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Abstract 
    In this paper, we introduce the notion of a fuzzy completely closed ideal of a BH-

algebra  and study this notion on a BG-algebra. Also We stated and prove some theorems which 

determine the relationships between this notion and some  types of  fuzzy ideals of a BH-algebra. 

 

 

1. INTRODUCTION 
Thenotion of BCK-algebra introduced by Y. 

Imai and K. Iseki in 1966[1]. In the same 

year, K. Iseki introduced the notions of a 

BCI-algebra as a generalization of a BCK-

algebra and the notion of ideal of a BCK-

algebra[2]. In1983, Q.P.Hu and X.Li 

introduced the notion of a  BCH-algebra 

which was a generalization of BCK/BCI-

algebras [3]. In 1991, C. S. Hoo introduced 

the notion of an ideal , closed ideal and filter 

in a BCI-algebra[4]. In 1998, Y. B. Jun, E. 

H. Rogh and H. S. Kim introduced the 

notion of  BH-algebra, which is a 

generalization of BCH-algebras[5]. In 2002, 

J. Neggers. and  H. S. Kim introduced the 

notion of  B-Algebras[6]. In 2008, C. B. 

Kim and H. S. Kim introduced the notion of  

BG-Algebras which is a generalization of a 

B-algebra [7]. In 2011, H. H. Abass and H. 

M. A. Saeed introduced the notion of a 

closed ideal with respect to an element of a 

BH-algebra[8]. In 2012, H H. Abass and H. 

A. Dahham introduced the notions of a   

completely closed ideal of a BH-algebra[9]. 

   On the other hand, we will mention the 

development of a fuzzy set,  fuzzy 

subalgebra,  fuzzy ideals, fuzzy closed ideals 

and some other types of fuzzy ideals.  

   In 1965, L. A. Zadeh introduced the notion 

of a Fuzzy subset of a set as a method for 

representing uncertainty in real physical 

world[10]. In 1991, O. G. Xi applied the 

concept of fuzzy sets to the BCK-

algebras[11]. In 1999, Y. B. Jun  introduced 

the notion of  Fuzzy closed ideals in BCH-

algebras[12]. In 2009, A. B. Saeid and M. A. 

Rezvani  introduced the notion of  Fuzzy 

BF-algebras[13]. In 2011, T. Senapati, M. 

Bhowmik and M.Pal introduced the notion 

of Fuzzy closed ideals of B-algebras[14]. In 

2011, H. H. Abass and H. M. A.Saeed 

introduced the notion of Fuzzy closed ideals 

with respect to an element of BH-

algebras[8]. 

In this paper, we introduce the notions as we 

mentioned in the abstract.  

 

2. PRELIMINARIES 
      In this section, we give some basic 

concepts about a BG-algebra , a BH-algebra, 

ideal of a BH-algebra , closed ideal of a BH-

algebra, a completely closed ideal of a BH-

algebra , closed ideal with respect to an 

element of a BH-algebra, completely closed 

ideal with respect to an element of a BH-

algebra, a normal set , fuzzy set, fuzzy ideal, 

fuzzy closed ideal, fuzzy closed ideal with 

respect to an element of a BH algebra with 
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some theorems and propositions which we 

needed in our work. 

Definition ( 2.1 ) [7] : 

   A BG-algebra is a non-empty set X with a 

constant 0 and a binary 

operation “ * ” satisfying the following 

axioms: 

1) x * x = 0, 

2)        , 
3) (x * y) * (0 * y) = x, for all x, y ∈  X. 

Definition (2.2) [5] : 

   A BH-algebra is a nonempty set X with a 

constant 0 and a binary operation * 

satisfying the following conditions: 

1) x * x = 0,  xX. 

2) x * y = 0 and y * x = 0 imply x = y,  

 x, y X. 

3) x *0 = x,  xX. 

Proposition (2.3) [7]:  

    Every BG-algebra is a BH-algebra. 

Definition (2.4) [15] : 

    A nonempty subset S of a BH-algebra X 

is called a BH-Subalgebra or Subalgebra of 

X if x * y  S for all x, y  S.    

