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Abstract
In this paper, we introduce the notion of a fuzzy completely closed ideal of a BH-
algebra and study this notion on a BG-algebra. Also We stated and prove some theorems which
determine the relationships between this notion and some types of fuzzy ideals of a BH-algebra.

1. INTRODUCTION
Thenotion of BCK-algebra introduced by Y.
Imai and K. Iseki in 1966[1]. In the same
year, K. Iseki introduced the notions of a
BCl-algebra as a generalization of a BCK-
algebra and the notion of ideal of a BCK-
algebra[2]. In1983, Q.P.Hu and X.Li
introduced the notion of a BCH-algebra
which was a generalization of BCK/BCI-
algebras [3]. In 1991, C. S. Hoo introduced
the notion of an ideal , closed ideal and filter
in a BCl-algebra[4]. In 1998, Y. B. Jun, E.
H. Rogh and H. S. Kim introduced the
notion of BH-algebra, which is a
generalization of BCH-algebras[5]. In 2002,
J. Neggers. and H. S. Kim introduced the
notion of B-Algebras[6]. In 2008, C. B.
Kim and H. S. Kim introduced the notion of
BG-Algebras which is a generalization of a
B-algebra [7]. In 2011, H. H. Abass and H.
M. A. Saeed introduced the notion of a
closed ideal with respect to an element of a
BH-algebra[8]. In 2012, H H. Abass and H.
A. Dahham introduced the notions of a
completely closed ideal of a BH-algebra[9].

On the other hand, we will mention the
development of a fuzzy set, fuzzy
subalgebra, fuzzy ideals, fuzzy closed ideals
and some other types of fuzzy ideals.
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In 1965, L. A. Zadeh introduced the notion
of a Fuzzy subset of a set as a method for
representing uncertainty in real physical
world[10]. In 1991, O. G. Xi applied the
concept of fuzzy sets to the BCK-
algebras[11]. In 1999, Y. B. Jun introduced
the notion of Fuzzy closed ideals in BCH-
algebras[12]. In 2009, A. B. Saeid and M. A.
Rezvani introduced the notion of Fuzzy
BF-algebras[13]. In 2011, T. Senapati, M.
Bhowmik and M.Pal introduced the notion
of Fuzzy closed ideals of B-algebras[14]. In
2011, H. H. Abass and H. M. A.Saeed
introduced the notion of Fuzzy closed ideals
with respect to an element of BH-
algebras[8].

In this paper, we introduce the notions as we
mentioned in the abstract.

2. PRELIMINARIES

In this section, we give some basic
concepts about a BG-algebra , a BH-algebra,
ideal of a BH-algebra , closed ideal of a BH-
algebra, a completely closed ideal of a BH-
algebra , closed ideal with respect to an
element of a BH-algebra, completely closed
ideal with respect to an element of a BH-
algebra, a normal set , fuzzy set, fuzzy ideal,
fuzzy closed ideal, fuzzy closed ideal with
respect to an element of a BH algebra with
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some theorems and propositions which we
needed in our work.
Definition (2.1) [7] :

A BG-algebra is a non-empty set X with a
constant 0 and a binary
operation “ * ” satisfying the following
axioms:

1) x *x =0,

2)x * 0 =x,
(x*y)*(0*y)=x,forall x,y € X.
Definition (2.2) [5] :

A BH-algebra is a nonempty set X with a
constant O and a binary operation *
satisfying the following conditions:

D) x*x=0,VxeX
2)x*y=0andy*x=0implyx =y,
Vv X, ye X.

3) X *0=x, V xeX.

Proposition (2.3) [7]:

Every BG-algebra is a BH-algebra.
Definition (2.4) [15] :

A nonempty subset S of a BH-algebra X
is called a BH-Subalgebra or Subalgebra of
Xifx*yeSforallx,y € S.

Definition (2.5) [5] :

Let |1 be a nonempty subset of a BH-
algebra X. Then I is called an ideal of X if it
satisfies:
1)0el. 2)x*yelandy €l imply xel
Definition (2.6) [16] :

An ideal | of a BH-algebra X is called a
closed ideal of X if :for every xel, we have
0*xel.

Definition (2.7)[9]:

An ideal | of a BH-algebras is called a
completely closed ideal if x*yel,vx,yel.
Definition(2.8)[10]:

Let X be a non-empty set. A fuzzy set A
in X (a fuzzy subset of X) is a function from
X into the closed interval [0,1] of the real
number.

