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Abstract

The problem of feedback linearization of index one multi-input nonlinear differential
algebraic control systems via feedback transformations is addressed. Although necessary and
sufficient geometric conditions for this problem have been provided in the early 2000. A
complete solution to the feedback linearization problem is provided by defining an algorithm
allowing to compute explicitly the linearizing feedback coordinate for index one multi-input
nonlinear differential algebraic control systems without solving the partial differential equations.
The algorithm consists of steps ( the dimension of the system).
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1. Introduction

1. INTRODUTION
The problem of transforming a nonlinear
differential  algebraic  control  system
(NDACS)

0 =o0(x,2)

1)
into the linear system
{z'vaw+Blul+~-+BmUm

0 =o0(@,2)
()
by a feedback transformation of the form
- o =¢X,2), (x,z2)eM
lu = a(x,z)+pKx,z)v
(©)
where

(x,2)cR"xR", o(x,2) =0,

M =1(x,2) rank(M]=m

0z

Z_{x’ =f (x,z)+g,(X,z)u,+---+g, (X,2)u,

, Is called feedback linearization problem to
the system (1). The linearization problem of
nonlinear differential algebraic control
system is an important one and has been
studied sparsely. Some investigation have
been carried out McClamroch et al. with
constrained mechanical systems®™®©  and
also by Kaprielian et al. with an AC/DC
power system model®®. Their approaches
consist of using transformations to obtain a
state realization (state space representation)
of the nonlinear descriptor system and then
apply differential geometry for linearization.
For single-input nonlinear differential
algebraic control systems®. have defined
|

F(x,z) = o\ " oo | Where (I, is an
_(Ej X
nxn identity matrix) and deal with the

index one NDAE locally as the following
nonlinear control,

(:]= F(x,z)f (x,z)+F(x,z)g(x,z)u

to study the exact feedback linearization for
this class of NDAS. On the other hand, C.
Chen et al. used the ideas of differential
geometric control theory to define M
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derivative and M bracket in order to
investigate the necessary and sufficient
geometric conditions for exact feedback
linearization of index one single-input
nonlinear differential algebraic control
systems®. The problem of feedback
linearization is solved if and only if

(F) =rank(g,Mad,g,...,Mad{*g ) =n
(F'2) vector field
A={g,Mad,g,...,Mad] g } are
involutive in (x,z)eM . Although, the
conditions (F1) and (F'2) provide a way
of testing whether a given system is
feedback linearizable but they offer little on
how to find the linearizing change of
coordinates ¢(x,z) except by solving a
systems of partial differential equations

sets

(PDEs) which is, in general, not
straightforward. For the problem of
feedback linearization of single-input
nonlinear differential algebraic control

systems, Ayad and Nada”® provide a
complete solution by defining an algorithm
that allows to compute explicitly the
linearizing state coordinates and feedback
for index one nonlinear differential algebraic
control  systems. Each algorithm s
performed using a maximum of n —1 steps (
n being the dimension of the system). The
objective of this paper is to provide an
algorithm giving linearizing feedback
coordinates for index one multi-input
nonlinear differential algebraic control
systems without solving the partial
differential equations. The algorithm based
on Frobenius Theorem.

2. Notations and Preliminaries
Consider the index one multi-input
nonlinear differential algebraic control
systems NDACS (1)

17

X=f(x,2)+09,(x,2)u,
iy 440, 2)u,
0 =0(x2)
where
X =(Xp,..0X,) € R,z =(2,,...,2,) € R
andu = (u,,...,u,) € R".Also
f(x,z) : R"xR? >NR",
g(x,z):R"x R°* > NR" and
o(x,z):R"x R — N are smooth vector
fields. and assume that its linear system
@ = Aw + Bu
A = Aw + Bu, +---+ B U,
0 =o0(w,2)
is controllable, that is, there exist positive
integers rn>1...,r, >1 with

r,+---+r, =n suchthat
dimspan{A*B;,0<k <r, -L1<i <m}=n.

Define the coordinates

X = ()T ) )T on

R" = R x---x R™ , where forany 1<i <r
we set X, = (Xiy,-.., X, )" and we put

A

.
(L 1 L2 2 m m
Rig = (Koo X X X oo Xy X )

Let the system X be denoted in the
coordinates x, by X,

X, = f (X,2) + 9 (X, )Y
Zk: +”'+gkm(xkiz)um
0 = o(X,,2)

and for any 1<i <m the ith subsystem X,
by

fe (X, 2) + G (X, ),

Ty et Ga (X DU,

o(Xy,2)

-
x
Il
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For any 1<i<m and any 1<k<r we
define A* in the following way: for any

X = (Xq,...,X,)" Wwe have
Afx =(0,...,0,X, ,,...,X,,0)
that is, A is the matrix A, with the entries

in the first k rows being zeros.

