-hollow-lifting. \Box

REFRENCES

(1)

Clark, J. C. Lomp, N. Vanaja and R. Wisbauer, *Lifting modules*, Frontiers in Mathematics, Birkhäuser, 2006

(2)

Orhan, N. D. K. Tutuncu and R. Tribak, *On hollow-lifting modules*, Taiwanese J. Math., 11 (2), (2007), 545-56 8

(3)

TaLeBi Y. and T.AmoozeGar, strong FI-Lifting module.International Electronic J.of Algebra 3(2008), 75-82.

(4)

ALsaadi Saad A. and Saaduon N. Q. FI-hollowlifting modules, To appear

(5)

Abbas M. S. and ALsaadi Saad, Extremity concepts of lifting module, J.of AL-Nahrain, 2008, pp.135-142.

(6)

Payman M. H., Hollow modules and semihollow modules, M.Sc., Thesis, University of Baghdad 2005.

(7)

Ozcan A. C. Duo Modules, Glasgow Math. J. Trust 48(2006)533-545.

(8)

Abbas M. S. On fully stable modules, Ph.D. Thesis, Univ. of Baghdad, 1991.

(9)

.

Lomp, C. On dual Goldie dimension, Diplomar beit (M.sc. Thesis, University of Dusseldorf (1996)..

(10)

Kasch, F. Modules and rings, Academic Press., London, 1982.

(11)

Wisbauer, R. Foundations of module and ring theory, Gordon and Breach, Philadelphia, 1991. (12)

Facchini A. and Salce L. Uniserial module :Sums and isomorphisms of subquotients, comm. Algebra, 18(1990), 499-517.

(13)

ALsaadi Saad Abdulkadhim, S-extending modules and Related Concepts. Ph.D. thesis, AL-Mustinsiriya Univ. 2007

اقوى مقاسات رفع مجوفه من النوع- FI

نضال قاسم سعدون

سعد عبد الكاظم الساعدى

الخلاصة

و

في هذا البحث، تم تقديم مفهوم مقاسات الرفع المجوف القوي من النمط FI . نقول عن M انه مقاس رفع مجوّف القوي من النمط FI إذا كان لكُلّ مقاس جزئي ثابت N من M بحيث ان $\frac{M}{N}$ مقاس مجوف، يوجد حد مباشر ثابت K من M بحيث $M = _{ce} N$ في M. تم أعطاء عدد من التشخيصات والخواص المختلفة للمقاسات الرفع المجوف القوي من النمط FI . وناقشنا العلاقة بين هذا الصنف من المقاسات وبعض المقاسات الاخرى المعرفه .