Definition (2.9)[16]:

Let A and B be two fuzzy sets in X, then:
(AnB)(X)=min{A(x),B(x)}, for all xeX.
(AuB)(X)=max{A(x),B(x)}, for all xeX.
ANB and AUB are fuzzy sets in X.
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In general, if {A,, aeA} is a family of
fuzzy sets in X, the :

(Ner A X)=inf{Ai (x),iel'}, for all xeX
and
(U;er 4;) (X)=sup{ Ai (x),iel'}, for allxeX.
which are also fuzzy sets in X.

Definition (2.10) [17]:

Let A be a fuzzy set in X, for all a<[0,1].
The set A={xeX, A(X)>a} is called a level
subset of A.

Definition (2.11)[15]:

A fuzzy set A in a BH-algebra X is said to
be a fuzzy subalgebra of X if it satisfies:
AXxX*y)>min{A(X),A(y)}, Vx,yeX.

Remark(2.12)[18]:

A fuzzy subset A of a BH-algebra X is
said to be a fuzzy ideal if and only if:

1) Forany xeX, A(0) > A(x).

2) Forany x, yeX,

A(x) > min{A(x*y), A(y)}.

Definition (2.13) [8] :

A fuzzy ideal A of a BH-algebra X is
said to be closed if
A(0*x) > A(x) for any x eX.

Theorem (2.14)[8]:

A fuzzy set A of a BH-algebra X is called
a fuzzy p-ideal of X if it satisfies:

1) A(0) > A(x), For any xe X.

2) A(x) = min{A((x *2) *(y *2)), A(y)}, for

all x,y,z e X.

Definition (2.15)[8]:

A fuzzy set A of a BH-algebra X is called a
fuzzy a-ideal of X if it satisfies
A (0) > A (x), For any xeX.

Aly * x) =2 min{A((x * 2) * (0 * y)), A(2)},
forall x,y,z e X.

Definition (2.16)[19]:

A fuzzy set M in a B-algebra X is said to
be fuzzy normal if it satisfies the inequality
M((x*a)*(y*b)) > min{M(x*y),M(a*b)}, for
alla, b, x,y eX.

Lemma (2.17)[7]:

Let (X,*,0) be a BG-algebra. Then

1) The right cancellation law holds in X; i.e.,

x*y = z*y implies x=z,
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2) 0*(0*x)=x for all xe X,

3) If x*y=0, then x=y for any x,y€ X,
4)If 0*x=0*y, then x=y for any x,y€ X,
5) (x*(0*x))*x=x for all xe X.
Proposition (2.18)[8]:

Let X be a BH-algebra. Then every fuzzy
p-ideal of X is a fuzzy ideal of X.
Proposition (2.19)[9]:

A BH-algebra X is called an associative
BH-algebra if:

(x*y)*z=x*(y*z) , for all x,y,zeX.
Proposition (2.20)[9]:
Let X be an associative BH-algebra. Then
the following properties are hold :
1) 0*x=x VxeX.
2) X*y=y*x Vvx,yeX.

3. THE MAIN RESULTS

In this section, we define the notion of a
fuzzy completely closed ideal of a BH-
algebra. For our discussion , we shall link
this notion with other notions which
mentioned in preliminaries.

Definition (3.1):

Let X be a BH-algebra and A be a fuzzy
ideal of X. Then A is called a fuzzy
completely closed ideal ,if

A(x*y) > min{A(x),A(y)},Vx,yeX.
Example(3.2):

Consider the BH-algebra X = {0, 1, 2, 3}
with the following operation table.

* 10 |1 |2 |3

o |0 |1 |2 |3

1 |1 (0 |1 |1

2 |2 |2 |0 |2

3 (3 |3 |3 |0

The fuzzy ideal A which is defined by
_ (05 x=0,1
Al = { 04 x=23
is a fuzzy completely closed ideal
Theorem (3.3):

Let X be a BH-algebra. If x*y=z, ze{0, X,
vy}, Vx,yeX , then every fuzzy ideal is a
fuzzy completely closed ideal.

Proof:

Let A be a fuzzy ideal and X, yeX.
Ifx*y=0,
=A(x*y)=A(0) =2 min{A(x),A(y)}

If x*y=x,

=SA(x*y) =A(x) > min {A(X),A(y)}

If x*y=y,

=A(x*y) =A(y) > min {A(X),A(y)}

A is a fuzzy completely closed ideal.m
proposition (3.4):

Let X be an associative BH-algebra. Then
every fuzzy ideal is a fuzzy closed ideal.
Proof:

Let A be a fuzzy ideal, and x eX.