Definition (2.5) [5] : 

   Let I be a nonempty  subset of a BH-

algebra X. Then I is called an ideal of X if it 

satisfies: 

1)0I.  2)x*yI and y I imply xI 

Definition (2.6) [16] : 
 An ideal I of a BH-algebra X is called a 

closed ideal of X if :for every xI, we have 

0*xI. 

Definition (2.7)[9]: 

   An ideal I of a BH-algebras is called a 

completely closed ideal  if x*yI,x,yI. 

Definition(2.8)[10]: 

    Let X be a non-empty set. A fuzzy set A 

in X (a fuzzy subset of X) is a function from 

X into the closed interval [0,1] of the real 

number. 

Definition (2.9)[16]: 

 Let A and B be two fuzzy sets in X, then: 

(AB)(x)min{A(x),B(x)}, for all xX. 

(AB)(x)max{A(x),B(x)}, for all xX. 

AB and AB are fuzzy sets in X. 

In general, if {A, } is a family of  

fuzzy sets in X, the : 

(⋂    ∈ )(x)inf{Ai (x),i }, for all xX 

and  

(⋃    ∈ ) (x)sup{ Ai (x),i }, for allxX. 

which are also fuzzy sets in X. 

Definition (2.10) [17]: 

 Let A be a fuzzy set in X, for all α[0,1]. 

The set Aα{xX, A(x)α} is called a level 

subset of A. 

Definition (2.11)[15]: 

A fuzzy set A in a BH-algebra X is said to 

be a fuzzy subalgebra of X if it satisfies: 

A(x*y)min{A(x),A(y)}, x,yX. 

Remark(2.12)[18]: 

      A  fuzzy subset A of a BH-algebra X is 

said to be a fuzzy ideal if and only if: 

1)  For any xX, A(0) ≥ A(x).      

2) For any x, yX,  

A(x) ≥ min{A(x*y), A(y)}. 

Definition (2.13) [8] : 

    A   fuzzy ideal A of a BH-algebra X is 

said to be closed if  

A(0*x) ≥ A(x)  for any x X. 

Theorem (2.14)[8]: 

    A fuzzy set A of a BH-algebra X is called 

a fuzzy p-ideal of X if it satisfies: 

1) A(0) ≥ A(x), For any xX. 

2) A(x) ≥ min{A((x *z) *(y *z)), A(y)}, for 

all x, y, z  X. 

Definition (2.15)[8]: 

  A fuzzy set A of a BH-algebra X is called a 

fuzzy a-ideal of X if it satisfies  

A (0) ≥ A (x), For any xX. 

A(y * x)  min{A((x * z) * (0 * y)), A(z)}, 

for all x, y, z  X. 

Definition (2.16)[19]: 

   A fuzzy set M in a B-algebra X is said to 

be fuzzy normal if it satisfies the inequality   

M((x*a)*(y*b)) ≥ min{M(x*y),M(a*b)}, for 

all a, b, x, y X. 

Lemma (2.17)[7]: 

     Let (X,*,0) be a BG-algebra. Then 

1) The right cancellation law holds in X, i.e., 

x*y = z*y implies x=z, 
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2) 0*(0*x)=x for all x∈X, 

3) If x*y=0, then x=y for any x,y∈X, 

4)If 0*x=0*y, then x=y for any x,y∈X, 

5) (x*(0*x))*x=x for all x∈X. 

 Proposition (2.18)[8]: 

    Let X be a BH-algebra. Then every fuzzy 

p-ideal of X is a fuzzy ideal of    X. 

Proposition (2.19)[9]: 

    A BH-algebra X is called an associative 

BH-algebra if: 

(x*y)*z=x*(y*z) , for all x,y,zX. 

Proposition (2.20)[9]: 

 Let X be an associative BH-algebra. Then 

the following properties are hold : 

1) 0*x=x   xX. 

 2) x*y=y*x  x,yX. 

3. THE MAIN RESULTS 
    In this section, we define the notion of a 

fuzzy completely closed ideal of a BH-

algebra. For our discussion , we shall link  

this notion with other notions which 

mentioned in preliminaries. 