Definition 2.1; ©

The minimum number of times that all or
part of the constraint equation must be
differentiated with respect to time in order to
solve forZ as a continuous function of x and
z is the index of the nonlinear differential
algebraic system (1).

Definition 2.2: ©

Let f : R"xR™ > R" be a smooth vector
field and w :R"xR"™ >N a smooth
function. The M derivative of w along f is
a function R"xR" >N, written M, w
and defined as M,w = Ew)f , where

-1

Ew)=W_MW(0o) 00 ¢y s
ox oz \oz OX

differential k times along f , the function

M w can be defined as

M{w =M, (M{"w)with M{w = w

Definition 2.3: ©
Given two smooth vector fields f (x,z)

and g(x,z), both are defined on R" then
the M bracket is defined as follows:

Ma‘df(x,z)g(xiz) = [f (X,Z),g(X,Z)]M

= E(g)f —E(f)g
Repeated M brackets are denoted as
Madfk(x,z)g (X’Z) = Madf (Madfk-lg),
Madfl(x,z)g(x'z) = Mad, g

and
Madfo(xyz)g (x,z)=g. Also,

[f(x.z),9(x,2)], =-[9(x.2),f (x,2)],

and

[f.g],w(x2)=MMw-M M w.

Theorem 2.4: ©
Consider the partial differential equation of
function w (x,z) with constraint condition
0=0(x,2)
EW)v,(x,z)v,(x,z) - vy(x,2)]=0
in which
ow ow(dc) do

)= a_x_a_z(a_zJ ox
where
(X,2) e R"xR", v, (x,z)(i =12,....,k <n)
are linearly independent vector fields. If
vector field set

D = {v,(x,z) v,(x,z) ... v4(x,z)}
isinvolutive at (x,z) = (x° z°%), then
there exist certainly (n-k) functions
wi(x,z),w?(x,z),...,w" (x,z) which

satisfy given partial differential equation
groups and the vectors

[E.(wW) E,w) - E,w)](j=12....(n-k),
E=0/ox' -3, /07", i=12,..,n)
are linearly independent at (x°, z°).

Theorem 2.5:

Let v be a smooth vector field on R",
for any integer 1<k <n such that
v, (0,000 and a, (X,z)=1/v (X,2).
The diffeomorphism & =¢@(x,z), where
@M —R" defined by

s} _1 S XS .
9;(X,2) = X +z( s)' kM%i(a)kvj)(X,Z),
s=1 -
JE
e _1 s+le .
ox2) = 3L 0 (x2)
s=1 -
(4)
Satisfies  ¢"(v) =0. . Moreover, the

diffeomorphism w (&),
wherey : R" — M defined by
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s-1

‘//j(é) = é.::j +Zi:i_i(2(_l)ici56;klvljil(uj) j

i=0

wi (&) = ii_i(i(_l)icisal‘k MiiH(Uk) j

(5)
is the inverse of & =@ (x,z2).
where
0.0 o n= a4 opo0h
05 9, ‘ el
|
and C;’ :S— i >2
i1(s—i)!
3. MAIN RESULTS
Definition 3.1
The index one multi-input nonlinear

differential algebraic control systems X, is
called (FB), —linear form if for 1<i<m
the ith subsystem X, decomposes

X = R Rir2) if 1<j<k-1
s ):(E<1=X:<j+1 if k<j<r-1

Xyj = Uy

O = O-()A(kk+l7z)
(6) |

i 8Fk'j
where F; (0,0) =0 and p— (0,0)= 0. It
kj+1

follows easily that if =, is (FB), —linear,
then
Madfjk_l(gki) = AB,
1< j<r-k+L1<i<m
(7 |
A more compact representation of X, is
obtained as
i {Xlk = A% + B Ry 2) +bjuyg, X, € R

K -
0 = O'(ka+1vz)

19

with the last r —k components of F

being identically zero. By extension, a
compact notation for X, would be

5 .{Xk =AX, +F(Xg.,,2)+Bu +---+B u,
K - N
0 = 0(Xyyr2)

where
A A mrsa T
Fe(Ryiar2) = ((Fi(xkkﬂvz Ny (R Res 2))' ) :