A(0*x)=A(x) > A(X)

[By proposition(2.20)(1)]

- A 1s a fuzzy closed ideal.m
Theorem(3.5):

Let X be a BH-algebra. If A is a fuzzy
completely closed ideal. Then A, is a
completely closed ideal for all a.e[0,A(0)].
Proof:

To prove A, isan ideal,
1)Since ae[0,A(0)]
=A(0)> aVae[0,A(0)].
= 0eA,Vae[0,A(0)].

2) Let x*y €A, Y€ Ay

=A(x*y) 20,A(y) 2o
=min{A(x*y),A(y)} >a

but A(x) > min{A(x*y),A(y)}

= AX) > a= xe Ay

- Ag s an ideal.

Now,letx,ye Aa

= A®x)>a, A(y)>a

= min{A(x),A(y)}=o= A(x*y)>a
= X*ye Ay

. Ag 1s a completely closed ideal.m
Proposition (3.6):

Let X be an associative BH-algebra. If A is
a fuzzy P-ideal, then A is a fuzzy closed
ideal.

Proof:
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Since A is a fuzzy a P-ideal,
- Ais a fuzzy ideal

[By proposition(2.18)]
Now, let xe X
=A(0*x)=A(X)>A(X)

[By Proposition(2.20)(1)]
. A 1s a fuzzy closed ideal.m
Theorem (3.7):

Let X be BH-algebra. If A is a fuzzy ideal,
then the set Xa={xeX: A(X)=A(0)} is an
ideal.

Proof:

Let A be a fuzzy ideal.

1)Since A(0)=A(0), =0eXa

2)Let  x*y, yeXa=>AX*y)=A(y)=A(0)
=min{A(x*y),A(y)}=A(0)

but A(x)> min{A(x*y),A(y)} =A(0)

 AX) > A(0)
but A(0) > A(x) =AX)=A(0) =xeXa
.. Xa 18 an ideal.m
Theorem (3.8):

Let X be BH-algebra and A be a fuzzy
completely closed ideal. Then the set
Xa={xeX: AX)=A(0)} is a completely
closed ideal.

Proof:

Let A be a fuzzy completely closed ideal.
=A is a fuzzy ideal,
= Xa is an ideal,
Now, let X, ye Xa
=AX)=A(Y)=A(0)
=min{A(X),A(y)}=A(0)

but A(x*y) > min{A(x),A(y)} =A(0)

= A(x*y) 2A(0)

but A(0) >A(x*y) = A(x*y) =A(0)

S X*yeXa

.. Xa 1s a completely closed ideal.m
Theorem (3.9) :

Let X be BH-algebra and let A be a fuzzy
set.Then A is a fuzzy ideal if and only if
A'(X)=A(x)+1-A(0) is a fuzzy ideal.

Proof:

Let A be a fuzzy ideal,
A'(0)=A(0)+1-A(0),

=A'(0)=1 =A'(0) >A'(x) VxeX

[By theorem(3.7)]

2)A'(X)=A(x)+1-A(0)
> min{A(x*y),A(y)}+1-A(0)
>min{A(x*y) +1-A(0),A(y) +1-
A(0)}
> min{A'(x*y),A'(y)}
S A'(x) 2 min{A'(x*y),A'(y)}
- A'isafuzzy ideal.
Conversely
Let A’ be a fuzzy ideal.
1)A(0)=A'(0)-1+A(0),
=A(0)> A'(x)-1+A(0)
=A(0) >A(x) VxeX
2)A(X)= A'(x)-1+A(0)
> min{A'(x*y),A'(y)}-1+A(0)
>  min{A'x*y) -1+A0) ,A'(ly) -
1+A(0)} >min{A(X*y),A(Y)}
“ ARX) > min {A(X*y),A®Y)}
- Ais afuzzy ideal.m
Theorem (3.10) :

Let X be BH-algebra and A be a fuzzy set
of X. Then A is a fuzzy completely closed
ideal if and only if A'(X)=A(x)+1-A(0) is a
fuzzy completely closed ideal.

