Centralizing Higher Left Centralizers On Prime Rings

Receved :1/11/2015

Accepted :5/1/2016

Salah M. Salih	Mazen O. Karim
Department Of mathematics	Department Of mathematics
College of Educations	College Of Educations
Al-Mustansiriya University	Al-Qadisiyah University
2	-

Dr.salahms2014@gmail.com

mazin792002@yahoo.com

Abstract :

In this paper we study the commutativity of prime rings satisfying certain identities involving higher left centralizer on it.

Math. Classification QAISO -27205

Key words: prime rings, higher left centralizer

1.Introduction :

Throughout this paper *R* is denote to an associative ring and it is center will denoted by Z(R) which equal to the set of all elements $x \in R$ such that xy = yx for all $y \in R$.

Now for any $x, y \in R$, the symbols [x, y] and $\langle x, y \rangle$ will denoted to xy - yx and xy + yx respectively which are called commutator(Lie product) and anti- commutator (Jordan product) respectively .[1],[2]. A ring *R* is called commutative if [x, y] = 0 for all $x, y \in R$.

The above commutator and anti- commutator

satisfies the following[1],[2]:

1)
$$[xy,z] = [x,z] \quad y + x[y,z]
2)
$$[x,yz] = y[x,z] + [x,y] \quad z
3) \langle x,yz \rangle = \langle x,y \rangle \quad z - y[x,z]
= y \langle x,y \rangle + [x,y] \quad z$$$$

3)
$$\langle xy, z \rangle = x \langle y, z \rangle - [x, z] y$$

= $\langle x, z \rangle y + x[y, z]$

A ring *R* is called prime if $xRy = \{0\}$ implies that x = 0 or y = 0 and it is called semi-prime if $xRx = \{0\}$ implies that x = 0[3].

An additive mapping $F: R \to R$ is called centralizing on asubset *S* of ring *R* if $[F(x), x] \in Z(R)$ and it is called commuting if [F(x), x] = 0 for all $x \in S[4], [5]$.

An additive mapping $T: R \to R$ is called left(right) centralizer on a ring R if T(xy) =T(x)y (T(xy) = xT(y)) holds for all $x, y \in$ R[6].

Many authors covers the concept of left centralizer and study the relation between the commutativity of ring and left centralizers.

K.K.Dey and A.C. Paul in [7] study the commutativety of Γ - ring in which satisfying certain identities involving left centralizers .

In this paper, we obtain the commutativity of a ring satisfying certain identities involving higher left centralizers on ring R, this work motivated from the work of K.K.Dey and A.C.Paul [7].

We generalized the definition of higher k- left centralizer on a Γ -ring [8] into a higher left centralizer on a ring *R* by taking k as the identity automorphism as the following

Definition 1.1 : let *R* be a ring and let $T = (T_i)_{i \in N}$ be a family of left centralizers on *R*. then $T_n: R \to R$ is called higher left centralizer on *R* if

$$T_n(xy) = \sum_{i=1}^n T_i(x)y$$

holds for all $x, y \in R$.

2. Commutativity of prime gamma rings : :

in this section we study the commutativity of the ring R by using higher left centralizer on it .

<u>Theorem 2.1</u> : let *R* be a prime ring and *I* be anon –zero ideal of *R*. suppose that *R* admits a family of non – zero higher left centeralizers T = $(T_i)_{i \in n}$ such that $\sum_{i=1}^{n} T_i(x) \neq x$ for all $x \in I$ and $i \in N$. if $T_n([x, y] - [x, y] = 0$ for all $x, y \in I$ then *R* is commutative .

<u>Proof</u>: Given that $T = (T_i)_{i \in N}$ afamily of left centralizens of *R* such that.

$$T_n([x, y]) - [x, y] = 0$$

.....(1)

for all $x, y \in I$.

Then $T_n(xy - yx) - (xy - yx) = 0$

So that

$$\left(\sum_{i=1}^{n} T_{i}(x)y - \sum_{i=1}^{n} T_{i}(y)x\right) - (xy - yx) = 0$$

Which leads to

 $(\sum_{i=i}^{n} T_{i}(x) - x) y - \sum_{i=1}^{n} T_{i}(y) - y)x = 0$(2)

Replace x by xr in (2) we get

$$(\sum_{i=i}^{n} T_{i}(xr) - xr) y - \sum_{i=1}^{n} T_{i}(y) - y) xr = 0$$

Hence

$$(\sum_{i=1}^{n} T_i(x) - x) ry - (\sum_{i=1}^{n} T_i(y) - y) xr = 0$$
(3)

For all $x, y \in I$, $r \in R$

Using (2) in (3) to simplify, we obtain

$$(\sum_{i=1}^{n} T_{i}(x) - x) [r, y] = 0$$

.....(4)

For all $x, y \in I$, $r \in R$.