Theorem 3.2
Consider the index one multi-input NDACS

X, = f.(X,,2) + 9,(x,,2)u,
z“r : +“'+grm(xriz)ukm
0 = o(X,,2)
Assume it is feedback linearizable, that is,
satisfies (F'1) and (F'2).
There exists a sequence of explicit
feedback transformations

I = (9..f)....Ty = (¢, 4, B) giving
rise to a sequence of (FB), —linear systems
2. .-, 2, such that

2a =T ) =(ea.B) " 2, 1<k<r

The (FB),—linear system X, can be
transformed into a (FB), , —linear system
X, ifandonlyif forall 1<i,j <m
2 A
aka+1axkk+l
of of
(b) { ik ,—Jk}
aka+l 8ka+l
O (R O (R ?)
aX:<k-¢-l 8Xlik aXlkk aXlilu—l

(8)

Thus the composition T',o---oI", linearizes
the system X .

Algorithm 3.3
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Step r. Consider a feedback linearizable
system X denoted in the coordinates x = X,

by %,

Xr =.I:r (Xr’z)+grl(xr'z)ur1
z“r: +“'+grm (Xr7z)urm
0 =o(x,,2)

sinceX, is feedback linearizable, hence the
distribution D, = {g,,,...,,, | involutive,

we apply Theorem (2.5) to construct
& =p(X.,2) such that

@) {9} = BE2) {0,000, )

feedback
where

. Then apply the
U = a(&.2)+B(&.2)u,
G (£.2) = (@4 (62)nsy (5,2)) s
such that «, (&,z) cancels the last
component of ()" f', to bring X, into

ér = fr (gr’ Z) +gr1 (é:r’ Z) url

ir = (¢r)*frI +"'+grm(§riz)urm

0 = o(£,2)
wheref, = ()" f, = A& +F (£,2) and
gri = agi = Bi'

Each subsystem is of the form
ilr — () fri : {5; =f (,2)+B, U,

0 =0(2)
with the rth component of ' zero, i.e.,
fi(£,z)=0. To normalize the (r-21)th
component of fr‘ we apply the push-forward
change of coordinates X, , = ¢, (£,,z) given
by

Xr—l = (br(é:r’z) = Xi — §5i (5 Z)

= -Frir—l (é?rrlz)

Xir—lj = (Z’rlj ¢.2)= érij’
1<j<r-1

20

followed by a feedback
U =Ur,,...,u™)" with

uifl = Mfé:r (érlz)+zMBj¢I‘ir (ér’z)l\jl’j '
=t :

1<i<m
The composition
X, =0 (. 2)=p.cp(X,,z)and u,_,, in
terms of u, , form a transformation I', such
that T, " 2, = =,

X, 4 = fr—l (Xr—l! Z) 0, (Xr—l’ Z) U sy
Zr—l : +“'+gr—1m (Xr—l’ Z) ur—lm
0 = o(X.4,2)

which is (FB), , —linear as it satisfies (7)
with k =r-1.
Step k. Assume . has been

transformed, via explicit coordinates
changes and feedback, into a (FB), —linear

system

that X

Xk = fk (Xk'z)+gk1(xk’z)ul
z“k: +“'+gkm(xk’z)um
0 =o0(x,2)

withf, (x,z) = A“x +F (X, .,,2) and
0. (x,z) =B, forall 1<i <m. Since X,
(hence X,) is feedback linearizable, then
condition (F'2) is satisfied, implying in
particular,

[ Mad; (g,,), Mad; (g,)]

Z ®Ip (Xkear 2) Madflk (%)

S

1=0 p=1
1<i, j<mand s>t >0,
®'p (X4 .1,2) are functions of the indicated

variables. Since (7) of definition (3.1) holds,
setting s =r—k and t =r —k —limplies

where
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asz (K10 2)

aX:<l<+1 aXIJ;k+l

m of (X s
_ ®| A . kk+l’

PZ;[ ( e aka-¢—1 Z0

using (7) we see that all coefficients @'p are
zero, i.e., the vector field f (X, .,2)

decomposes uniquely as
A k = /A
fk(xkk+11z) = A'X + Fk(xkk’z)

m
+ lekk+l O X 12)

i=1
where
K = Kigreeor X Xogre oo X ey X X )
. By Theorem 2.5 we construct a change of
coordinates &, = ¢, (X,,z) that rectifies the
involutive distribution