Proof:
Let A be a fuzzy completely closed ideal,
= Ais a fuzzy ideal. = A'is a fuzzy ideal.
[By theorem(3.9)]
Now,
Let x,yeX
A'(x*y)=A(x*y)+1-A(0)
> min{A(x),A(y)}+1-A(0)
> min{A(x) +1-A(0) ,A(y) +1-A(0)}
> min{A'(x),A'(y)}
oo A'(x) > min{A'(x),A'(y)}
. A'is a fuzzy completely closed ideal
Conversely
Let A' be a fuzzy completely closed ideal,
= A'is afuzzy ideal. = A'is a fuzzy ideal.
[By theorem(3.9)]
Now,
Let x,yeX
A(x*y)=A'(x*y)-1+A(0)
> min{A'(x),A'(y)}-1+A(0)
> min{A'(x) -1+AQ) A'(Y) -
1+A(0)}
> min {A(x),A(y)}
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oo Ax) > min{A®X),A(y)}
. A'is a fuzzy completely closed ideal.m
Proposition(3.11) :
Let X be a BH-algebra. Then every
fuzzy normal set is a fuzzy subalgebra.
Proof :
Let M be a fuzzy normal set and x,ye X,
M(x*y)=M((x*y)*(0*0))
> min {M(x*0),M(y*0)}
> min {M(x),M(y)}
..M is a fuzzy subalgebra.m
Proposition(3.12) :
Let X be a BH-algebra. If M is a fuzzy
normal set, then M(0) >M(x) VxeX .
Proof :
Let M be a fuzzy normal set and xeX.
M(0)=M((x*x)*(0*0))
>min{M(x*0),M(x*0)}
>min{M(x),M(X)} > M(x)
. M(0) > M(x).m
Proposition(3.13) :
Let X be an associative BH-algebra. Then
every fuzzy normal set is a fuzzy ideal .
Proof :
Let M be a fuzzy normal set.
DM(0)=M((x*x)*(0*0))
>min{M(x*0),M(x*0)}
>min{M(x),M(x)}
> M(x)
2) M(x)=M(x*0)
=M(x*(y*y))
=M((x*0)*(y*y))
> min{M(x*y),M(0*y)}
>min{M(x*y),M(y)}
[By proposition(2.20)(1)]
.M is a fuzzy ideal.m
Proposition (3.14):
Let X be an associative BH-algebra. Then
every fuzzy normal set is a fuzzy
completely closed ideal.
Proof :
Let M be a fuzzy normal set.
= M is a fuzzy ideal
[By proposition(3.13)]
Now,

Let x,yeX,
M(x*y)=M((x*y)*(0*0))
>min {M(x*0),M(y*0)}
> min {M(x),M(y)}
.. M is a fuzzy completely closed ideal.m
Proposition(3.15) :
Let X be an associative BH-algebra. Then
every fuzzy a-ideal is a fuzzy ideal.
Proof:
Let A be a fuzzy a-ideal,
DA(0) > A(x),VxeX
2) Let x,zeX
A(X)=A(x*0)
> min{A(x*z)*(0*0),A(z)}
Now, Let z=y
> min{A(x*y)*(0*0),A(y)}
> min{A(x*y),A(y)}
- A 1s a fuzzy ideal.m
Theorem(3.16) :
Let X be an associative BH-algebra. Then
every fuzzy a-ideal is a fuzzy completely
closed ideal.
Proof:
Let A be a fuzzy a-ideal,
= Ais a fuzzy ideal, [By Proposition(3.15)]
Now,Let x,yeX
A(x*y)=A(y*x) [By Proposition(2.20)(2)]
> min{A(x*2)*(0*y),A(z)}
Now, when y=z
>min {A(x*y)*(0*y),A(y)}
> min {A®X), A(y)}
~.A'is a fuzzy completely closed ideal.m
Proposition (3.17):
Let {Aiiiel'}be a family of fuzzy
completely closed ideals of a BH-algebra X.
Then (N;erA4;) is a fuzzy completely closed
ideal of X.
Proof:
To prove that (N;er4;) is afuzzy ideal,

Let xeX.
(Nier 4y (0) = inf{ Ai(0), iel'}
>inf{Ai(x), iel'}

=(Nierd;)  (X)
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=(Nier 4;) (0) 2(Nyer 4;) (X)

(2) Letx,yeX

(Njer4;) (xX) = inf{Ai(x), iel'}
Sinf{min{Ai(x*y),

Ai(y)} iel }

—mindinf{AI(x*y).i cT}inf{Ai(y),ic}}
=min{(Nier 4 (x*Y),(Nier AD(Y) }

=(Nierdy) (X)) 2min{(Nger4)  (X*y),
(Nier4:) (¥) }

Therefore,

(Nier A;) is a fuzzy ideal of X.

To prove that (Nerd;) is a fuzzy
completely closed ideal of X

Let x,yeX

(Nier 4;) ((x*y)) = inf{ Ai (x*y) , iel'’}

>inf{min{Ai(x),

Ai(y)}, iel’ }

>min{infAi(x),infAi(y)}, iel" }

>min{(Nier 4;) (X), (Nier 4:) (y) }

=(Nier 4 (X*y)

>Min{(Nier A)(X),(Nier 41 (¥) } YX,yeX

Therefore, (N;er4;) is a fuzzy completely

closed ideal of X. m
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