Again replacing r by rs in (4)

 $(\sum_{i=1}^{n} T_i(x) - x) r [s, y] = 0$

For all $x, y \in I$ and $r, s \in R$

$$(\sum_{i=1}^{n} T_{i}(x) - x) R[s, y] = 0$$

for all $x, y \in I, s \in R$

by primness' of R and since $\sum_{i=i}^{n} (T_i(x) - x) \neq 0$

hence [s, y] = 0 for all $y \in I$, $s \in R$

there fore $I \subset Z(R)$ and hence *R* is commutative .

<u>Corollary 2.2</u>: In theorem 2.1, if the family T of higher left centralizers is zero then R is commutative

proof : suppose that $T_n ([x, y]) - [x, y] = 0$ for any $x, y \in I$

if $T_n = 0$ then [x, y] = 0 for all $x, y \in I$

There fore I is commutative hence R is commutative .

Theorem 2.3: let *R* be a prime ring and *I* be a non – zero ideal of *R* suppose that *R* admits a family T of non – zero higher left centralizer

 $T = (T_i)_{i \in N} \text{ such that } \sum_{i=1}^n T_i(x) \neq -x \text{ for all } x \in I \text{ and } i \in N, \text{ for ther if } T_n([x, y]) + [x, y] = 0 \text{ for all } x, y \in I, \text{ then } R \text{ is commutative }.$

<u>Proof</u>: Given that $T = (T_i)_{i \in N}$ is a family of higher left centralizers of R such that .

 $T_n([x, y]) + [x, y] = 0$ for all $x, y \in I$ (1)

Then

$$T_n(xy - yx) + (xy - yx) = 0$$

So that

 $(\sum_{i=1}^{n} T_{i}(x)y - \sum_{i=1}^{n} T_{i}(y)x) + (xy - yx) = 0$

Which leads to

 $(\sum_{i=1}^{n} T_{i}(x) + x) y - (\sum_{i=1}^{n} T_{i}(y) + y) x = 0$ (.2)

In (2) replace x by xr to get

$$(\sum_{i=1}^{n} T_i (xr) + xr) y - (\sum_{i=1}^{n} T_i (y) + y) xr = 0$$

Hence

$$(\sum_{i=1}^{n} T_{i}(x) + x)ry - (\sum_{i=1}^{n} T_{i}(y) + y)xr = 0$$
(.3)

For all $x, y \in I, r \in R$

Using (2) in (3) to simplify, we obtain

 $(\sum_{i=1}^{n} T_{i}(x) + x) \beta [r, y]_{\alpha} = 0$(4) For all $x, y \in I, r \in R$ Replace r by rs in (4) $(\sum_{i=1}^{n} T_{i}(x) + x) r [s, y] = 0$ For all $x, y \in I, r, s \in R$ in other words $(\sum_{i=1}^{n} T_{i}(x) + x) R[s, y] = 0$ For all $x, y \in I, s \in R$

By primness of R and since $\sum_{i=i}^{n} (T_i(x) + x) \neq 0$

we get [s, y] = 0 for all $y \in I$, $s \in R$

Therefore $I \subset Z(R)$ and hence *R* is commutative .

Theorem 2.4: - let *R* be a prime ring and *I* be anon – zero ideal of *R* . suppose that *R* adimits afamily of non – zero higher left centralizers . $T = (T_i)_{i \in n}$ such that $\sum_{i=1}^{n} T_i(x) \neq x$ for all $x \in I$ and $i \in N$, further if

$$T_n (\langle x, y \rangle) = \langle x, y \rangle$$

For all $x, y \in I$, then R is commutative.

Proof : - Given that

$$T_n (< x, y >) - < x, y > = 0$$

.....(1)

For all $x, y \in I$

This implies that

Replace x by xr in (2) we obtain.

