AL-Qadisiyha Journal For Science Vol. 21 No. 1 Year 2016
 Mazen O. Karim Salah M. Salih
 ISSN 1997-2490

Centralizing Higher Left Centralizers On Prime Rings

Receved :1/11/2015
Salah M. Salih
Department Of mathematics
College of Educations
Al-Mustansiriya University
Dr.salahms2014@gmail.com

Accepted :5/1/2016

Mazen O. Karim
Department Of mathematics
College Of Educations
Al-Qadisiyah University
mazin792002@yahoo.com

Abstract :

In this paper we study the commutativity of prime rings satisfying certain identities involving higher left centralizer on it .

Math. Classification QAISO -27205

Key words: prime rings, higher left centralizer

1.Introduction :

Throughout this paper R is denote to an associative ring and it is center will denoted by $Z(R)$ which equal to the set of all elements $x \in$ R such that $x y=y x$ for all $y \in R$.

Now for any $x, y \in R$, the symbols $[x, y]$ and $\langle x, y\rangle \quad$ will denoted to $x y-y x$ and $x y+y x$ respectively which are called commutator(Lie product) and anti- commutator (Jordan product) respectively.[1],[2] . A ring R is called commutative if $[x, y]=0$ for all $x, y \in R$.

The above commutator and anti- commutator satisfies the following[1],[2]:

1) $[x y, z]=[x, z] \quad y+x[y, z]$
2) $[x, y z]=y[x, z]+[x, y] z$

$$
\text { 3) } \begin{aligned}
\langle x, y z\rangle & =\langle x, y\rangle z-y[x, z] \\
& =y\langle x, y\rangle+[x, y] \quad z
\end{aligned}
$$

3) $\langle x y, z\rangle=x\langle y, z\rangle-[x, z] y$ $=\langle x, z\rangle \quad y+x[y, z]$

A ring R is called prime if $x R y=\{0\}$ implies that $x=0$ or $y=0$ and it is called semi-prime if $x \mathrm{R} x=\{0\}$ implies that $x=0[3]$.

An additive mapping $F: R \rightarrow R$ is called centralizing on asubset S of ring R if $[F(x), x] \quad \in Z(R)$ and it is called commuting if $[F(x), x]=0$ for all $x \in S[4]$, [5].

An additive mapping $T: R \rightarrow R$ is called left(right) centralizer on a ring R if $\quad T(x y)=$ $T(x) y(T(x y)=x T(y))$ holds for all $x, y \in$ $R[6]$.

Many authors covers the concept of left centralizer and study the relation between the commutativity of ring and left centralizers .
K.K.Dey and A.C. Paul in [7] study the commutativety of Γ - ring in which satisfying certain identities involving left centralizers .

AL-Qadisiyha Journal For Science Vol. 21 No. 1 Year 2016
 Mazen O. Karim Salah M. Salih

In this paper, we obtain the commutativity of a ring satisfying certain identities involving higher left centralizers on ring R, this work motivated from the work of K.K.Dey and A.C.Paul [7].

We generalized the definition of higher k- left centralizer on a Γ - ring [8] into a higher left centralizer on a ring R by taking k as the identity automorphism as the following
$\underline{\text { Definition } 1.1}$:let R be a ring and let $T=$ $\left(T_{i}\right)_{i \in N}$ be a family of left centralizers on R. then $T_{n}: R \rightarrow R$ is called higher left centralizer on R if

$$
T_{n}(x y)=\sum_{i=1}^{n} T_{i}(x) y
$$

holds for all $x, y \in R$.

2. Commutativity of prime gamma rings: :

in this section we study the commutativity of the ring R by using higher left centralizer on it .

Theorem 2.1 : let R be a prime ring and I be anon-zero ideal of R. suppose that R admits a family of non - zero higher left centeralizers $\mathrm{T}=$ $\left(T_{i}\right)_{i \in n}$ such that $\sum_{i=1}^{n} T_{i}(x) \neq x$ for all $x \in I$ and $i \in N$. if $T_{n}([x, y]-[x, y]=0$ for all $\mathrm{x}, \mathrm{y} \in I$ then R is commutative .