Definition (3.1): 

Let X be a BH-algebra and A be a fuzzy 

ideal of X. Then  A is called a fuzzy 

completely closed ideal ,if 

 A(x*y)  min{A(x),A(y)},x,yX. 

Example(3.2): 

Consider the BH-algebra X = {0, 1, 2, 3} 

with the following operation table. 

* 0 1 2 3 

0 0 1 2 3 

1 1 0 1 1 

2 2 2 0 2 

3 3 3 3 0 

The fuzzy ideal A which is defined by 

A(x) = {
                 
                    

 

  is a fuzzy completely closed ideal  

Theorem (3.3):  

  Let X be a BH-algebra. If x*y=z, z{0, x, 

y}, x,yX , then every fuzzy ideal  is a 

fuzzy completely closed ideal. 

Proof: 

  Let A be a fuzzy ideal and  x, yX. 

Ifx*y=0,  

A(x*y)=A(0) ≥ min{A(x),A(y)}             

If x*y=x,  

A(x*y) =A(x) ≥ min{A(x),A(y)} 

If x*y=y, 

A(x*y) =A(y) ≥ min{A(x),A(y)} 

A is a fuzzy completely closed ideal.■ 

proposition  (3.4): 

Let X be an associative BH-algebra. Then 

every fuzzy ideal  is a fuzzy closed ideal. 

Proof: 

  Let A be a fuzzy ideal, and  x X. 

A(0*x)=A(x) ≥ A(x)                 

[By proposition(2.20)(1)] 

A is a fuzzy closed ideal.■ 

Theorem(3.5): 

  Let X be a BH-algebra. If A is a fuzzy 

completely closed ideal. Then A is a 

completely closed ideal for all [0,A(0)]. 

Proof: 

  To prove  A is an ideal, 

1)Since [0,A(0)]   

A(0)≥ [0,A(0)]. 

 0A[0,A(0)].                     

2) Let x*y A ,y A 

A(x*y) ≥,A(y) ≥ 

min{A(x*y),A(y)} ≥ 

but A(x) ≥ min{A(x*y),A(y)}     

 A(x) ≥  x A 

 A is an ideal. 

Now,letx,y A 

 A(x)≥ , A(y)≥ 

 min{A(x),A(y)}≥ A(x*y)≥ 

 x*y A 

 A is a completely closed ideal.■ 

Proposition  (3.6): 

  Let X be an associative BH-algebra. If A is 

a fuzzy P-ideal, then A is a fuzzy  closed 

ideal. 

Proof: 
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Since A is a fuzzy a P-ideal, 

 A is a fuzzy ideal                     

 [By proposition(2.18)] 

Now, let xX 

A(0*x)=A(x)≥A(x)      

[By Proposition(2.20)(1)] 

A is a fuzzy closed ideal.■ 

Theorem (3.7):  

  Let X be BH-algebra. If A is a fuzzy ideal, 

then the set XA={xX: A(x)=A(0)} is an  

ideal. 

Proof: 

Let A be a fuzzy ideal. 

1)Since A(0)=A(0), 0XA 

2)Let x*y, yXAA(x*y)=A(y)=A(0)  

min{A(x*y),A(y)}=A(0) 

but  A(x)≥ min{A(x*y),A(y)} =A(0) 

  A(x) ≥ A(0) 

but A(0) ≥ A(x)    A(x)=A(0)  xXA 

XA is an ideal.■ 

Theorem (3.8): 

  Let X be BH-algebra and A be a fuzzy 

completely closed ideal. Then the set 

XA={xX: A(x)=A(0)} is a completely 

closed  ideal. 

Proof: 

Let A be a fuzzy completely closed ideal. 

A is a fuzzy ideal,   

 XA is an ideal,          [By theorem(3.7)] 

Now, let x, yXA 

A(x)=A(y)=A(0)  

min{A(x),A(y)}=A(0) 

but A(x*y) ≥ min{A(x),A(y)} =A(0) 

 A(x*y) ≥A(0) 

but A(0) ≥A(x*y)  A(x*y) =A(0) 

x*yXA 

XA is a completely closed  ideal.■ 

Theorem (3.9) :  

  Let X be BH-algebra and let A be a fuzzy 

set.Then  A is a fuzzy ideal if and only if  

A'(x)=A(x)+1-A(0) is a fuzzy  ideal. 