 $(\sum_{i=1}^{n} T_i (xr) - xr) y + (\sum_{i=1}^{n} T_i (y) - y) xr = 0$

Hence

 $(\sum_{i=1}^{n} T_i(x) - x) ry - (\sum_{i=1}^{n} T_i(y) - y) xr = 0$ (3)

For all $x, y \in I, r \in R$

Using (2) in (3) we get

 $(\sum_{i=1}^{n} T_i(x) - x)ry + (\sum_{i=1}^{n} T_i(x) - x)yr = 0$ (4)

For all $x, y \in I, r \in R$

That is

$$(\sum_{i=1}^{n} T_{i}(x) - x)[r, y] = 0$$
.....(5)

For all $x, y \in I, r \in R$

Replace r by rs in (5) we get.

$$(\sum_{i=1}^{n} T_{i}(x) - x)r[s, y] = 0$$
.....(6)

For all $x, y \in I, r, s \in R$

i.e: $(\sum_{i=1}^{n} T_i(x) - x)R[s, y] = 0$

By primness of R and since $\sum_{i=1}^{n} (T_i(x) - x) \neq 0$

Then [s, y] = 0 for all $y \in I$

Hence $I \subset Z(R)$ there for *R* is commutative

Theorem 2.5 : - let *R* be a prime ring and *I* be anon – zero ideal of *R* . suppose that *R* adimits afamily of non – zero higher left centralizers . $T = (T_i)_{i \in N}$ such that $\sum_{i=1}^{n} T_i(x) \neq -x$ for all $x \in I$ and $i \in N$, further if

$$T_n (\langle x, y \rangle) + \langle x, y \rangle = 0$$

For all $x, y \in I$, then R is commutative

<u>Proof</u>: - Given that $T = (T_i)_{i \in N}$ be a family of non – zero higher left centralizers of *R* such that

 $T_n (< x, y >) + < x, y > = 0$(1)

For all $x, y \in I$.

Then

$$(\sum_{i=1}^{n} T_i (xy + yx)) + (xy + yx) = 0$$

H hence

. . .

$$\sum_{i=1}^{n} T_{i}(x)y + \sum_{i=1}^{n} T_{i}(y)x + (xy + yx) = 0$$
$$(\sum_{i=1}^{n} T_{i}(x) + x)y + (\sum_{i=1}^{n} T_{i}(y) + y)x) = 0$$
....(.2)

In the above relation eplace x by xr we obtain.

$$(\sum_{i=1}^{n} T_{i}(xr) + xr) y + (\sum_{i=1}^{n} T_{i}(y) + y)xr = 0$$

So we get

$$(\sum_{i=1}^{n} T_i(x) + x)ry + (\sum_{i=1}^{n} T_i(y) + y)xr = 0$$
(3)

For all $x, y \in I, r \in R$

Substitute (2) in (3) to get

$$(\sum_{i=1}^{n} T_i (x) + x)[r, y] = 0$$
.....(4)

For all $x, y \in I, r \in R$

Now again replace r by rs in (4) we have

$$\sum_{i=1}^{n} T_i(x) + x r[s, y] = 0$$
.....(5)

For all $x, y \in I$ and $r, s \in R$

i.e: $(\sum_{i=1}^{n} T_i(x) + x)R[s, y] = 0$

By primness of *R* and since $\sum_{i=1}^{n} (T_i(x) + x) \neq 0$

We have [s, y] = 0 for all $y \in I, s \in R$.

Hence $I \subset Z(R)$ there for *R* is commutative

Corollary 2.6: In theorem 2.4 and 2.5 if a higher left centralizers T_n is zero. then R is commutative.

<u>Proof</u> : For any $x, y \in I$, we have

 $T_n (< x, y > = < x, y >$

if $T_n = 0$ then $\langle x, y \rangle = 0$ for all $x, y \in I$

replace x by xz and using the fact

yx = -xy we conclude that

$$x[z, y] = \{0\}$$
 for all $x, y, z \in I$

In other words we have

IR[z, y] = 0 for all $y, z \in I$.