D, =span {g:kl(%kk 2 Gke (R 2 )1~~~,}
g km (ka 12 )
Then we define a push-forward change of

coordinates followed by an appropriate
feedback transformation whose composition

with & = ¢, (X,,z)yields a transformation
I, that maps X, into Z, ;.
Example 3.4
Consider the index one multi-input
nonlinear differential algebraic control
systems

Xy = f3(X5,2) + 05 (X5, 2) Uy

23 . + g32(X3’ Z) u2

0 =o0(Xs,2)
Defined in the coordinates
Xy = (Xapse s Xa5 ) € R

21

Xa = Xgp (1+Xg;)
Xy = Xg (1+X31)—X32U31
5, :33 i Z((31':_>Z(35 +Z +(L+Xg) Uy
34 = Ags
X3 = Ug
0 = x}-z
where

a -1
(_UJ _—
0z

oo
% = (2%, 00 0 0)
o) o
o (e
— | — = (-2x,, 0000
(az] OX (2% )
X3, (1+X3)
fo(X5,2) =] Xgg(X+X50), Xgy + X5 +2,Xg5 + Z
0
g31(x3l Z) = (O! _X32, (1+ X33),O,O)T and
932 (X3, Z) = (O, O, O, O,l)T
To rectifies the distribution

D, =span{g.,,9s,} we look for a change of
coordinatesy = ¢, (X;,z). Apply Theorem

(25) to v = g,(X;,z) with n = 5and
oy = (L+Xg) ™" Thus
oL = (0 V= Xap (L4 X)) 7, 1,0,0)71
Since M >™v, = 0 forall s >1 we get

Y, =Xy + z( 1) 33M —1 (o,01) (X4,2)

= X31
On the other side ov,(X;,2) = —X,, implies
M,,00, = 2X5 (14 X55) 7,
M2 O30, = —6Xg (1+ X4) "which  gives
M0 o0, = (-1)°s! Xy, (L+X5) ™ . Thus
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1 s
Yo =Xt Z( ) 33M0'31)1 o30;)(X3,2)

= Xg (1+X33)
Notice that \/ e
M2 03 = 2(1+Xg5) " which

M510'3—( 1)° (s =)L+ X,,) " . Thus

s+l s

- M 1(0-3)()(3’2)

Y, = Z( 1)

s=1

_SZ;‘S [1+xs3j

=In(1+X,,;)
We apply the change of coordinates
Y1 =Xy
Yo = Xg (14 Xg5)
Yz = In(1+xg,)

Y = @;(X;,2) Y, = Xa,

Y5 = X35

0 =x%-z
Whose inverse is given by

Xa1 = Y1

Xap = YZe7y3
X, = pii(y,2) = ® " el

X =Yy

X3 = Y5

0 =y -z
To transform the original system into

yl =Y,

Y, = (:I-"'Bll)eh(ey3 -1)
+y,87 (Y +Ys+2)
Y, =Y. =e (Y, HY s +2)+uUy

Vy=Ys+Z
Ys =Ug,
0 =5(y,z)=yf-z

= - (1+ X33)_2 )

22

-

2—:(2y 000 0)

(hIS |js (FB) -form and can be put into

Xg =@ (y,2) =Y,

X2 :(Bz(y,Z) =Y,

X3 =(53(y,2)
=(1+y)e -1

+Y,e 7 (Y +Ys+2)

X = 04(Y,2) =Y,

X25=¢5(y,2) =Ytz

0 =y/-z

= (-2y, 000 0)

XZ :é(yvz):

Uy = My @;(y,2)+ Mg o3(Y, 2) Uy + Mg (Y, Z) Uy,
= [ey3 (ey3 —1)+ Y, e +2y,y, e’yﬂy2

+2[ A+ y) € -D(y+Ys + YD) |

(L y;) e (Y + Vst YD) HY, 87 Uy

@ y)e” (€7 -D+e” )+ y, e (v, + Y+ ¥2) Juy,

Uy, = M os(y,2) + Mg (Y, 2) Uy
+ Mg, @5 (Y, 2) U, = 2, Y, +Us,
The composition X, = @o@,(X,,2) gives
Xy = Xgy
Xpp = Xgp (14 X55)

X23 = (1+ X31)X33 (1+ X33) + X32 (X31 + X35 + X?z:l)

Xy = Xgy
_ 2
Xy = Xz + X5

Brings Z, into linear form
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