Proof: Given that $\mathrm{T}=\left(T_{i}\right)_{i \in N}$ afamily of left centralizens of R such that.

$$
T_{n}([x, y])-[x, y]=0
$$

\qquad (1)
for all $x, y \in I$.
Then $\quad T_{n}(x y-y x)-(x y-y x)=0$
So that

$$
\begin{aligned}
& \left(\sum_{i=1}^{n} T_{i}(x) y-\sum_{i=1}^{n} T_{i}(y) x\right)-(x y-y x)= \\
& 0
\end{aligned}
$$

$\left.\left(\sum_{i=i}^{n} T_{i}(x)-x\right) y-\sum_{i=1}^{n} T_{i}(y)-y\right) x=0$
................(2)
Replace x by $x r$ in (2) we get

$$
\begin{aligned}
& \left.\left(\sum_{i=i}^{n} T_{i}(x r)-x r\right) y-\sum_{i=1}^{n} T_{i}(y)-y\right) x r= \\
& 0
\end{aligned}
$$

Hence

$$
\begin{align*}
& \left(\sum_{i=1}^{n} T_{i}(x)-x\right) r y-\left(\sum_{i=1}^{n} T_{i}(y)-\right. \\
& y) x r=0 \quad \ldots \ldots \ldots . .(3) \tag{3}
\end{align*}
$$

For all $x, y \in I, r \in R$
Using (2) in (3) to simplify, we obtain

$$
\begin{equation*}
\left(\sum_{i=1}^{n} T_{i}(x)-x\right)[r, y]=0 \tag{4}
\end{equation*}
$$

For all $x, y \in I, r \in R$.
Again replacing r by $r s$ in (4)

$$
\left(\sum_{i=1}^{n} T_{i}(x)-x\right) r[s, y]=0
$$

For all $x, y \in I$ and $r, s \in R$

$$
\left(\sum_{i=1}^{n} T_{i}(x)-x\right) R[s, y]=0
$$

for all $x, y \in I, s \in R$
by primness' of R and since $\sum_{i=i}^{n}\left(T_{i}(x)-\right.$ $x) \neq 0$
hence $[s, y]=0$ for all $y \in I, s \in R$
there fore $I \subset Z(R)$ and hence R is commutative

Corollary 2.2 : In theorem 2.1 , if the family T of higher left centralizers is zero then R is commutative
proof : suppose that $T_{n}([x, y])-[x, y]=$ 0 for any $x, y \in I$

Which leads to

AL-Qadisiyha Journal For Science Vol. 21 No. 1 Year 2016 Mazen O. Karim Salah M. Salih

if $T_{n}=0$ then $[x, y]=0 \quad$ for all $x, y \in I$

There fore I is commutative hence R is commutative

Theorem 2.3: let R be a prime ring and I be a non-zero ideal of R suppose that R admits a family T of non - zero higher left centralizer
$\mathrm{T}=\left(T_{i}\right)_{i \in N}$ such that $\sum_{i=1}^{n} T_{i}(x) \neq-x$ for all $x \in I$ and $i \in N$, for ther if $T_{n}([x, y])+$ $[x, y]=0$ for all $x, y \in I$, then R is commutative .

Proof: Given that $\mathrm{T}=\left(T_{i}\right)_{i \in N}$ is a family of higher left centralizers of R such that .

$$
\begin{align*}
& T_{n}([x, y])+[x, y] \\
& x, y \in I \quad \ldots \ldots \ldots .(1)=0 \tag{1}
\end{align*} \quad \text { for all }
$$

Then

$$
T_{n}(x y-y x)+(x y-y x)=0
$$

So that

$$
\begin{aligned}
& \quad\left(\sum_{i=1}^{n} T_{i}(x) y-\sum_{i=1}^{n} T_{i}(y) x\right)+(x y- \\
& y x)=0
\end{aligned}
$$

Which leads to

$$
\begin{equation*}
\left(\sum_{i=1}^{n} T_{i}(x)+x\right) y-\left(\sum_{i=1}^{n} T_{i}(y)+\right. \tag{.2}
\end{equation*}
$$ $y) x=0$

In (2) replace x by $x r$ to get
$\left(\sum_{i=1}^{n} T_{i}(x r)+x r\right) y-\left(\sum_{i=1}^{n} T_{i}(y)+\right.$ $y) x r=0$

Hence

$$
\begin{align*}
& \left(\sum_{i=1}^{n} T_{i}(x)+x\right) r y-\left(\sum_{i=1}^{n} T_{i}(y)+\right. \\
& y) x r=0 \quad \ldots . .3) \tag{.3}
\end{align*}
$$

For all $x, y \in I, r \in R$
Using (2) in (3) to simplify, we obtain
$\left(\sum_{i=1}^{n} T_{i}(x)+x\right) \beta[r, y]_{\alpha}=0$
\qquad
For all $x, y \in I, r \in R$
Replace r by $r s$ in (4)

$$
\left(\sum_{i=1}^{n} T_{i}(x)+x\right) r[s, y]=0
$$

For all $x, y \in I, r, s \in R$
in other words
$\left(\sum_{i=1}^{n} T_{i}(x)+x\right) R[s, y]=0$
For all $x, y \in I, s \in R$
By primness of R and since $\sum_{i=i}^{n}\left(T_{i}(x)+\right.$ $x) \neq 0$
we get $\quad[s, y]=0$ for all $y \in I, s \in R$
Therefore $I \subset Z(R)$ and hence R is commutative