Since *R* is prime and $I \neq \{0\}$

So that [z, y] = 0 for all $y, z \in I$

then *I* is commutative and hence *R* is commutative . \blacksquare

Theorem 2.7 :- let *R* be a prime ring and *I* be anon zero ideal of *R* . suppose that *R* admits a family of non –zero higher left centralizers $T = (T_i)_{i \in N}$ such that $\sum_{i=1}^n T_i(x) \neq x$ for all $x \in I$ and for all $i \in N$, further if $T_n(xy) \neq (xy) = 0$ for all $x, y \in I$, then *R* is commutative.

proof :- for any $x, y \in I$ we have

$$T_n(xy) = (xy)$$

this implies that

$$T_n([x, y]) - ([x, y]) = 0$$

and hance by theorem 2.1 we have R is commutative

on the other hand if *R* is satisfy the condition $T_n(xy) + (xy) = 0$ for all $x, y \in I$.

then for any $x, y \in I$

we have $T_n(xy + yx) = -(xy + yx)$

So that $T_n(\langle x, y \rangle) + (\langle x, y \rangle) = 0$ for all

 $x, y \in I$.

Then by theorem 2.5 we have R is commutative

Corollary 2.8 : -let *R* be a prime ring and *I* be anon zero ideal of *R* . suppose that *R* admits a family of non –zero higher left centralizers $T = (T_i)_{i \in N}$ such that $\sum_{i=1}^n T_i(x) \neq \mp x$ for all $x \in I$ and for all $i \in N$, further if $T_n(xy) \mp (yx) = 0$ for all $x, y \in I$ then *R* is commutative.

<u>proof</u>: For any $x, y \in I$ we have $T_n(xy) \neq (yx) = 0$

now if $T_n(xy) = (yx)$ this implies that $T_n([x, y]) - ([y, x]) = T_n([x, y]) + ([x, y]) = 0$

then by theorem 2.5 we have R is commutative

Now when $T_n(xy) + (yx) = 0$ then $T_n([x, y]) + ([y, x]) = 0$

this implies that $T_n([x, y]) + ([x, y]) = 0$ and hance by theorem 2.1 we have *R* is commutative

<u>3.The main results:</u> in this section we introduce the main results of this paper

<u>Theorem 3.1:</u> let *R* be a prime ring and *I* be anon zero ideal of *R* . suppose that *R* admits a family of non –zero higher left centralizers $T = (T_i)_{i \in N}$ such that $\sum_{i=1}^{n} T_i(x) \neq x$ for all $x \in I$

and for all $i \in N$, then the following conditions are equivalent :

(i) (ii) $\begin{array}{l} T_n([x,y] \) - ([x,y] \) = 0 \quad \text{for all } x,y \in I \\ T_n([x,y] \) + ([x,y] \) = 0 \quad \text{for all } x,y \in I \\ (\text{iii}) \quad \text{for all } x,y \in I \ , \ \text{either } T_n([x,y] \) - \\ ([x,y] \) = 0 \quad \text{or} \\ T_n([x,y] \) + ([x,y] \) = 0 \\ (\text{iv}) \quad R \ \text{is commutative} \end{array}$

Proof :

(i) \rightarrow (iv) suppose that $T_n([x, y]) - ([x, y]) = 0$

Then by theorem 2.1 we have R is commutative

 $(iv) \rightarrow (i)$ suppose that *R* is commutative then [x, y] = 0

and hence $T_n([x, y]) - ([x, y]) = 0$

(ii) \rightarrow (iv) suppose that

$$T_n([x, y]) + ([x, y]) = 0$$

for all $x, y \in I$

Then by theorem 2.3 we have R is commutative

(iv) \rightarrow (ii) suppose that *R* is commutative then [x, y] = 0 for all $x, y \in I$

And hence -[x, y] = 0 for all $x, y \in I$

Which implies that $T_n([x, y]) - ([x, y]) = 0$ for all $x, y \in I$

(iii) \rightarrow (iv) suppose that for all $x, y \in I$ either $T_n([x, y]) - ([x, y]) = 0$ or

 $T_n([x, y]) + ([x, y]) = 0$

Then by theorem 2.1 or theorem 2.3 we have R is commutative

(iv) \rightarrow (iii) suppose that *R* is commutative

For each fixed $y \in I$ we set

$$I_{1} = \{x \in I | T_{n}([x, y] \) - ([x, y] \) = 0\}$$
$$I_{2} = \{x \in I | T_{n}([x, y] \) + ([x, y] \) = 0\}$$

Then I_1 and I_2 are additive subgroups of I such that $I = I_1 \cup I_2$.