Proof: 

Let A be a fuzzy ideal, 

A'(0)=A(0)+1-A(0),  

A'(0)=1 A'(0) ≥A'(x)  xX 

2)A'(x)=A(x)+1-A(0) 

            ≥ min{A(x*y),A(y)}+1-A(0) 

            ≥min{A(x*y) +1-A(0),A(y) +1-

A(0)} 

            ≥ min{A'(x*y),A'(y)}  

  A'(x) ≥ min{A'(x*y),A'(y)} 

  A' is a fuzzy ideal. 

Conversely  

Let A' be a fuzzy ideal. 

1)A(0)=A'(0)-1+A(0),  

A(0)≥ A'(x)-1+A(0)   

A(0) ≥A(x)  xX 

2)A(x)= A'(x)-1+A(0)  

≥ min{A'(x*y),A'(y)}-1+A(0)  

 ≥ min{A'(x*y) -1+A(0) ,A'(y) -            

1+A(0)}≥min{A(x*y),A(y)}  

  A(x) ≥ min{A(x*y),A(y)} 

  A is a fuzzy ideal.■ 

Theorem (3.10) :  

  Let X be BH-algebra and A be a fuzzy set 

of X. Then  A is a fuzzy completely closed  

ideal if and only if A'(x)=A(x)+1-A(0) is a 

fuzzy completely closed  ideal. 

Proof: 

Let A be a fuzzy completely closed  ideal, 

 A is a fuzzy ideal.   A' is a fuzzy ideal.      

[By theorem(3.9)] 

Now, 

Let x,yX 

A'(x*y)=A(x*y)+1-A(0) 

            ≥ min{A(x),A(y)}+1-A(0)         

            ≥ min{A(x) +1-A(0) ,A(y) +1-A(0)} 

            ≥ min{A'(x),A'(y)}  

  A'(x) ≥ min{A'(x),A'(y)} 

  A' is a fuzzy completely closed  ideal 

Conversely  

Let A' be a fuzzy completely closed  ideal, 

 A' is a fuzzy ideal.   A is a fuzzy ideal.       

[By theorem(3.9)] 

Now, 

Let x,yX 

A(x*y)=A'(x*y)-1+A(0) 

            ≥ min{A'(x),A'(y)}-1+A(0)       

            ≥ min{A'(x) -1+A(0) ,A'(y) -

1+A(0)} 

            ≥ min{A(x),A(y)}  
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  A(x) ≥ min{A(x),A(y)} 

  A' is a fuzzy completely closed  ideal.■ 

Proposition(3.11) : 

      Let X be a BH-algebra. Then every 

fuzzy normal set is a fuzzy subalgebra. 

Proof : 

Let M be a fuzzy normal set and x,yX, 

 M(x*y)=M((x*y)*(0*0)) 

              ≥ min {M(x*0),M(y*0)}  

              ≥ min {M(x),M(y)} 

M is a fuzzy subalgebra.■ 

Proposition(3.12) : 

Let X be a BH-algebra. If M is a fuzzy 

normal set, then M(0) ≥M(x) xX . 

Proof : 

Let M be a fuzzy normal set and  xX. 

  M(0)=M((x*x)*(0*0)) 

min{M(x*0),M(x*0)} 

min{M(x),M(x)}  M(x) 

  M(0)  M(x).■ 

Proposition(3.13) : 

Let X be an associative BH-algebra. Then 

every fuzzy normal set  is a fuzzy ideal . 

Proof : 

Let M be a fuzzy normal set. 

1)M(0)=M((x*x)*(0*0)) 

            ≥min{M(x*0),M(x*0)}                                              

min{M(x),M(x)} 

 M(x) 

2) M(x)=M(x*0)  

=M(x*(y*y))  

=M((x*0)*(y*y)) 

 min{M(x*y),M(0*y)}                 

min{M(x*y),M(y)}      

    [By proposition(2.20)(1)] 

M is a fuzzy ideal.■ 

Proposition (3.14): 

Let X be an associative BH-algebra. Then 

every fuzzy normal set  is a fuzzy 

completely closed  ideal. 

