# \*n-normal weighted composition operator and n-unitary weighted composition operator on Hardy space $H^2$

Received: 13/9/2015 accepted: 15/11/2015

**Eiman H.Abood** 

Department of Mathematics

Department of Mathematics

Department of Wathematics

**Alaa Hussein Mohammed** 

College of science

College of science

University of Baghdad

University of Baghdad

alaahma@yahoo.com

### **Abstract**

In this paper we characterize the n-normal weighted composition operator and n-unitary weighted composition operator on Hardy space  $H^2$ 

### Keyword

Composition operator, weighted composition operator, normal operator, Hardy space.

### Math. Sub. classifications:QA299.6-433

### 1-Introduction

Let U denote the open unite disc in the complex plan ,let H denote the collection of all holomorphic function on U and let  $H^2$  is consisting of all holomorphic self-map on U such that  $f(z) = \sum_{n=0}^{\infty} a_n z^n$  whose Maclaurin coefficients are square summable (i.e)

$$\sum_{n=0}^{\infty} |a_n|^2 < \infty.$$

More precisel  $f(z)=\sum_{n=0}^{\infty}a_nz^n$ y if and only if  $\|f\|=\sum_{n=0}^{\infty}|a_n|^2<\infty$ . The inner product inducing on  $H^2$  is define as follows  $\langle f,g\rangle=\sum_{n=0}^{\infty}a_n\,\overline{b_n}$  for all f.g in  $H^2$  with  $f(z)=\sum_{n=0}^{\infty}a_nz^n$  and  $g(z)=\sum_{n=0}^{\infty}b_nz^n$ 

If  $f\in H$  and  $\varphi$  is analytic self map of the unit disk U ,the weighted composition operator on  $H^2$  is defined by  $W_{f,\varphi}=T_f\mathcal{C}_{\varphi}$ , where  $T_f$  is the Toeplitz operator  $T_f\colon H^2\to H^2$ 

Defined by  $T_f(h)=fh$  for h in  $II^2$  and  $C_{\varphi}$  is the composition operator on  $H^2$  given by  $C_{\varphi}(h)=ho\varphi$  , if f is bounded on the unit disk U then  $w_{f,\varphi}$  is bounded on  $H^2$  and  $\left\|W_{f,\varphi}\right\|=\left\|T_fC_{\varphi}\right\|\leq \|f\|_{\infty}\left\|C_{\varphi}\right\|$ 

### 2- Preliminaries

### Theorem (2-1) [5]

The composition operator  $C_{\varphi}$  is an identity operator if and only if  $\varphi$  is the identity self-map

# Al-Qadisiyha Journal For Science

#### Vol.20 No. 4 **Year 2015**

### Theorem (2-2) [5]

Let  $\varphi$  and  $\gamma$  be holomorphic self – maps then  $C_{\varphi}C_{\psi} = C_{\psi \varphi \varphi}$ 

For each  $\alpha \in U$ , the reproducing kernel at  $\alpha$  ,denoted by  $K_{\alpha}(z)$  and defined by Shapiro [5] as follows  $K_{\alpha}(z) = \frac{1}{1 - \overline{\alpha}z}$ 

It is easily seen for each  $\alpha \in U$  and  $f \in$  $H^2$ ,  $f(z) = \sum_{n=0}^{\infty} a_n z^n$  that

$$\langle f, K_{\alpha} \rangle = \sum_{n=0}^{\infty} a_n \alpha^n = f(\alpha)$$

### Theorem(2-3) [5]

Let  $\varphi$  be a holomorphic self-map of U .then for all  $\alpha$  in U  $C_{\varphi}^* K_{\alpha} = K_{\varphi(\alpha)}$ 

Recall that for  $f \in H$  the Toeplitz operator  $T_f$ is the operator  $T_f: H^2 \to H^2$  and given by  $T_f(h) = fh$  for h in $H^2$ , and it have the properties [4]

(a) 
$$C_{\varphi}T_f=T_{fo\varphi}$$
  $C_{\varphi}$ 

(b) 
$$T_g T_f = T_{gf}$$

(c) 
$$T_{f+\gamma g} = T_f + T_{\gamma g}$$
  
(d)  $T_f^* = T_{\bar{f}}$ 

(d) 
$$T_f^* = T_{\bar{f}}$$

### Theorem(2-4)

Suppose that  $W_{f,\varphi}: H^2 \to H^2$  is bounded and  $\alpha \in U$  then  $W_{f,\varphi}^* K_{\alpha} = \overline{M}_{\varphi} K_{\varphi(\alpha)}$ 

When  $\varphi(z) = (az + b)/cz + d$  is anon linear fractional self mapping of U, Cowen [1] establishes  $C_{\varphi}^* = T_g C_{\sigma} T_h^*$  ,where the Cowen auxiliary functions g,  $\sigma$  and h are defined as follows:

$$g(z) = \frac{1}{-\bar{b}z + \bar{d}}$$
 ,  $\sigma(z) = \frac{\bar{a}z - \bar{c}}{-\bar{b}z + \bar{d}}$  and  $h(z) = cz + d$ .

