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Abstract 

In this paper, we present an approximate solution for fuzzy integro-differential equations of 

fractional order of the form: 

0

0

x
q
*x

0

0 x

D y(x) f (x) p(x)y(x) K(x,s)y(s)ds ,

with initialcondition y(x ) y

  




(1) 

where 
0

q
*x

D denotes a differential operator with fractional order q in the Caputo sense, f (x) is 

assumed to be fuzzy function and 
0xy is assumed to be fuzzy number,using the differential transform 

method. The solution of our model equations are calculated in the form of convergent series with 

easily computable components. Two examples are solved as illustrations using symbolic computation. 

The numerical results show that the followed approach is easy to implement and accurate when 

applied to fuzzy integro-differential equations of fractional order. 
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1. Introduction: 

Fuzzy set theory is a powerful tool for 

modeling uncertainty and for processing vague 

or subjective information in mathematical 

models, which has been applied to a wide 

variety of real problems, for instance, the 

golden mean
(1)

, practical systems
(2, 3)

, quantum 

optics and gravity, medicine 
(4)

and engineering 

problems. 

The concept of fuzzy sets which was 

originally introduced by Zadeh
(5)

 led to the 

definition of the fuzzy number and its 

implementation in fuzzy control 
(1)

 and 

approximate reasoning problems 
(5, 6, 7)

. The 

basic arithmetic structure for fuzzy numbers 

was later developed by Mizumoto and 

Tanaka
(8)

, Nahmias
(9)

, and Ralescu
(10) 

all of 

which observed the fuzzy number as a 

collection of -levels, 0 < 1
(11)

. 

The fractional integro-differential 

equations is a special kind of integral equations 

collecting integral equations and fractional 

calculus and in recent years, there has been a 

growing interest in the integro-differential 

equations, since many mathematical 

formulation of physical phenomena, such as 

nonlinear functional analysis and their 

applications in the theory of engineering, 

mechanics, physics, chemical kinetics, 

astronomy, biology, economics, potential 

theory and electrostatistics contain integro-

differential equations, 
(12,13, 14)

. 

 

The differential transform method was 

first applied in the engineering domain in 

(Zhou, J. K.)
(15)

. In general, the differential 

transform method is applied to the solution of 

electric circuit problems. The differential 

transform method is a numerical method based 

on the Taylor series expansion, which 

constructs an analytical solution in the form of 

a polynomial. The traditional high order Taylor 

series method requires symbolic computation. 
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However, the differential transform method 

obtains a polynomial series solution by means 

of iterative procedure. Recently, the 

application of differential transform method is 

successfully extended to obtain analytical 

approximate solutions to linear and nonlinear 

integro-differential equations of fractional 

order
(16)

. 

In this paper, the approximate solution 

of fuzzy integro-differential equation of 

fractional order will be discussed, in which 

fractional integro-differential equation could 

be considered as an important type of integro-

differential equations, where the differentiation 

that appears in the equation is of non-integer 

order. 

 

 

2. Basic Concepts of Fuzzy Sets Theory: 

In this section, we present some basic 

definitions of fuzzy sets including the 

definition of fuzzy numbers and fuzzy 

functions. 
 

Definition (1)
(5)

: 

Let X be any set of elements. A fuzzy 

set A  is characterized by a membership 

function  

A
  : X  [0, 1], and may be 

written as the set of points 

A  {(x, A
(x) ) | x X, 0  A

(x)  1}. 

 

Definition (2)
(17)

: 

The crisp set of elements that belong to 

the set A  at least to the degree  is called the 

weak -level set (or weak -cut), and is 

defined by: 

A {xX : A
(x) } 

while the strong -level set (or strong -cut) is 

defined by: 

A  {xX : A
(x) >} 

 

 

 

 

Definition (3)
(5)

: 

A fuzzy subset A  of a universal space 

X is convex if and only if the sets A are 

convex,  

 [0, 1].  

Or equivalently, we can define convex 

fuzzy set directly by using its membership 

function to satisfy: 

1 2A
[ x (1 )x ]     ≥ Min { 1A

(x ) , 2A
(x ) } 

for all x1, x2 X and  [0, 1]. 

