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Abstract  

Artificial neural networks (ANN) were used in this study to predict ultimate load of simply 

supported concrete beams reinforced with FRP bars under four point loading. A proposed neural 

model was used to predict the ultimate load of these beams. A total number of (199) beams 

(samples) were collected as data set and it was decided to use eight input variables, representing the 

dimensions of beams and properties of concrete and FRP bars, while the output variable was only 

the ultimate load of these beams. It was found that the use of 11 and 10 nodes in the two hidden 

layers was very efficient for predicting the ultimate load. The obtained results were compared with 

available experimental results and with the ACI 440.1R specifications. The proposed neural model 

gave very good predictions and more accurate results than the ACI 440.1R approach. The overall 

average error, in the value of the predicted ultimate load, was 3.6% and 21.7% for the proposed 

neural model and the ACI 440.1R approach, respectively. 
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 الخلاصة
لقد تمّ استخدام الشبكات العصبیةّ الاصطناعیةّ في ھذه الدراسة لتقدیر الحمل الأقصى للعتبات الخرسانیةّ بسیطة الإسناد والمسلحّة 

الحمل الأقصى لھذه  بقضبان تسلیح بولیمیریةّ والمعرّضة الى تحمیل نقطي رباعي. حیث تمّ إقتراح وتطویر شبكة عصبیةّ لتقدیر
) نموذج كقاعدة بیانات. وقد تقرّر أنْ یكون عدد متغیرّات الإدخال لھذه الشبكة ھو ثمان متغیرّات ١٩٩العتبات وقد جُمعت نتائج (

 تمثلّ أبعاد العتبات وخواص الخرسانة وقضبان التسلیح، في حین كان ھناك متغیرّاً وحیداً ھو الحمل الأقصى كمتغیرّ إخراج. لقد
عقد في الطبقة الثانیة كان فعّالاً جدّاً في تقدیر  ١٠عقدة (خلیةّ عصبیةّ) في الطبقة المخفیةّ الاولى من الشبكة و  ١١وُجد بأنّ اختیار 

 ACI 440.1Rقیمة الحمل الأقصى. وقد قوُرنت النتائج المستحصلة مع نتائج عملیةّ متوفرّة ومع مواصفات المدوّنة الأمریكیةّ 
لشبكة المقترحة نتائج أكثر دقةّ من المدوّنة الأمریكیةّ، إذ كان مقدار معدّل الخطأ الكليّ في قیمة الحمل الأقصى المقدّر حیث أعطت ا

 % باستخدام المدوّنة الأمریكیةّ.٢١.٧% باستخدام الشبكة المقترحة بینما كان مقداره ٣.٦ھو 

Nomenclature 

  

    a         Shear span (mm) 

    a         Summation function  

   Af         Area of FRP bar (mm
2
)  
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  ACI       American Concrete Institute  

  ANN      Artificial neural network   

    b         Width of beam (mm) or bias   

   Ef         FRP elasticity modulus (MPa)   

    f          Activation function   

   f’c         Compressive strength of concrete (MPa)   

   fu          FRP tensile strength (MPa)  

  FOV      Fraction of variance  

  FRP      Fiber reinforcement  polymer  

    h          Beam’s depth (mm) 

    L          Beam’s length (mm) 

  Logsic    Logistic sigmoidal function  

    m          Shear span ratio (a/L)  

  MAE      Mean absolute error  

  MAPE    Mean absolute percentage error  

  MSE       Mean square error   

   N           Number of input samples (vectors)  

   P           Ultimate load (kN)   

  PACI        Ultimate load predicated by ACI code (kN)  

  PANN       Ultimate load predicated by neural network (kN) 

  Pexp         Experimental ultimate load (kN)  

  Purelin   Linear function   

    R          Coefficient of correlation   

  RMSE     Root mean squared error  

  tansig     Hyperbolic tangent function  

     u         Actual value  

     v          Predicted value  

   u          Mean of the actual values 

    w          Weight vector  

    x           Neural input  

    y           Neural output  

 

1 General                                                                                      

The ultimate strength in reinforcing members is depending on the type of reinforcement 

materials. Due to durability and corrosion problem of steel reinforcement under aggressive 

conditions, other materials, like fiber reinforcement polymers (FRP), have appeared to be an 

alternative reinforcement material. The FRP reinforcing bars are a composite materials made of 

reinforcing fibers and a matrix (resin). FRP composites are used in many types of engineering 

structures and can be used for enhancing requirements of performance due to their advantageous 

properties. FRP composites are utilized in rehabilitation, formwork, and reinforcement for seismic 

design [Jain and lee, 2012]. 