If  $\varphi$  is linear fractional and the weight function f is both linear fractional and bounded on U then  $W_{f,\varphi}^* = (T_f C_{\varphi})^* = C_{\varphi}^* T_f^*$ 

Recall that the operator S is normal if  $S^*S = SS^*$  where  $S^*$  is the adjoint of S and is said to be unitary if  $S^*S = SS^* = I$  where I is the identity operator on H [9]

### Theorem(2-5)[9]

If S is normal operator then  $||S^*f|| =$ ||Sf|| for all  $f \in H$ 

### Theorem(2-6)[9]

If S is normal operator then  $\tau$  is an eigenvalue for S if and only if  $\bar{\tau}$  is is an eigenvalue for  $S^*$ 

### Theorem (2-7)[5]

Let  $\varphi$  be a holomorphic self-map .then  $C_{\varphi}$  is normal if and only if  $\varphi = \alpha z$ ,

For some  $|\alpha| \leq 1$ 

### Definition (2-8)[8]

An operator  $S \in B(H)$  is called an n-normal operator if  $S^*S^n = S^nS^*$ 

### Theorem(2-9)[8]

Let  $S \in B(H)$  then S is n-normal operator if  $S^n$ is normal where  $n \in \mathbb{N}$ 

### Theorem(2-10)[8]

Let  $S \in B(H)$  be n-normal operator, then

1-S\* is n-normal

2- If  $S^{-1}$  exists then  $S^{-1}$  is n-normal

3- If  $R \in B(H)$  is unitary equivalent to S, then R is n-normal

### **Definition (2-11)[7]**

# Al-Qadisiyha Journal For Science

Vol.20 No. 4 Year 2015

Let  $\varphi$  aholomorphic self-map of U ,  $\varphi$  is called an inner function if  $|\varphi(z)|=1$  almost every where on  $\partial U$ 

### Theorem(2-12) [7]

If  $\varphi$  is univalent inner function then  $\ \varphi$  is an automorphism of U

### Theorem(2-13) [7]

Suppose that  $\phi$  is not elliptic automorphism, then there is a unique fixed point p of  $\phi$  with  $|p| \le 1$  and  $|\phi'(p)| \le 1$ .

By Denjoy-Wolff theorem, the fixed point p in Grand Iteration theorem to which the iterates of  $\varphi$  converges is unique and it is called the Denjoy-Wolff point of  $\varphi$  or attractive fixed point for  $\varphi$  .

### 3- The Main results

### Definition (3-1)

The operator  $S \in B(H)$  is called an n-unitary operator if  $S^*S^n = S^nS^* = I$ 

### Proposition: (3-2)

Let  $\varphi$  be a holomorphic self-map .then  $C_{\varphi}$  is n-normal if and only if  $\varphi = \gamma z$ ,

For some  $|\gamma| \leq 1$ 

### Proof:

Suppose  $C_{\varphi}$  is n- normal since by theorem (2-2)  $C_{\varphi}^{n}=C_{\varphi_{n}}$ 

And since by theorem (2-9) we have  $\mathcal{C}_{\varphi_n}$  is normal

Then by theorem  $(2,7)\varphi = \gamma z$ 

Conversely suppose  $\varphi = \gamma z$ 

Then  $\varphi_n = \varphi \circ \varphi \circ \varphi \dots \circ \varphi$ 

$$= \gamma(\gamma(\gamma(...\gamma(\gamma(z))) = \gamma^n z)$$

Take 
$$\gamma^n = \beta$$
 so  $\varphi_n = \beta z$ 

Then  $C_{\varphi_n}=C_{\varphi}^n$  is normal, hence  $C_{\varphi}$  is n-normal.

### Corollary: (3-3)

Let  $\varphi$  be a holomorphic self-map .then  $C_{\varphi}$  is n-normal if and only if  $C_{\varphi}$  is normal

### Proof:

we have the result by theorem(2-2), theorem(2-9) and proposition(3-2)

### Proposition: (3-4)

Let  $\varphi$  be a holomorphic self-map .then  $C_{\varphi}$  is n- unitary if and only if  $\varphi_n = \beta z$ ,

For some  $|\beta| \le 1$ 

### Proof:

$$C_{\varphi}^{n}C_{\varphi}^{*}K_{\alpha(z)}=K_{\alpha}(z)$$

$$C_{\varphi}^{n}(z) = C_{\varphi_{n}} K_{\varphi(\alpha)}(z) = \frac{1}{1 - (\alpha - 1)} \varphi_{n}(z)$$

$$\frac{1}{1 - \overline{\varphi}(x)} \varphi_n(z) = \frac{1}{1 - \overline{\alpha}z}$$

$$\frac{1}{2\pi i} \frac{1}{\varphi(\alpha)} \varphi_n(z) = 1 - \bar{\alpha} z$$

$$\overline{\varphi(\varphi)}\varphi_n(z)$$

$$\varphi_n(z) = (\frac{\overline{\alpha}}{\varphi(\overline{\alpha})})z$$

Since  $\bar{\alpha} \leq 1$  and  $\bar{\beta} \leq 1$  hence  $|\beta| \leq 1$ 

### On the other hand

$$C_{\varphi}^* C_{\varphi}^n K_{\alpha(z)} = K_{\alpha}(z)$$

$$C_{\varphi}^* C_{\varphi}^n K_{\alpha(z)} = C_{\varphi}^* C_{\text{limit}} \alpha(z) = C_{\varphi}^* K_{\alpha}(\varphi_n(z)) = K_{\varphi(\alpha)}(\varphi_n(z)) = \frac{1}{1 - \min[\varphi_n(z)]} \alpha(z)$$

# $\frac{1}{1-\overline{\varphi}(u)\varphi_n(z)} = \frac{1}{1-\overline{\alpha}z}$

$$\frac{1}{2} \frac{1}{2} \frac{1}$$

$$\overline{\varphi(\varphi)}\varphi_n(z) = \bar{\alpha}z$$

$$\varphi_n(z) = (\overline{\overline{\varphi}(a)})z$$

Since  $\overline{\alpha} \leq 1$  and  $\overline{\beta} \leq 1$  hence  $\varphi_n = \beta z$  ,  $|\beta| \leq 1$ 