 

Definition (4)
(17)

: 

A fuzzy number M  is a convex 

normalized fuzzy set M  of the real line R, 

such that: 

1. There exists exactly one x0 R, with 

0M (x )  1 (x0 is called the mean 

value of M ). 

2. 
M(x)  is piecewise continuous. 

 

Now, the following two remarks 

illustrates the representation of a fuzzy number 

and fuzzy functions in terms of its -level sets, 

because they are more convenient to use in 

applications. 
 

Remark (1)
(18)

: 

A fuzzy number M  may be uniquely 

represented in terms of its -level sets, as the 

following closed intervals of the real line: 

M [m  1 , m + 1 ] 

or 

M [m, 
1


m] 

where m is the mean value of M  and  (0, 

1]. This fuzzy number may be written as M [

M , M ], where M  refers to the greatest lower 
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bound of M and M  to the least upper bound of 

M . 
 

 

Remark (2)
(18)

: 

Similar to the second approach given in 

remark (1), one can fuzzyfy any crisp or 

nonfuzzy function f, by letting: 

f (x) βf(x), f (x) 
1


f(x), x X, β (0, 1] 

and hence the fuzzy function f  in terms of its 

β -levels is given by f β  [ f , f ]. 

 

3. Riemann-Liouville and Caputo 

Fractional Order Derivatives 

There are various types of definitions 

for the fractional order derivatives of order q > 

0, the most commonly used definitions among 

various definitions of fractional order 

derivatives of order q > 0 are the Riemann-

Liouville and Caputo formula.The difference 

between the two definitions in the order of 

evaluation. Riemann-Liouville fractional 

integration of order q is defined as: 

0
0

x
q q 1
x

x

1
J f (x) (x t) f (t)dt

(q)

 


 , 

 q > 0, x > 0 

The following equations define 

Riemann-Liouville and Caputo fractional 

derivatives of order q, respectively: 

0

q
x

D f (x)
m

m

d

dx 0

m q
x

J f (x)
 

  
 

0

q
*x

D f (x) 
0

m q
x

J


m

m

d
f (x)

dx

 
 
  

  (2) 

where m  1  q < m and m N. 

 

 

4. Analysis of the Differential Transform 

Method
(19) 

The differential transform of the k
th

 

derivative of the function f, is defined by: 

F(x) 
1

k!
0

k

k

x x

d f (x)

dx


 
 
 
 

  (3) 

and the differential inverse transform of F(x), 

is defined as: 

f(x)  k
0

k 0

F(k)(x x )




   (4) 

From (3) and (4), we get: 

f(x) 

0

k k
0

k
k 0

x x

(x x ) d f (x)

k! dx






 
 
 
 

  

which implies that the differential transform is 

derived from Taylor series expansion, but the 

method does not evaluate derivatives 

symbolically. 

However, the corresponding derivatives 

are calculated recursively, and are defined by 

the transformed equation of the original 

functions. In practice, the function f is 

expressed by (4), so the differential transform 

method is a numerical method based on Taylor 

series expansion, which constructs a solution in 

terms of polynomials. 

 

5. Fractional Differential Transform 

Method(FDTM): 
(20) 

Let us expand the analytic function f as 

the fractional power series: 

f(x) 
k/

0
k 0

F(k)(x x )






    (5) 

where γ is the order of the fraction and F(k) is 

the fractional differential transform of f and in 

order to avoid the fractional initial and 

boundary conditions, we define the fractional 

derivative in the Caputo sense. 

The relation between the Riemann-

Liouville and Caputo operators is given by: 

0

q
*x

D f (x) 
0

q k (k)
0 0x

k 0

1
D f (x) (x x ) f (x )

k!





 
  

 
   (6) 
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Replacing f(x) by: 

f(t) 
m 1

k (k)
0 0

k 0

1
(x x ) f (x )

k!





  

in (2) and using (6) we obtain the fractional 

derivative in the Caputo sense, as: 

0

q
*x

D f (x) 

0

m 1
k (k)

0 0xm
k 0

m 1 q m
x

1
f (t) (x x ) f (x )

k!1 d
dt

(m q) dx (x t)




 

 

  





  (7) 

Since the initial conditions are implemented by 

the integer-order derivative, the 

transformations of the initial conditions for k  

0, 1, …, (γq 1), are defined by: 

F(k)

 
0

k/

k /

x x

k
0, Z

1 d k
f (x) , Z

k / ! dx











 


  
  

    


 (8) 

where q is the order of the corresponding 

fractional equation . 