FRP reinforced concrete members started to be used all over the world, specifically in areas 

like flexural behavior, bond performance, column behavior and shear behavior. In structural 

applications, FRP are available as plates, strips or sheets, and reinforcing bars. The use of FRP can 

be either as an alternative reinforcing instead of steel or for retrofitting to strengthening existing 

structures. FRP are used as internal or external reinforcement to strengthen columns, slabs, and 

beams. The strength of these members can be increased even after their damage due to subjected 

loading.                                          
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Many experimental and theoretical investigations [6, 11, 15, 18, and 29] were performed to 

study the structural and flexural behavior of FRP reinforced concrete beams. These beams are 

expected to undergo larger deformations than corresponding steel reinforced beams, since the 

modulus of elasticity of FRP bars is low. FRP bars have high ultimate strength and a linear stress-

strain response. This would lead to an almost linear load-deflection response beyond the crack 

formation phase, up to failure. In this study, an attempt is made to get and predict the ultimate load 

of FRP reinforced concrete beams using artificial neural networks. 

2 Artificial Neural Networks (Ann) 

ANNs are computational networks which simulating a biological neural network. Due to this, 

they allow using simple and basic operations to solve nonlinear or complex problems [Graupe, 

2007]. Neural networks are considered good for regression and classification tasks in practical cases 

[Begg et al., 2006]. This makes ANN a very efficient tool to solve and deal with many structural 

and civil engineering problems [see 21, 24, and 31], particularly in problems having complex or 

insufficient data. 

Basically, all ANNs have the same structure or topology, the most common arrangement of 

the neurons by using a series of layers as shown in Figure (1). The first layer is the layer of input. 

The input units at this layer is dictated by the number of independent variables or feature values and 

the input data are taken either directly from electronic sensors or from input files. The final layer is    

the output layer which its units depend on the number of values or classes to be predicated 

and it sends information to the outside world or other devices like a mechanical control system, or a 

secondary computer system. The intermediate layers are called the hidden layers which contain 

many neurons in different interconnection structures. Figure (2) shows the scheme of a model of an 

artificial neuron. The shown model has N number of input and one output. The body of neuron 

contains the summing junction (∑) and the activation function f. The following parameters and 

variables are used in the artificial neurons.  

Every input has its own weight, which gives it the effect that it requires to process elements 

summation function. The node's internal bias (b) is a constant component represents the magnitude 

offset that affects the activation of the node output. The input vector and the weights vector can be 

represented as (x1, x2, ….., xN) and (w1, w2, ……, wN), respectively. The summation function can be 

calculated by multiplying of vector x and w and then adding up the products: 

å +=
=

N

1i
ii

b)x(wa
,                                                                                            (1) 

 The result will be as a single number. This weighted sum, from summation function, is transformed 

to the working output though an algorithmic process called transfer function. When neurons are 

sufficiently activated its output will take a value of 1, but it take zero when the neuron is not 

sufficiently activated. There are many activation functions used in neural networks which specify 

the neuron output to a given input. 

3 Development Of Proposed Neural Model 

An artificial neural model is proposed to predict the ultimate load of simply supported FRP 

reinforced concrete beams under four point loading as shown in Figure (3). The neural network 

program that is implemented in MATLAB version 8.3.0.532 (R2014a) is used for performing the 

neural network in this study. This program has many advantages such as containing several types of 

networks and implementing many different training algorithms. 
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Back-propagation neural networks are proposed to study the relations between the input 

variables and the output variables by using the feed-forward back-propagation algorithm. The trial 

and error process is used to configure and train the neural networks for their indeterminate 

parameters such as the hidden layers and their nodes, learning patterns, and training parameters. 

3.1 Selection Of Data Set 

The purpose of training a network is to allow it to produce accurate answers and generalize 

future data. The experimental data used in modeling the proposed neural model are subdivided into 

two groups; training and testing group. The network uses the training group to updating values of 

the nodes’ biases and weights in order to minimize the training error. In other words, it uses this 

group to get the relationship between the input and output variables. While the network uses the 

testing group to check the generalization ability of the proposed model.  

The total actual (experimental) data used in the proposed neural model are those obtained 

from available open literature [1, 2, 4-13, 15-18, 20, 22, 25-30, and 32-40]. A total number of (199)  

beams (samples) were collected as data set. The training group must contain the extreme 

values of the different input parameters of the total data set. For estimating the generalization 

capacity of the training process, the testing set is either selected rotationally from the total data set, 

or is selected randomly by the computer. In this study, the testing group comprises of approximately 

(20)% of the collected data and is selected randomly over the entire region of data set. Accordingly, 

the training group is decided to comprise of (159) samples, while the testing group is comprised of 

(40) samples.  