### Proposition: (3-5)

Let  $\varphi_1, \varphi_2, ... \varphi_n$  be a holomorphic self-maps and  $f_1, f_2, ... f_n \in H$  then

$$\begin{split} &W_{f_1\varphi_1}.W_{f_2\varphi_2}....W_{f_n\varphi_n}\\ &=T_{f_1:\{f_20\varphi_1\}.(f_3\circ\varphi_2\circ\varphi_1\}...(f_2\circ\varphi_{n-1}\circ\varphi_{n\cdot2}o...o\varphi_1),}C_{\varphi_n\circ\varphi_{n-1}o...o\varphi_1} \end{split}$$

### Proof:

$$\begin{aligned} & W_{f_1 \varphi_1} \cdot W_{f_2 \varphi_2} \cdot W_{f_3 \varphi_3} \cdot \dots \cdot W_{f_n \varphi_n} \\ &= T_{f_1} C_{\varphi_1} \cdot T_{f_2} C_{\varphi_2} \cdot T_{f_3} C_{\varphi_3} \cdot \dots \cdot T_{f_n} C_{\varphi_n} \end{aligned}$$

$$= T_{f_1}.\,T_{f_2o\varphi_1}C_{\varphi_1}C_{\varphi_2}.\,T_{f_3}C_{\varphi_3}.\,\dots.\,T_{f_n}C_{\varphi_n}$$

$$= T_{f_1}.T_{f_2o\varphi_1}C_{\varphi_2o\varphi_1}.T_{f_3}C_{\varphi_3}.\dots.T_{f_n}C_{\varphi_n}$$

$$T_{f_1}.T_{f_2o\varphi_1}T_{f_3o\varphi_2o\varphi_1}$$
  $C_{\varphi_3o\varphi_2o\varphi_1}.T_{f_4}C_{\varphi_4}....T_{f_n}C_{\varphi_n}$ 

 $= T_{f_1} \cdot T_{f_2 \circ \phi_1} T_{f_3 \circ \phi_2 \circ \phi_1} \cdot T_{f_4 \circ \phi_3 \circ \phi_2 \circ \phi_1} \cdot C_{\phi_4 \circ \phi_3 \circ \phi_2 \circ \phi_1} \cdot T_{f_5} C_{\phi_5} \cdot \dots \cdot T_{f_n} C_{\phi_n}$ 

 $=T_{f_1,(f_2\circ\varphi_1),(f_3\circ\varphi_2\circ\varphi_1),\dots(f_2\circ\varphi_{n-1}\circ\varphi_{n-2}\circ\dots\circ\varphi_1)}C_{\varphi_n\circ\varphi_{n-1}\circ\dots\circ\varphi_1}$ 

### Corollary: (3-5)

Let  $\varphi$  be a holomorphic self-map and  $f \in H$  then

$$W_{f,\varphi}^n = T_{f-.(f-o\varphi).(f-o\varphi_2)...(f-o\varphi_{n-1}).}C_{\varphi_n}$$

### Proposition: (3-6)

If  $\varphi$  is non-constant holomorphic self-map on U and  $W_{f,\varphi}$  is n-normal then either f=0 or f never vanishes on U

### Proof:

suppose $W_{f,\varphi}$  is n- normal and  $f(\beta)=0$  for some  $\beta\in U$ 

Then  $W_{f,\varphi}^* K_\beta = f(\beta) K_{\varphi(\beta)} = 0$ 

Since  $W_{f,\varphi}$  is n-normal then by theorem (2-2)  $W_{f,\varphi}^{n}$  is normal and by theorem (2-5)

We have  $\|(W_{f,\varphi}^n)^* K_{\beta}\| = \|(W_{f,\varphi}^n) \cdot K_{\beta}\| = \|(W_{f,\varphi}^n)^n K_{\beta}\| = 0$ 

 $T_{f}$   $(f \circ \varphi) \cdot (f \circ \varphi_2) \cdot \dots (f \circ \varphi_{n-1}) \cdot C_{\varphi_n} = \emptyset$ 

Since  $C_{\varphi_n} \neq 0$  then  $f(f \circ \varphi_1) \cdot (f \circ \varphi_2) \cdot \dots \cdot (f \circ \varphi_{n-1}) = 0$ 

it follows that either f=0 or  $(f \circ \varphi_1)$  ... or  $(f \circ \varphi_{n-1})$  on non-empty open sub set  $\varphi(U)$  or  $\varphi(\varphi(U))$  .... Or  $\varphi(\varphi_{n-2}(U))$  but  $\varphi$  is non-constant function on U

hence by open mapping theorem we have either f=0 or f never vanishes on U

### Proposition: (3-7)

Suppose  $W_{f,\varphi}$  is n-normal. If  $\varphi$  is non-constant holomorphic self-map on U and f is not zero function then  $\varphi$  is univalent

### Proof:

suppose  $\varphi$  is not univalent on  $\cup$  then there exists  $a,b\in U$  such that  $a\neq b$  and  $\varphi(a)=\varphi(b)$ 

Since  $f \neq 0$  then from proposition(3-6) we have  $f(a) \neq 0$  and  $f(b) \neq 0$ 

# Al-Qadisiyha Journal For Science

Vol.20 No. 4 Year 2015

Let  $g = \frac{K_a}{\overline{f(a)}} - \frac{K_{||}}{\overline{f(b)}}$  be non-zero function on  $H^2$ 

$$W_{f,\varphi}^* g = W_{f,\varphi}^* \left( \frac{I_{|\alpha|}}{f(\alpha)} - \frac{K_b}{f(\alpha)} \right)$$

$$= \frac{1}{f(\alpha)} \prod_{\varphi} K_a - \frac{1}{f(\alpha)} M_{\varphi}^* K_b$$

$$= \frac{1}{f(\alpha)} \overline{f(1)} K_{\varphi(\alpha)} - \frac{1}{f(\alpha)} \overline{f(1)} K_{\varphi(b)}$$

$$= K_{\varphi(\alpha)} - K_{\varphi(b)}$$

$$= \frac{1}{1 - \overline{\varphi(\alpha)}(z)} - \frac{1}{1 - \overline{\varphi(\alpha)}(z)} = 0$$
since  $\varphi(a) = \varphi(b)$ 