Next, we shall give some theorems 

regarding the fractional differential transform 

method, for the details of proofs see
(16, 21)

, 
 

 

Theorem (1): 

If f(x)  g(x)  h(x), then F(k)  G(k)  H(k), 

where F, G and H are the differential 

transforms of f, g and h, respectively. 
 

Theorem (2): 

If f(x)  g(x)h(x), then F(k) 
k

0

G( )H(k )


 , where F, G and H are the 

differential transforms of f, g and h, 

respectively. 
 

Theorem (3): 

If f(x)  g1(x)g2(x)…gn1(x)gn(x), then: 

F(k)  

 

where G1, G2,…, Gn are the differential 

transforms of g1, g2, …, gn; respectively. 
 

Theorem (4): 

If f(x)  (x  x0)
p
, then F(k) (k  p), where: 

(k) 
1, if k 0

0, if k 0





 

 

Theorem (5): 

If f(x) 
0

q
*x

D [g(x)] , then F(x) 

k
q 1

G(k q)
k

1

 
   

 
 

 
  

 

. 

Theorem (6): 

If f(x)=

0

x

x

g(t)dt , then   F(k)=

G(k )

k

 
 ,  where k    

 

 

Theorem (7): 

If f(x) =

0

x

x

g(x) h(t)dt , then   F(k)=

1

k
1

1
1k

H(k )
G(k k )

k

 
  ,  where k    

Theorem (8): 

If f(x) =

0

x

1 2 n 1 n

x

h (t)h (t)...h (t)h (t)dt , 

then    
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F(k)=

kk kk 3n 1 2

k 0 k 0k 0 k 0n 1 1n 2 2

... H (k )H (k k )...
k

H (k k )H (k k )

1 1 2 2 1

n 1 n 1 n 2 n n 1

 

   




      

   

, where k   . 

 

6. Approximate Solution of Fuzzy integro-

differential Equations of Fractional 

Orderusing FDTM: 

 

Now, as an application of the fractional 

differential transform method for solving fuzzy 

integro-differential equations of fractional 

order, consider the fuzzy integro-differential 

equations of fractional order: 

0

0

x
q
*x

0

0 x

D y(x) f (x) p(x)y(x) K(x,s)y(s)ds ,

with initialcondition y(x ) y

  





 (9) 

where 
0

q
*x

D denotes a differential operator with 

fractional order q in the Caputo sense, f (t) is 

assumed to be fuzzy function and may be 

represented as f (t) [f , f ] ,and therefore the 

solution of Eq.(9) which may be given by the 

form y  [ y , y ], where y  and y  refers to the 

lower and upper solutions of y , respectively. 

Now, to find the lower solution y , we 

must solve using the fractional differential 

transform method, the nonfuzzy fractional 

integro-differential equation : 

0

0

x
q
*x

0

0 x

D y(x) f (x) p(x)y(x) k(x,s)y(s)ds

y(x ) y

  




  . (10) 

according to theorems 1-8 and Eq. (8),  

(11) 

where F , P, Y and K are the differential 

transforms of  f  , p , y , and k respectively and 

the transformations of the initial 

conditionsaccording to Eq. (8) for k  0, 1, …, 

(γq 1), are defined by: 

 
0

k/

k /

x x

k
0, Z

Y(x)
1 d k

y(x) , Z
k / ! dx











 


   
  

    


  (12) 

And therefore by using the series (5) the lower 

solution y(x) will be 

k/
0

k 0

y(x) Y(k)(x x )






   (13) 

 

Similarly,to find the upper solution y , 

we must solve usingthe fractional differential 

transform method, the nonfuzzy fractional 

integro-differential equation: 

x
q
*

0

0

D y(x) f (x) p(x)y(x) k(x,s)y(s)ds

y(a) y

  




 (14) 

according to theorems 1-8 and eq. (8),  
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where F , P, Y and K are the differential 

transforms of f , p , y  and k respectively and 

the transformations of the initial conditions for 

k  0, 1, …, (γq 1), are defined by: 

 
0

k/

k /

x x

k
0, Z

Y(x)
1 d k

y(x) , Z
k / ! dx











 


   
  

    


  (16) 

And therefore by using the series (5) the upper 

solution y(x) will be 

k/
0

k 0

y(x) Y(k)(x x )






   (17) 

 

 

7. Illustrative Examples: 

In this section, we  present two fuzzy 

integro-differential equations of fractional 

order, linear and nonlinear, and we use the 

approach given in the section six in order to 

find the approximate solution. 
 