3.2 Defining Of Input And Output Variables 

The problem’s nature is the effective factor that state the defining of the input and output 

variables (parameters). Selection of the input variables is important to get an efficient network, 

while the selection of the output variables depends on what required from the network to know. In 

this study, the dimensions and properties of concrete and FRP bars are chosen as candidate input 

variables. While the output variable is only the ultimate load (P) of the considered concrete beams. 

For the proposed neural model, it is decided to use the following eight variables as input variables: 

the cross sectional width (b) of beams, cross sectional depth (h) of beams, cylinder concrete 

compressive strength (f’c), cross sectional area of FRP bars (Af), FRP bars tensile strength (fu), FRP 

bars elasticity modulus (Ef), effective span length (L) of beams, and shear span ratio (m). To 

minimize the input variables several  attempts are tried to choose their proper number to represent 

the properties of the considered beams. In one attempt, the gross cross sectional area of concrete is 

used instead of its width and depth. Also in another attempt, the reinforcement ratio of FRP bars is 

used as an input variable. Although good performance in training is found, but the generalization is 

very poor. Therefore, it is decided to use the above eight input variables for the proposed model. So, 

eight nodes in the input layer and (1) node in the output layer are used in the proposed neural 

model. The ranges of all variables are given in Table (1). 

3.3 Hidden Layers And Their Nodes 

determining of hidden layers and their nodes depends on the network application. There is no 

rules available to find out their exact number. Once start with small number and then is increased 

until the wanted value from the model (network) is reached. This number is chosen by a trial and 

error process. If the nodes number is large, the operation of network will be slow and may cause 

overfitting in the testing group performance. And if this number is very small then the network may 

be unable to learn well. The suitable number will be selected by a trial and error process to get the 

network of the minimum error (the best performance) for both training and testing group.   
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Firstly, a proposed Levenberg-Marquardt back-propagation neural network is investigated 

with different configurations to choose the best network. Many different trial networks are trained 

and the optimal topology is determined by choosing the best performed network (of the less training 

error). Trial networks with single and multi hidden layers and nodes and with a various activation 

functions (hyperbolic tangent (tansig), logistic sigmoidal (logsig), and linear (purelin) function) are 

tested. The results show that, the (11-10) two hidden layered model gives best performance with 

least error in the output variable. This network, with ten nodes in the first hidden layers and twelve 

nodes in the second and with tansig function for hidden layers and purelin function for the output 

layer, gives the best performance with MSE of (0.000445) for the training group and (0.001069) for 

the testing group and number of epochs of (616). Thus, this configuration (topology) is adopted to 

the proposed network. The topology of this neural network are shown in Figure (4). While the 

properties of this proposed model are shown in Table (2). 

4. Results And Discussion 

A regression analysis between the obtained (predicted) results and the actual values is 

performed to investigate the accuracy of the proposed network. The regression coefficient of 

correlation (R) is used as an index in this analysis. If (R) is close to a value of one, then there is an 

excellent correlation between the obtained (predicted) loads and the actual loads. Figure (5) shows 

the correlation analysis of the proposed model output and the experimental values for the training 

group, while Figure (6) shows this analysis for the testing and group. From Figure (5), which 

represents the regression analysis for the training data, the correlation coefficient (R) is (0.9988), 

the interception with y-axis is (0.307) and the slope is (0.997). While for the testing data, Figure 

(6), the correlation coefficient (R) is (0.9961), interception with y-axis is (0.863) and the slope is 

(0.991). These analyses certify good agreement between the obtained results and the actual results.  

5. Comparative Study 

The proposed neural model is used to obtain and predict the ultimate load of the FRP 

reinforced concrete beams that used in the selected testing set of this study. A comparison between 

the experimental and predicted ultimate loads obtained by the proposed model (PANN) and those 

obtained from using the ACI 440.1R approach [3] (PACI) is presented in Table (3). As can be 

noticed from this table, for almost specimens the proposed network gives more accurate results as 

compared with those predicted by the ACI 440.1R approach. The ACI 440.1R approach 

underestimates ultimate loads up to approximately 50% (beam number 17) and overestimates 

ultimate loads up to approximately 24% (beam number 27). While the proposed neural model 

underestimates ultimate loads up to approximately 12% (beam number 17) and overestimates 

ultimate loads up to approximately 8% (beam number 10).  