We have  $W_{f,\varphi}^{\phantom{f}*}g=0$ 

Since  $W_{f,\varphi}$  is n-normal then  $W_{f,\varphi}^{\quad n}$  is normal

Then 
$$\|(W_{f,\varphi}^n) g\| = \|(W_{f,\varphi}^n)^*g\| = \|(W_{f,\varphi}^n)^ng\| = 0$$

If 
$$\|(W_{f,\varphi}^n) g\| = 0$$
 we have  $(W_{f,\varphi}^n) g = 0$ 

Then 
$$T_{f \dots (f \ o\varphi \ ) \dots (f \ o\varphi_2) \dots (f \ o\varphi_{n-1})}.C_{\varphi_n}g=0$$
 
$$f(z) \dots (f \ (\varphi(z \ )) \dots (f \ (\varphi_2(z)) \dots (f \ (\varphi_{n-1}(z) \ go\varphi_n(z) \dots (g \ (\varphi_{n-1}(z) \ go\varphi_n(z) \dots (g \ (\varphi_n(z) \ ) \dots (g \ (\varphi_n(z) \$$

Since  $f \neq 0$ 

Then 
$$f(z) \neq 0$$
,  $f(\varphi(z)) \neq 0$  ,... and  $f(\varphi_{n-1}(z)) \neq 0$ 

We have  $g(\varphi_n(z)) = 0$ 

Since  $\varphi$  is non-constant then  $\varphi_n$  is non-constant

Since  $\varphi(U) \subseteq U$  and  $\varphi(U)$  is open in U by open mapping theorem we have

$$g(\varphi_n(z)) = 0 \quad \forall z \in U$$

Then g=0 which is contradiction

Then  $\varphi$  is univalent

### Proposition: (3-8)

If  $W_{f,\varphi}$  be n-unitary then  $\varphi$  is an automorphism of U.

### **Proof**:

Suppose  $W_{f,\varphi}$  be n-unitary then  $W_{f,\varphi}$  is norm preserving i.e  $\|W_{f,\varphi}g\| = \|g\|$ 

Let g(z)=1

$$\left\| \left( W_{f,\varphi}^n \right) \ g \right\| = \left\| \left( W_{f,\varphi}^n \right) \ 1 \right\| = \left\| 1 \right\| = 1$$

$$\begin{split} \left\| T_{f} \right\|_{.(f \ o\varphi \ ).(f \ o\varphi_2)....(f \ o\varphi_{n-1}).} C_{\varphi_n} 1 \right\| &= 1 \\ & \quad \left\| f \right\|_{.(f \ o\varphi \ ).(f \ o\varphi_2)....(f \ o\varphi_{n-1})} = 1 \end{split}$$

Again let glz)=z, ||g|| = 1

$$1 = \|g\| = \left\| \left( W_{f,\varphi}^n \right) \ g \right\|$$

$$= \left\| T_{f} \right\|_{(f = o\varphi), (f = o\varphi_2), \dots (f = o\varphi_{n-1}), \mathcal{C}_{\varphi_n} g \right\|$$

$$= \|f \cdot (f \cdot o\varphi \cdot) \cdot (f \cdot o\varphi_2) \cdot \dots (f \cdot o\varphi_{n-1}) \cdot go\varphi_n\|$$

$$= \|f \cdot (f \circ \varphi) \cdot (f \circ \varphi_2) \cdot \dots (f \circ \varphi_{n-1}) \cdot g(\varphi_n) \|$$

$$= \|f \cdot (f \cdot o\varphi \cdot) \cdot (f \cdot o\varphi_2) \cdot \dots (f \cdot o\varphi_{n-1}) \cdot \varphi_n\|$$

Since 
$$|\varphi_n(e^{it})| \le 1$$
 a.e  $t \in [0,2\pi]$ 

And both

$$\|f\cdot (f \circ \varphi \circ) \cdot (f \circ \varphi_2) \cdot \dots (f \circ \varphi_{n-1})\| = 1 \ and$$

$$||f \cdot (f \circ \varphi) \cdot (f \circ \varphi_2) \cdot \dots (f \circ \varphi_{n-1}) \cdot \varphi_n||$$
  
= 1

$$\left| \varphi_n(e^{it}) \right| = 1$$
 a.e on U

then  $\varphi_n$  is inner function and from proposition ( ) then  $\varphi_n$  is automorphism

hance 
$$\varphi_n(z) = \gamma \alpha_p(z)$$

$$\varphi(\varphi_{n-1}(z)) = \gamma \alpha_n(z)$$

 $\varphi$  is automorphism

### Proposition: (3-9)

Suppose  $\varphi(\beta)=0$  for some  $\beta\in U$  ,if  $W_{f,\varphi}$  be n-unitary then

$$f \cdot (f \cdot o\varphi \cdot) \cdot (f \cdot o\varphi_2) \cdot \dots \cdot (f \cdot o\varphi_{n-1}) = \frac{\left| \frac{|f|}{|f|} \right|}{\left| |K_{\beta}| \right|}$$

$$= \frac{K_{\beta}}{\|K_{\beta}\|}$$

### Proof:

let Wen is n-unitary

Then 
$$W_{\rho} W_{f,\varphi}^* K_{\beta} = K_{\beta}$$

$$W_{f,\varphi}^n \overline{M} K_{\varphi(\beta)} = K_{\beta}$$

Since 
$$W_{f,\varphi}^n$$
 then
$$W_{f,\varphi}^n = K_{\beta} \text{ and we have } W_{f,\varphi}^n$$

$$= K_{\beta}$$

$$\overline{\beta}$$
.  $f$  .  $(f \circ \varphi)$  .  $(f \circ \varphi_2)$ . ...  $(f \circ \varphi_{n-1})C_{\varphi_n}1$ 