But a group cannot be the set theoretic union of two proper subgroups , hance we have either

$$I_1 = I$$
 or $I_2 = I$

Further, using a similar argument, we obtain

 $I = \{y \in I | I_1 = I\} \text{ or } I = \{y \in I | I_2 = I\}$

Thus we obtain that either $T_n([x, y]) - ([x, y]) = 0$ for all $x, y \in I$

or $T_n([x, y]) + ([x, y]) = 0$ for all $x, y \in I$

Hence *R* is commutative in both cases by theorem 2.1 (respectively theorem 2.3) \blacksquare

Theorem 3.2 : :let *R* be a prime ring and *I* be anon zero ideal of *R* . suppose that *R* admits a family of non –zero higher left centralizers $T = (T_i)_{i \in N}$ such that $\sum_{i=1}^{n} T_i(x) \neq x$ for all $x \in I$ and for all $i \in N$, further if $T_n(xy) - (xy) \in Z(M)$ for all $x, y \in I$ then *R* is commutative .

<u>Proof</u> : for any $x, y \in I$ we have

$$T_n(xy) - (xy) \in Z(R)$$
.....(1)

This can be written as $\sum_{i=1}^{n} T_i(x)y - xy \in Z(R)$ for all $x, y \in I$ (2)

That is $[(\sum_{i=1}^{n} T_i(x) - x)y, r] = 0$ for all $x, y \in I, r \in \mathbb{R}$ (3)

Which implies that

Ι

 $\frac{(\sum_{i=1}^{n} T_{i}(x) - x)[y, r]}{(x, r)} + \frac{(\sum_{i=1}^{n} T_{i}$

for all $x, y \in I, r \in R$

in (4) replace x by xz, we have

for all $x, y, z \in I, r \in R$

from (3) we get that (5) becomes

 $(\sum_{i=1}^{n} T_i(x) - x) z[y, r] = 0 \quad \text{for all}$ $x, y, z \in I, r \in \mathbb{R}$.

This yields that

 $(\sum_{i=1}^{n} T_i(x) - x) RI[y, r] = \{0\}$ for all $x, y \in I, r \in R$

By primness of *R* implies that

 $I[y,r] = \{0\}$ or $\sum_{i=1}^{n} T_i(x) - x = 0$

and since $I \neq \{0\}$ and $\sum_{i=1}^{n} T_i(x) \neq x$ for all $x \in I$

we get that I is central and hence R is commutative \blacksquare

Theorem 3.3: let *R* be a prime ring and *I* be anon zero ideal of . suppose that *R* admits a family of non –zero higher left centralizers $T = (T_i)_{i \in N}$ such that $\sum_{i=1}^{n} T_i(x) \neq -x$ for all $x \in I$ and for all $i \in N$, further if $T_n(xy) - (xy) \in Z(M)$ for all $x, y \in I$, then *R* is commutative.

proof: suppose that $T = (T_i)_{i \in N}$ be a family of non –zero higher left centralizers satisfying the

property $T_n(xy) - (xy) \in Z(R)$ for all $x, y \in I$

then the non-zero higher left centralizers (-T) satisfies the condition

 $(-T_n)(xy) - (xy) \in Z(R)$ for all $x, y \in$

Hance by theorem 3.2 we have R is commutative .

<u>Remark 3.4</u>: in theorem 3.2 if the higher left centralizer is zero, then R is commutative.

Theorem 3.5: let *R* be a prime ring and *I* be anon zero ideal of *R*. suppose that *R* admits a family of non –zero higher left centralizers $T = (T_i)_{i \in N}$ such that $\sum_{i=1}^n T_i(x) \neq x$ for all $x \in I$ and for all $i \in N$, further if $T_n(xy) - (yx) \in Z(R)$ for all $x, y \in I$ then *R* is commutative.