 

 

Example (1): 

Consider the following linear fuzzy 

integro-differential equations of fractional 

order: 

x
0.5
*

0

D y(x) y(x) f (x) y(s)ds   

 

, x ≥ 0 ,  

with initial condition y(0) 0 , and 

f  will be given as f [f , f ] , where 

1.5 2 38 1
f (x) [ x x x ]

33
   


    ,   

1.5 2 31 8 1
f (x) [ x x x ]

33
  
 

  ,   0 1    

The solution then will be of the form [ y , y ], 

where y(x) represent the solution of the 

equation: 

x
0.5
*

0

D y(x) y(x) f (x) y(s)ds      (18) 

with initial condition 

y(0) 1 , 0 1       

 

and y(x)  represent the solution of the 

equation: 

x
0.5
*

0

D y(x) y(x) f (x) y(s)ds      (19) 

with initial condition y(0) 1 , 0 1     

 

Using equations (11) and (12) and by choosing 

 =2, thus we have 

  (20) 

with Y(0) 1   , 0 1  
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similarlyto find y(x) we shall use equations 

(15) and (16), hence we get: 

2 k

8 1 1 2Y(k 2)2
Y(k 1) Y(k) (k 3) (k 3) (k 6)

3 k 3 k3

2

 
    

                   
 

  (21) 

with Y(0) 1  ,   0 1  

 

Following Figures (1) – (4) represent the 

approximate solution of example one using 

different values of α and β by using inverse 

differential transform up to certain terms. 

 

 

 

 

 

 

 

 

 

Example (2): 

Consider the following nonlinear fuzzy 

integro-differential equations of fractional 

order: 

0

x
0.75 2
*x

0

D y(x) f (x) y(x) [y(s)] ds     

, x>0 , 

with initial condition  y(0) 0 , and  f  

will be given as f [f , f ] , where 

0.25 31 1
f (x) [ x x x ]

(1.25) 3
   


  , 

0.25 31 1 1
f (x) [ x x x ]

(1.25) 3
  
 

  ,   0 1    

The solution then will be of the form [ y , y ], 

where y(x) represent the solution of the 

equation: 

x
0.75 2
*

0

D y(x) f (x) y(x) [y(s)] ds      ,  (22) 
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with initial condition 

y(0) 1 , 0 1      . 

 

and y(x)  represent the solution of the 

equation: 

x
0.75 2
*

0

D y(x) f (x) y(x) [y(s)] ds      (23) 

with initial condition y(0) 1 , 0 1      

 

Using equations (11) and (12) and by 

choosingγ=4, thus we have 

 

1

k 4

1 1

k 0

4 k

4
Y(k 3) (k 1) (k 4) (k 12)

7 k 1.25 3

4

4
Y(k) Y(k )Y(k k 4)

k





 
    

           
 
 


   





(24) 

with Y(0) 1 , Y(1) 0 , Y(2) 0.      

Similarlyto find y(x) we use equations (15) 

and (16), hence we get 

 

1

k 4

1

k 0

4 k

1 1 14
Y(k 3) (k 1) (k 4) (k 12)

7 k 1.25 3

4

4
Y(k) Y(k)Y(k k 4)

k





 
 

 
               

 


   





(25)  

with Y(0) 1 , Y(1) 0 , Y(2) 0.     

 

Following Figures (5) – (8) represent the 

approximate solution of example one using 

different values of α and β by using inverse 

differential transform up to certain terms. 
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8. Conclusions: 

1. The differential transform method 

proved its validity and accurate results 

in solving fuzzy fractional integro-

differential equations. 

2.  crisp solution, i.e., the solution of 

nonfuzzy fractional integro-differential 

equations, may be considered as a 

special case of the solution of the fuzzy 

fractional differential equations with 

α=1and β = 1. 

3. The validity of the results may be 

achieved from the equality of the upper 

and lower solutions at α=1 and β= 1. 
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