Hence

$$f$$
 .  $(f \circ \varphi)$  .  $(f \circ \varphi_2)$  . ...  $(f \circ \varphi_{n-1}) = \frac{1}{2} \left( \frac{1}{2} \right)^{n-1}$ 

### Proposition: (3-10)

 $H^{1}$  if and only if  $arphi_n$  is an autonomometric orbits of  $H^{2}$  if and only if  $arphi_n$  is an

$$\frac{(1-|\alpha|^2)-\beta(1-\overline{\alpha})z}{[(1-\overline{\rho}\overline{\alpha}\omega)]-(\overline{\beta}-\overline{\rho}\overline{\alpha}\omega)z]^2}] = \frac{(1-|\alpha|^2)}{[(1-\overline{\alpha}\rho z)[(1-|\overline{\beta})-\overline{\rho}(\overline{\alpha}-\overline{\beta})z]}$$

### **Proof:**

Suppose  $W_{f,\varphi}$  is n-unitary

Then by Proposition (3-8)  $\varphi_n$  must be an automorphism and by Proposition (3-9)

$$f$$
 .  $(f \circ \varphi)$  .  $(f \circ \varphi_2)$  . ...  $(f \circ \varphi_{n-1}) = \frac{\varphi_n}{2}$ 

### Conversely

Since 
$$\varphi_n$$
 is an automorphism ,  $\varphi_n = \omega \frac{\beta - z}{1 - \overline{\beta} z}$  ,  $|\omega| = 1$  for some  $\omega \in \partial U, \beta \in U$ 

Then 
$$\varphi$$
 must be automorphism  $\varphi=\rho\frac{\alpha-z}{1-\overline{\alpha}z}$  ,  $|\rho|=1$  for some  $\rho\in\partial U, \alpha\in U$ 

where the Cowen auxiliary functions g,  $\sigma$  and h of are  $\varphi$ 

$$\sigma(\omega) = \frac{\alpha - \overline{\rho}z}{1 - \overline{\rho}\overline{\alpha}z} = \varphi^{-1}(z), \quad g(z) = \frac{1}{1 - \overline{\rho}\overline{\alpha}z} \quad and \quad h(z) = 1 - \overline{\alpha}z.$$

$$C_{\varphi}^* = T_g C_{\sigma} T_h^*$$

$$W_{f,\varphi}^{n}W_{f,\varphi}^{*}$$

$$= T_{f} \cdot (f \circ \varphi) \cdot (f \circ \varphi_{2}) \cdot \dots (f \circ \varphi_{n-1}) \cdot C_{\varphi_{n}}C_{\varphi}^{*}T_{f}^{*}$$

$$=$$

$$T_f$$
 .(f  $o\varphi$  ).(f  $o\varphi_2$ )...(f  $o\varphi_{n-1}$ ). $C_{\varphi_n}T_gC_{\sigma}T_h^*T_f^*$ 

$$=$$

$$T_f$$
 .( $f$   $o\varphi$  ).( $f$   $o\varphi_2$ )...( $f$   $o\varphi_{n-1}$ ). $C_{\varphi_n}T_{\bar{g}}C_{\sigma}$   $T_{\bar{h}}T_{\bar{f}}$ 

$$T_f$$
 .(f o\varphi ).(f o\varphi\_2)...(f o\varphi\_{n-1}). $T_g \circ arphi_n C_{arphi_n} C_{\sigma} T_{\overline{hf}}$ 

$$=T_{f-.(f-o\varphi^-).(f-o\varphi_2)...(f-o\varphi_{n-1}).}T_{go\varphi_n}C_{\sigma o\varphi_n}T_{[][\overline{f}]}$$

$$=T_{f-.(f-o\varphi-).(f-o\varphi_2)...(f-o\varphi_{n-1}).}T_{go\varphi_n}T_{info\sigma o\varphi_n}\mathcal{C}_{\sigma o\varphi_n}$$

$$= T_f \quad (f \quad o\varphi \quad) (f \quad o\varphi_2) ... (f \quad o\varphi_{n-1}) .T_{(g\partial \varphi_n)} (\overline{hf}_{\text{thermodyn}}) \quad \mathcal{C}_{\sigma o\varphi_n}$$

$$=f.(f \circ \varphi).(f \circ \varphi_2)...(f \circ \varphi_{n-1}).(g \circ \varphi_n). \qquad f \circ \sigma \circ \varphi_n).\mathcal{C}_{\sigma \circ \varphi_n}$$

$$\begin{array}{l} W_{f,\varphi}^*W_{f,\varphi}^n \\ = C_{\varphi}^*T_f^*T_f \ .(f \ o\varphi \ ).(f \ o\varphi_2)...(f \ o\varphi_{n-1}).C_{\varphi_n} \end{array}$$

$$=T_gC_\sigma\;T_{\overline{h}}T_{\overline{f}}T_{f}\;\;{}_{.(f\ o\varphi\ ).(f\ o\varphi_2)....(f\ o\varphi_{n-1}).}C_{\varphi_n}$$

$$=T_gC_\sigma\ T_{\widetilde{\psi}\widetilde{f}f}\ .(f\ o\varphi\ ).(f\ o\varphi_2)...(f\ o\varphi_{n-1}).C_{\varphi_n}$$

$$= T_g T_{(\widetilde{l} \mid \widetilde{f}f \mid .(f \mid o\varphi \mid).(f \mid o\varphi_2)....(f \mid o\varphi_{n-1}))o\sigma}.\mathcal{C}_{\sigma} \; \mathcal{C}_{\varphi_n}$$

$$=T_{g_{n-1}}(f\circ \phi)\cdot (f\circ \phi_2)\cdot (f\circ \phi_{n-1})\circ \sigma]\cdot \mathcal{C}_{\varphi_n\circ \sigma}$$

$$=g.(\overline{\text{locall}}). (f.(f.\sigma\varphi).(f.\sigma\varphi_2)...(f.\sigma\varphi_{n-1})) \sigma\sigma \mathcal{C}_{\varphi_n\sigma\sigma}$$