<u>Proof</u>: we are given that a higher left centralizer of R such that

$$T_n(xy) - (yx) \in Z(R)$$

for all $x, y \in I$

this implies that

 $[T_n(xy) - (yx), r] = 0$(1)

holds for all $x, y \in I$, $r \in R$

which implies that

 $[\sum_{i=1}^{n} T_{i}(x)y - yx, r] = 0$(2)

for all $x, y \in I$, $r \in R$

replacing y by yx in the above relation and use it hence

$$[\sum_{i=1}^{n} T_i(x)yx - yx^2, r] = 0$$
.....(3)

for all $x, y \in I$, $r \in R$

we find that	If $I_1 = I$, then $[x, s] = 0$ for all $x \in I$, $s \in R$ and hence <i>R</i> is commutative.
$(\sum_{i=1}^{n} T_{i}(x)y - yx) [x, r] = 0$	On the other hand if $I_2 = I$ then
(4)	$\sum_{i=1}^{n} T_i(x)y = yx \text{for all for all } x, y \in I \ .$
for all $x, y \in I$, $r \in R$	That is $\sum_{i=1}^{n} T_i(x)y - yx = 0$ for all for
again replace r by rs in (4) to get	all $x, y \in I$
$\left(\sum_{i=1}^{n} T_{i}(x)y - yx\right) r[x,s]$	This implies that $T_n([x, y]) - ([x, y]) = 0$ for all for all $x, y \in I$.
$+(\sum_{i=1}^{n} T_{i}(x)y - yx)[x,r] s = 0$	Hence apply theorem 2.1 yields the required
(5)	result .
for all $x, y \in I$, $r, s \in R$	<u>References</u> :
From (4) the relation (5) becomes	1) Ali S., Basudeb D. and Khan M. S., 2014, " On Prime and Semiprime Rings with Additive
$(\sum_{i=1}^{n} T_i(x)y - yx) r[x, s] = 0$	Mappings and Derivations ", Universal Journal of Computational Mathematics
(6)	,Vol.2, No.3 ,48 -55 . 2) Ur-Rehman N. , 2002 , "On Commutativity
for all $x, y \in I$, $r, s \in R$	of Rings with Generalized Derivations ",
i.e.	 Math. J Okayama Univ., Vol.44, 43-49. 3) Vukman J., 1997, "Centralizers on Prime and
$(\sum_{i=1}^{n} T_i(x)y - yx) R[x,s] = 0$	Semiprime Rings ", Comment. Math. Univ. Caroline, Vol.38, No.2, 231-240.
for all $x, y \in I$, $s \in R$	4) Braser M. ,1993," Centralizing Mappings and Derivations in Prime Rings " ,Journal of
the primness of <i>R</i> implies that either $[x, s] = 0$ or $\sum_{i=1}^{n} T_i(x)y - yx = 0$	 Algebra ,Vol.156 ,385 -394 . 5) Vukman J. , 1990 ,"Commuting and Centralazing Mappings in Prime Rings",
for all $x, y \in I$, $s \in R$	Proceeding of the American Math. Society, Vol. 109, No.1, 47-52.
now put $I_1 =$ { $x \in I [x, s] = 0$ for all $s \in R$ }	 6) Ali S. and Dar N. A. , 2014," On Left Centralizers of Prime Rings with Involution " ,Palestine Journal of Mathematics, Vol.3, No.1, 505-511. 7) Dey K.K. and Paul A.C ,2014,"commutativity of prime gamma rings with left centralizers ", J. Sci.Res. ,Vol.6 ,No.1 , 69-77. 8) Salih S.M.,kamal A.M. and hamad B. M. , 2013, "Jordan higher K-centralizer on Γ-rings ,ISOR Jornal of Mathematics ,Vol.7 No.1 ,6- 14.
$I_{2} = \{x \in I \sum_{i=1}^{n} T_{i}(x)y - yx = 0 \text{ for all } x, y \in I \}$	
Then clearly that I_1 and I_2 are additive subgroups of R . moreover by the discussion given I is the set- theoretic union of I_1 and I_2 but can not be the set- theoretic of two proper subgroups.	
Hence $I_1 = I$ or $I_2 = I$.	

التمركزات العليا اليسرى على الحلقات الأولية

تاريخ الاستلام 2015/11/1

د. صلاح مهدي صالح

قسم الرياضيات

كلية التربية

الجامعة المستنصرية

Dr.salahms2014@gmail.com

mazin792002@yahoo.com

كلية التربية

جامعة القادسية

تاريخ القبول 2016/1/5

مازن عمران كريم

قسم الرياضيات

الملخص :

في هذا البحث ندرس ابدالية الحلقات الأولية التي تحقق شروط معينة تتضمن تمركزات يسرى من الدرجات العليا معرفة على تلك الحلقات الأولية.

الكلمات المفتاحية الحلقات الأولية متمركزات يسرى