Proof : 

Let M be a fuzzy normal set. 

 M is a fuzzy ideal       

 [By proposition(3.13)] 

Now, 

Let x,yX, 

 M(x*y)=M((x*y)*(0*0)) 

≥min {M(x*0),M(y*0)} 

≥ min {M(x),M(y)} 

 M is a fuzzy completely closed ideal.■ 

Proposition(3.15) : 

Let X be an associative BH-algebra. Then 

every fuzzy a-ideal is a fuzzy ideal. 

Proof: 

Let A be a fuzzy a-ideal, 

1)A(0) ≥ A(x),xX 

2) Let x,zX  

     A(x)=A(x*0) 

            ≥ min{A(x*z)*(0*0),A(z)}      

Now, Let z=y             

           ≥ min{A(x*y)*(0*0),A(y)} 

≥ min{A(x*y),A(y)} 

A is a fuzzy ideal.■ 

Theorem(3.16) : 

Let X be an associative BH-algebra. Then 

every fuzzy a-ideal is a fuzzy completely 

closed ideal. 

Proof: 

Let A be a fuzzy a-ideal, 

 A is a fuzzy ideal, [By Proposition(3.15)] 

Now,Let x,yX 

A(x*y)=A(y*x) [By Proposition(2.20)(2)] 

            ≥ min{A(x*z)*(0*y),A(z)}    

Now, when y=z 

 ≥min{A(x*y)*(0*y),A(y)}  

≥ min{A(x), A(y)}       

A is a fuzzy completely closed ideal.■ 

Proposition (3.17): 

Let {Ai:i }be a family of  fuzzy 

completely closed ideals of a BH-algebra X. 

Then  (⋂    ∈ ) is a fuzzy completely closed 

ideal of X. 

Proof: 

To prove that  (⋂    ∈ )  is a fuzzy ideal, 

 

 

 

Let xX.  

(⋂    ∈ ) (0) = inf{ Ai(0), i }                  

inf{Ai(x), i }             

                      =(⋂    ∈ )      (x) 
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(⋂    ∈ ) (0) (⋂    ∈ ) (x)  

(2)  Let x, yX 

(⋂    ∈ ) (x) = inf{Ai(x), i }                         

inf{min{Ai(x*y),  

Ai(y)}, i  }        

=min{inf{Ai(x*y),i },inf{Ai(y),i }} 

=min{(⋂    ∈ ) (x*y),(⋂    ∈ )(y) } 

(⋂    ∈ ) (x) min{(⋂    ∈ ) (x*y),   

(⋂    ∈ ) (y) }  

Therefore, 

(⋂    ∈ ) is a fuzzy ideal of X. 

To prove that (⋂    ∈ ) is a fuzzy 

completely closed ideal of X  

 Let x,yX      

(⋂    ∈ ) ( (x*y)) = inf{ Ai (x*y) , i }     

inf{min{Ai(x), 

Ai(y)}, i  } 

min{infAi(x),infAi(y)}, i  } 

min{(⋂    ∈ ) (x), (⋂    ∈ ) (y) } 

(⋂    ∈ ) (x*y)      

min{(⋂    ∈ )(x),(⋂    ∈ ) (y) } x,yX 

Therefore, (⋂    ∈ )  is a fuzzy completely 

closed ideal of X. ■ 
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.  

 -في جبرحول المثالية الضبابية المغمقة تماما 
حيدر عباس دحاممو     **     حسين هادي عباس*   

 

جامعة الكوفة - كمية التربية لمبنات- قسم الرياضيات * 

جامعة الكوفة - طب الأسنانكمية *  
 الخلاصة

.HB-المفهوم في جبر ا,كما درسنا هذHB-في جبرة تماما المغلق المثالية الضبابيةم و قدمنا في هذا البحث مفه  
 BHات الضبابية في جبر المثالي بعض انواع المفهوم و اكما وضعنا وأثبتنا بعض المبرهنات ذات العلاقة بين هذ

 .BGو جبر 
 