We have

$$\frac{g_{n}\varphi_{n}(z) = g(\varphi_{n}(\omega)) = \frac{1}{1 - \overline{\rho}\overline{\alpha}\varphi_{n}(z)} = \frac{1}{K_{\beta} \left[ (1 - \overline{\rho}\overline{\alpha}\omega\beta) - (\overline{\beta} - \overline{\rho}\overline{\alpha}\omega)z \right]},$$

$$\sigma o q_n(z) = \sigma(\omega_n(z)) \approx \frac{\alpha - \omega_n(z)}{1 - \omega_n(z)} = \frac{(\alpha - \overline{\mu}\omega\beta) - (\overline{\beta} - \omega)z}{(1 - \omega_n(z)) - (\overline{\beta} - \omega_n(z))z},$$

$$= nj'(\sigma o \varphi_n(z)) = \frac{\overline{f \sigma o \varphi_n(z)}}{\kappa_{\alpha} (\sigma o \varphi_n(z))},$$

$$= \overline{a} \left[ \frac{(\alpha + \overline{a} \omega \beta) - (\overline{\beta} - \omega \delta)z}{(1 - \overline{a} \overline{a} \omega \beta) - (\overline{\beta} - \omega \delta)z} \right]$$

$$\frac{1-|\alpha|^2-|(1-\overline{\alpha})\overline{\beta}-(\overline{\alpha}-\overline{\rho}\overline{\alpha})\omega]z}{f(\alpha)(1-\overline{\rho}\overline{\alpha})(1-\overline{\alpha})(\overline{\beta}-|(\overline{\alpha}-\overline{\rho}\overline{\alpha})\omega)z}])$$

$$g. (\overline{hfo\sigma})(z) = \frac{\overline{foc(z)}}{\|K_{\alpha}\|^{2}(1 - \overline{\mu})(1 - \overline{\mu})(1 - \overline{\mu})}$$

$$=\frac{(1 | (f \circ \varphi) \cdot (f \circ \varphi_2) \cdot \dots (f \circ \varphi_{n-1})) \circ \sigma(z)}{(1 - \overline{\rho} \overline{\alpha} z)}$$

$$=\frac{(1 - \overline{\rho} \overline{\alpha} z)}{[(1 - \alpha \overline{\beta}) - \overline{\rho} (\overline{\alpha} - \overline{\beta}) z]}$$

Hererett

$$= \frac{\overline{f(\sigma \circ \varphi_n)}}{\overline{f(\beta)}} \left[ \frac{(1 + |\alpha|^2) - \beta(1 + |\alpha|^2)z}{[(1 - |\alpha| \bar{\omega} \omega \beta) - (\bar{\beta} - |\alpha| \bar{\omega} \omega)z]^2} \right] C_{\sigma \circ \varphi_n} = I$$

Then  $W_{f,\varphi}$  is n-unitary if and only if

$$\frac{(1-|\alpha|^2)-\beta(1-\overline{\alpha})z}{[(1-\overline{\rho}\overline{\alpha}\omega)+]-(\overline{\beta}-\overline{\rho}\overline{\alpha}\omega)z]^2} = \frac{(1-|\alpha|^2)}{[(1-\overline{\alpha}\rho z)[(1-|\overline{\alpha}|^2)-\overline{\rho}(\overline{\alpha}-\overline{\beta})z]}$$

### Proposition: (3-11)

Suppose  $\varphi(t)=t$  for some  $t\in U$  and f is a linear fractional if  $W_{f,\varphi}$  is n-normal, then

$$f \cdot (f \cdot o\varphi \cdot) \cdot (f \cdot o\varphi_2) \cdot \dots \cdot (f \cdot o\varphi_{n-1})$$

$$= \frac{(f(t))^n K_t}{K_t(\varphi_n)}$$

### **Proof:**

Suppose that  $W_{f, \varphi}$  is n-normal  $W_{f, \varphi}^n$  is normal

$$(W_{f,\varphi}^n)^* K_t = (W_{f,\varphi}^*(K_t))^n : \overline{f(t)})^n K_t$$

Hence  $K_t$  is an eigenvector  $(W_{f,\varphi}^n)^*$  with corresponding eigenvalue  $(\overline{f_{f,\varphi}})^n$ , since  $W_{f,\varphi}^n$  is normal and by theorem (2-or we have  $K_t$  is an eigenvector for  $(W_{f,\varphi}^n)$  with corresponding eigenvalue  $(f(t))^n$ 

$$W_{f,\varphi}^n K_t = (f(t))^n K_t$$

$$T_{f . (f o\varphi).(f o\varphi_2)...(f o\varphi_{n-1}).}C_{\varphi_n}K_t$$

$$= (f(t))^nK_t$$

$$f$$
 .   
 (f  $o\varphi$  ).   
 (f  $o\varphi_2).\dots(f \ o\varphi_{n-1}).$    
 C\_{\varphi\_n}K\_t =  $(f(t))^nK_t$ 

$$f$$
 .  $(f$   $o\varphi$  ).  $(f$   $o\varphi_2)$ . ...  $(f$   $o\varphi_{n-1})$ .  $K_t(\varphi_n) = (f(t))^n K_t$  then we have

$$f \cdot (f \circ \varphi) \cdot (f \circ \varphi_2) \cdot \dots (f \circ \varphi_{n-1})$$

$$= \frac{(f(t))^n K_t}{K_t(\varphi_n)}$$

### **Corollary** : (3-12)

Suppose  $\varphi(0)=0$  then  $W_{f,\varphi}$  is n-normal if and only if f is constant and  $C_{\varphi}$  is n-normal.