A statistical comparison between the actual and predicted loads is also performed to check the 

accuracy of the proposed network and the ACI 440.1R approach of ultimate load calculation as 

shown in Table (4). Four indices are used in this study to  comparative evaluation of the behavior 

of the proposed network and the calculated ultimate loads using the ACI 440.1R specifications. 

These indices are the mean absolute error (MAE), root mean squared error (RMSE), mean absolute 

percentage error (MAPE), and fraction of variance (FOV). and they are given, respectively, as: 

å -=
=

n

1i

vu
n

1
MAE

,                                                                         (2) 
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== ,                                          (5) 

where u is the actual value, v is the predicted value, u is the mean of the actual values, and n is 

number of specimens. If MAE is 0, RMSE is 0, MAPE is 0, and FOV is 1, then the used model will 

be excellent.  

As can be noticed from Table (4), the MAE, RMSE, MAPE, and FOV for the ultimate load 

prediction of the proposed neural model are (4.4, 5.7, 3.6, and 0.992), respectively. While these 

values for the ACI 440.1R approach are (31.4, 41.7, 21.7, and 0.582), respectively. These values 

proved that the proposed neural model prediction is satisfactory indicating that, an excellent 

agreement with the experimental data is obtained and hence the proposed network can obtain and 

predict loads very well and better than ACI 440.1R approach. 

In Figure (7), the predicted ultimate loads obtained by the proposed model (PANN) and the 

ACI 440.1R approach (PACI) are plotted against the actual loads. From this Figure, it is obvious that 

in general the ACI approach underestimates the value of the ultimate load. The coefficient of 

correlation R = 0.9961 and 0.7629 for PANN and PACI, respectively. These values show that the 

proposed neural model predicts loads much better than the ACI approach.  

Therefore, with an overall average error of 3.6%, it is concluded that the developed network 

could be used efficiently in obtaining the ultimate loads and that the ANN provided an alternative 

procedure to the costly test procedures for the ultimate load prediction of FRP reinforced concrete 

beams. 

6. Conclusions  

The main important points that can be concluded from this study are as follows: 

1. The artificial neural networks (ANN) have been proved its capability in predicting the ultimate 

load of FRP reinforced concrete beams, and it could be used this procedure as a reliable 

alternative to other complex or costly test procedures.  

2. The proposed neural model, in the current study, has been found to be very excellent for 

prediction of  the ultimate load of FRP reinforced concrete beams. 

3. The configuration (11-10) for the proposed neural model was found to be very typical for 

prediction of  the ultimate load of FRP reinforced concrete beams. 

4. The overall average error, in ultimate load prediction, was 3.6% and 21.7% for the proposed 

neural model and the ACI 440.1R approach, respectively. So the proposed neural model gave 

more accurate results than the ACI 440.1R specifications and it could be used efficiently in 

predicting the ultimate load FRP reinforced concrete beams. 
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5. The ACI 440.1R approach was shown to give, in general, an underestimated value for the 

ultimate load. 
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Table (1) Input And Output Variables 

Variable Range 

Input variables:  

Width of  beam, b, (mm) 80 – 500 

Depth of beam, h, (mm) 100  –  590 

Concrete compressive strength, f'c, (MPa) 13.7  –  85.6 

Area of FRP bars, Af, (mm
2
) 39.3 – 19635 

FRP bars tensile strength, fu, (MPa) 126.2  –  2250 

FRP bars elasticity modulus, Ef, (MPa) 30000  –  200000 

Length of beam, L, (mm) 400  –  4200 

Shear span ratio, m 0.273 – 0.47 

Output variable:  

Ultimate load, P, (kN) 16 – 365.4 

 

Table (2) Properties Of The Proposed Neural Model 

Network 

Nodes  in 

1
st
 hidden 

layer 

Nodes  in 

2
nd

 hidden 

layer 

Nodes  in 

output layer 
Epochs 

MSE for 

training set 

MSE for 

testing set 

11 – 10 11 10 1 616 0.000445 0.001069 

 

Table (3) Actual And Predicted Ultimate Load 

Beam 

No. 