**Notation (3-13)** Let We denote to the form  $f(f, g, g) = (f(g, g), \dots (f(g, g)) = (f(g, g), \dots (f(g, g)))$  by  $\xi$ 

### Proposition: (3-14)

Suppose  $\varphi(t)=t$  for some  $t\in U$  then  $W_{f,\varphi}$  is n-normal if and only if  $\varphi_n=\alpha_t o(\gamma\alpha_t)$  and  $\xi=\frac{(f(t))^n K_t}{K_t(\varphi_n)}$  where  $\alpha_t=\frac{t-z}{1-\bar{t}z}$ 

### Proof:

Suppose that  $W_{f,\varphi}$  is n-normal and let  $\xi_t = \frac{1}{\Gamma(t)}$ , since  $\alpha_t$  is an automorphism then by proposition (3-10)  $W_{\xi_t,\alpha_t}$  is n-unitary and by theorem (2-10) the operator  $P = (W^*_{\xi_t,\alpha_t})(W^n_{f,\varphi})(W_{\xi_t,\alpha_t})$ 

is n-normal.

Let the Cowen auxiliary functions g,  $\sigma$  and h of  $\alpha_t$  are

$$\sigma(z) = \frac{t-z}{1-\bar{t}z} = \alpha_t^{-1}(z) = \alpha_t(z), \quad g(z) = \frac{1}{1-\bar{t}z} \quad and \quad h(z) = 1 - \bar{t}z.$$

$$P = (W^*_{\xi_t,\alpha_t})(W^n_{f,\omega})(W_{\xi_t,\alpha_t})$$

$$= \\ C_{\alpha_t}^* T_{\xi_t}^* T_{f_{-},(f_{-}} \circ \varphi_{-}).(f_{-} \circ \varphi_2)...(f_{-} \circ \varphi_{n-1}).C_{\varphi_n} T_{\xi_t} C_{\alpha_t} \\ = T_g \ C_{\alpha_t} T_h^* T_{\xi_t}^* T_{f_{-},(f_{-}} \circ \varphi_{-}).(f_{-} \circ \varphi_2)....(f_{-} \circ \varphi_{n-1}).C_{\varphi_n} T_{\xi_t} C_{\alpha_t} \\ = T_g \ C_{\alpha_t} T_{\frac{1}{f(t)}} T_{f_{-},(f_{-}} \circ \varphi_{-}).(f_{-} \circ \varphi_2)....(f_{-} \circ \varphi_{n-1}).C_{\varphi_n} T_{\xi_t} C_{\alpha_t} \\$$

 $=T_{g(\frac{1}{f(t)}),(f-(f-o\varphi_-),(f-o\varphi_2),\dots(f-o\varphi_{n-1}))o\alpha_t),(\xi_to\varphi_no\alpha_t)} \ \ C_{\alpha_to\varphi_no\alpha_t}$ 

Let

$$f = g.\left(\frac{1}{f(t)}\right).(f \cdot (f \circ \varphi) \cdot (f \circ \varphi_2)...(f \circ \varphi_{n-1}))o\alpha_t).(\xi_t \circ \varphi_n \circ \alpha_t)$$

Since  $\alpha_t o \varphi_n o \alpha_t(0) = 0$  and  $P = W_{j,\alpha_t o \varphi_n o \alpha_t}$  then by corollary (3-12) j is a constant map and the composition operator  $C_{\alpha_t o \varphi_n o \alpha_t}$  is n-normal and by proposition (3-2)

 $\alpha_t o \varphi_n o \alpha_t = \gamma z$ ,  $|\gamma| \le 1$  so  $\varphi_n = \alpha_t o(\gamma \alpha_t)$ . we can see that  $j = \xi(t)$ .

Conversely suppose  $\varphi_n=\alpha_t o(\gamma \alpha_t)$  and  $\xi=rac{(f(t))^n \chi_t}{\kappa_t(\varphi_n)}$ 

$$\begin{split} \varphi_n(z) &= \alpha_t \big(\gamma \alpha_t(z)\big) = \frac{t(1-\gamma) - \big(|p,^2-\gamma\big)z}{1-|p|^2\gamma - \bar{t}(1-\gamma)z} \\ \text{and} \quad \xi &= \frac{(f(t))^n K_t}{K_t(\varphi_n)} = \frac{1-|p|^2}{1-|p|^2\gamma - \bar{t}(1-\gamma)z} \end{split}$$

Since  $C_{\gamma Z}$  is n-normal and W  $\xi_{t}, \alpha_{t}$  is n-unitary , we have

$$\begin{split} W \quad _{\xi_t,\alpha_t} C_{\gamma z} W^*_{\xi_t,\alpha_t} &= T_{\xi_t} C_{\alpha_t} C_{\gamma z} C^*_{\alpha_t} T^*_{\xi_t} \\ &= T_{\xi_t} C_{\alpha_t} C_{\gamma z} T_g C_{\alpha_t} \mathbb{I}^*_{\mathbb{I}^*_t} T^*_{\xi_t} \\ &= T_{\xi_t} C_{\alpha_t} C_{\gamma z} T_g C_{\alpha_t} \mathbb{I}^*_{\mathbb{I}^*_t} \frac{K_t}{\|K_t\|} \end{split}$$

$$= \frac{1}{\|K_t\|} \cdot T_{\xi_t} T_{go(\gamma zo\alpha_t)} \quad C_{(\alpha_t o \gamma zo\alpha_t)}.$$

$$= \frac{K_t}{\|K_t\|^2} . go(\gamma \alpha_t) C_{(\alpha_t o(\gamma \alpha_t))}$$

If we substituting  $g\big(\gamma\alpha_t(z)\big)=rac{1-ar{p}z}{1-|p|^2\gamma-ar{t}(1-\gamma)z}$ ,  $\varphi_n(z)=lpha_t\big(\gamma\alpha_t(z)\big)=rac{t(1-\gamma)-\big(|p|^2-\gamma\big)z}{1-|p|^2\gamma-ar{t}(1-\gamma)z}$  and

$$\xi=\frac{(f(t))^nK_t}{K_t(\varphi_n)}=\frac{1-|p|^2}{1-|p|^2\gamma-\bar{t}(1-\gamma)z}\quad\text{in the last formula we obtain that}$$

 $W_{\xi_t,\alpha_t}C_{\gamma z}W^*_{\xi_t,\alpha_t}$  is similar to $W_{f,\varphi}$  then by proposition (2-10)  $W_{f,\varphi}$  is n-normal .

Proposition: (3-15)

Let  $\varphi(z)=rac{az+b}{cz+d}$  be a linear fractional self map and  $f(z)=K_{\sigma(0)}(z)=rac{a}{cz+a}$  then  $W_{f,\varphi}$  is n-normal if and only if  $rac{1}{-ar{b}z+d}\left(\xi o\sigma\right)_{\cdot}C_{\varphi_n o\sigma}=rac{r+sz}{(rd-ar{b}m)+(sd-ar{b}r)z}$ .  $\xi$ .  $C_{\varphi_n o\sigma}$ 

### Proof:

Suppose the Cowen auxiliary functions g,  $\sigma$  and h of are  $\varphi$  then

$$\begin{array}{ll} W_{f,\varphi}^n W_{f,\varphi}^* \\ = f \cdot (f \ o\varphi \ ).(f \ o\varphi_2)....(f \ o\varphi_{n-1}).(go\varphi_n). \end{array} \\ \overline{f}o\sigma o\varphi_n).\mathcal{C}_{\sigma o\varphi_n} \\ \end{array}$$

### And

$$W_{f,\varphi}^*V_{h,p}$$
  $(f \cdot (f \circ \varphi_1) \cdot \dots (f \circ \varphi_{n-1})) \circ \sigma C_{\varphi_n \circ \sigma}$ 

$$\overline{(hf} \circ \sigma \circ \varphi_n)(z) = \overline{(hf} \circ \sigma)(\varphi_n(z)) = \overline{h}(\sigma(\varphi_n(z)).\overline{f}(\sigma(\varphi_n(z))) = \overline{d}$$

$$(\overline{b}m) = \frac{7}{(1+1)(-\overline{b}m)}$$

$$(hf_{0}) = \overline{(ho\sigma)}(z). \overline{(foo)} = \overline{d}$$

$$g_{\bar{z}}(hfc\sigma)(z)_{\bar{z}} = \frac{\bar{d}}{-\bar{b}z+d}$$
 then we have

$$\begin{split} &\frac{1}{-\bar{b}z+d}(\xi o\sigma).C_{\varphi_n o\sigma} \\ &= \frac{r+sz}{\left(rd-\bar{b}m\right)+\left(sd-\bar{b}r\right)z}.\xi.C_{\varphi_n o\sigma} \end{split}$$

# [3] E.H.Al-Janabi, "The composition operator on Hardy space $H^2$ ", M.Sc. Thesis, University of Baghdad, (1996).

- [4] J.A .Deddnes., "Analytic Toeplitz and Composition Operators", Con. J. Math., vol(5), pp. 859-865, (1972).
- [5] J.H Shapiro, "Composition Operators and Classical Function Theory", Springer-Verlage, New York, (1993).
- [6] M.J. Appell, ,Bourdon, P.S. & Thrall,J.J., "Norms of Composition Operators on the Hardy Space", Experimented Math., pp. 111-117, (1996).
- [7] P.L.Duren, "Theory of H<sup>P</sup> Space", Academic press, New York, (1970)
- [8] S.A.Alzuraiqi and A.B.Pate ,"On n-Normal Operators", General Math. Notes, Vol. 1, No. 2, pp. 61-73, (2010)
- [9] S.K.Berberian, "Introduction to Hilbert Space", Sec. Ed., chelesa publishing Com., New York, N.Y., (1976).

### References

- [1] C.C.Cowen,"Linear fractional composition operator on $H^2$  ".Integral Equations Operator theory 11,151-160(1988).
- [2] C.C.Cowen and E.Ko,"Hermitian weighted composition operator on  $H^2$ ", Trans.Amer.Math.Soc.135(2007)

# Al-Qadisiyha Journal For Science Vol.20 No. 4 Year 2015

\*المؤثر التركيبي الموزون السوي-n والمؤثر التركيبي الموزون الوحدوي -nعلى فضاء هاردي تاريخ التركيبي المؤزون الستلام: 2015\9\13:

 ایمان حسن عبود
 الاء حسین محمد

 جامعة بغداد
 جامعة بغداد

 کلیة العلوم
 کلیة العلوم

قسم الرياضيات قسم الرياضيات

alaahma@yahoo.com

## الخلاصة

في هذا البحث قمنا بتعريف على فضاء هاردي -nالمؤثر التركيبي الموزون الوحدوي-n المؤثر التركيبي الموزون السوي وبرهان بعض الخواص والمبرهنات الخاصة بهما

الكلمات المفتاحية: المؤثر التركيبي المؤثر التركيبي الموزون المؤثر السوي فضاء هاردي

Math. Sub. classifications:QA299.6-433

<sup>\*</sup> The Research is a part of M.Sc. thesis in case of the Second researcher