Type 

of 

FRP 

bars 

Concrete 

Compressive 

Strength, f’c 

(MPa) 

FRP 

reinforcement 

ratio to 

balanced  

ratio, (ef / ebf ) 

Ultimate load (kN) 

PANN 

/PEXP 

PACI 

/PEXP Actual 

PEXP 

Predicted 

By By 
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ANN 

PANN 

ACI 

PACI 

1 GFRP 24.5 2.67 75.2 74.2 42.5 0.987 0.565 

2 GFRP 30.0 1.99 96.0 96.3 79.2 1.003 0.825 

3 GFRP 27.6 0.42 33.7 33.9 31.6 1.006 0.938 

4 GFRP 27.6 0.69 51.2 53.4 62.5 1.043 1.221 

5 GFRP 38 4.05 40.7 40.5 34.7 0.995 0.853 

6 GFRP 27.6 4.30 41.6 41.2 33.4 0.990 0.803 

7 GFRP 27.6 3.44 127.4 118.6 75.4 0.931 0.592 

8 GFRP 59.8 3.68 143.4 150.2 89.5 1.047 0.624 

9 GFRP 56.3 5.58 169.8 164.6 102.8 0.969 0.605 

10 GFRP 55.2 4.43 85.1 92.3 55.7 1.085 0.655 

11 GFRP 39.6 3.38 134.9 140.5 82.2 1.042 0.609 

12 BFRP 61.7 3.23 200.0 209.8 164.1 1.049 0.821 

13 CFRP 40.1 1.76 170.5 162.7 162.0 0.954 0.950 

14 CFRP 40.4 2.52 178.7 180.0 158.2 1.007 0.885 

15 GFRP 39.3 3.36 162.3 161.9 127.4 0.998 0.785 

16 GFRP 32.5 1.19 185.5 187.3 211.7 1.010 1.141 

17 GFRP 41.4 1.28 154.1 134.9 77.9 0.875 0.506 

18 GFRP 41.4 1.71 106.4 100.9 55.4 0.948 0.521 

19 GFRP 29.8 1.67 80.0 76.0 70.0 0.950 0.875 

20 GFRP 29.8 6.26 118.0 110.0 117.8 0.932 0.998 

21 CFRP 29.8 0.76 76.0 74.0 63.8 0.974 0.839 

22 CFRP 29.8 1.14 105.0 100.0 100.5 0.952 0.957 

23 CFRP 29.8 1.81 125.0 123.0 117.2 0.984 0.938 

24 GFRP 40.6 1.09 76.0 80.0 79.7 1.053 1.048 

25 GFRP 40.0 5.74 112.0 118.0 138.4 1.054 1.236 

26 CFRP 47.0 0.67 70.0 75.0 75.5 1.071 1.079 

27 CFRP 44.7 1.34 100.0 101.0 124.4 1.010 1.244 

28 CFRP 44.0 3.18 120.0 125.0 145.1 1.042 1.209 

29 GFRP 30.0 3.61 123.2 127.8 129.1 1.037 1.048 

30 CFRP 30.0 3.13 135.0 139.9 132.3 1.036 0.980 

31 GFRP 48.0 4.89 135.0 130.7 104.3 0.968 0.773 

32 GFRP 48.0 4.80 138.6 134.6 119.9 0.971 0.865 

33 CFRP 48.0 4.25 155.0 144.8 107.3 0.934 0.692 

34 GFRP 24.0 1.21 92.8 99.0 79.6 1.067 0.858 

35 GFRP 24.0 1.82 125.6 132.1 93.2 1.052 0.742 
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36 GFRP 29.3 1.06 207.0 209.5 137.1 1.012 0.662 

37 GFRP 29.3 2.28 307.0 302.7 192.6 0.986 0.627 

38 GFRP 29.9 2.44 229.7 228.0 162.7 0.993 0.708 

39 GFRP 36.5 2.12 227.0 228.0 177.4 1.004 0.781 

40 GFRP 29.9 5.12 331.3 332.8 230.9 1.005 0.697 

Average 

 

1.001 0.844 

Standard deviation 

 

0.007 0.032 

  

 

Table (4) Statistical comparison 

Norm 
Proposed neural 

model (NN1) 
ACI approach 

Mean absolute error (MAE) 4.4 31.4 

Root mean squared error (RMSE) 5.7 41.7 

Mean absolute percentage error (MAPE) 3.6 21.7 

Fraction of variance (FOV) 

 

0.992 0.582 
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Figure (1) Architecture Of  A Neural Network 
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Figure (2) Artificial Neuron Model 

 

 

Figure (3) Four Point Loading Beam 

 

Figure (4) Proposed Neural Model Topology 

 

(m=a/L) 
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Figure (5) Regression Analysis For Training Group 

 

 

Figure (6) Regression Analysis For Testing Group 
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Figure (7) Comparison Between Predicted And Actual Loads 

 

  