Theorem 2.4:- let R be a prime ring and I be anon - zero ideal of R. suppose that R adimits afamily of non - zero higher left centralizers . $T=\left(T_{i}\right)_{i \in n}$ such that $\sum_{i=1}^{n} T_{i}(x) \neq x$ for all $x \in I$ and $i \in N$, further if

$$
T_{n}(\langle x, y\rangle)=\langle x, y\rangle
$$

For all $x, y \in I$, then R is commutative .
Proof:- Given that

$$
\begin{aligned}
& T_{n}(\langle x, y\rangle)-<x, y>=0 \\
& \ldots \ldots \ldots .(1)
\end{aligned}
$$

For all $x, y \in I$
This implies that

$$
\begin{align*}
& \left(\sum_{i=1}^{n} T_{i}(x)-x\right) y+\left(\sum_{i=1}^{n} T_{i}(y)-\right. \\
& y) x=0 \quad \ldots \ldots(.2) \tag{.}
\end{align*}
$$

Replace x by $x r$ in (2) we obtain .

AL-Qadisiyha Journal For Science Vol. 21 No. 1 Year 2016
 Mazen O. Karim Salah M. Salih
 ISSN 1997-2490

$\left(\sum_{i=1}^{n} T_{i}(x r)-x r\right) y+\left(\sum_{i=1}^{n} T_{i}(y)-\right.$ $y) x r=0$

Hence

$$
\begin{align*}
& \quad\left(\sum_{i=1}^{n} T_{i}(x)-x\right) r y-\left(\sum_{i=1}^{n} T_{i}(y)-\right. \\
& y) x r=0 \quad \cdots \cdots \cdots . .(3) \tag{3}
\end{align*}
$$

For all $x, y \in I, r \in R$
Using (2) in (3) we get

$$
\begin{align*}
& \left(\sum_{i=1}^{n} T_{i}(x)-x\right) r y+\left(\sum_{i=1}^{n} T_{i}(x)-\right. \\
& x) y r=0 \quad \ldots \ldots \ldots \ldots .(4) \tag{4}
\end{align*}
$$

For all $x, y \in I, r \in R$
That is

$$
\begin{equation*}
\left(\sum_{i=1}^{n} T_{i}(x)-x\right)[r, y]=0 \tag{5}
\end{equation*}
$$

For all $x, y \in I, r \in R$
Replace r by $r s$ in (5) we get.

$$
\begin{equation*}
\left(\sum_{i=1}^{n} T_{i}(x)-x\right) r[s, y]=0 \tag{6}
\end{equation*}
$$

For all $x, y \in I, r, s \in R$
i.e: $\quad\left(\sum_{i=1}^{n} T_{i}(x)-x\right) R[s, y]=0$

By primness of R and since $\sum_{i=1}^{n}\left(T_{i}(x)-\right.$ $x) \neq 0$

Then $[s, y]=0 \quad$ for all $y \in I$
Hence $I \subset Z(R)$ there for R is commutative
Theorem 2.5:- let R be a prime ring and I be anon - zero ideal of R. suppose that R adimits afamily of non-zero higher left centralizers . $T=\left(T_{i}\right)_{i \in N}$ such that $\sum_{i=1}^{n} T_{i}(x) \neq-x$ for all $x \in I$ and $i \in N$, further if

$$
T_{n}(\langle x, y\rangle)+\langle x, y\rangle=0
$$

For all $x, y \in I$, then R is commutative
Proof: - Given that $T=\left(T_{i}\right)_{i \in N}$ be a family of non - zero higher left centralizers of R such that
$T_{n}(\langle x, y\rangle)+\langle x, y\rangle=0$
............(1)
For all $x, y \in I$.
Then

$$
\left(\sum_{i=1}^{n} T_{i}(x y+y x)\right)+(x y+y x)=0
$$

H hence

$$
\begin{align*}
& \sum_{i=1}^{n} T_{i}(x) y+\sum_{i=1}^{n} T_{i}(y) x+(x y+y x)=0 \\
& \left.\left(\sum_{i=1}^{n} T_{i}(x)+x\right) y+\left(\sum_{i=1}^{n} T_{i}(y)+y\right) x\right)=0 \tag{2}
\end{align*}
$$

In the above relation eplace x by $x r$ we obtain .

$$
\left(\sum_{i=1}^{n} T_{i}(x r)+x r\right) y+\left(\sum_{i=1}^{n} T_{i}(y)+\right.
$$

$$
y) x r=0
$$

So we get

$$
\begin{align*}
& \left(\sum_{i=1}^{n} T_{i}(x)+x\right) r y+\left(\sum_{i=1}^{n} T_{i}(y)+\right. \\
& y) x r=0 \quad \cdots \cdots \ldots(3) \tag{3}
\end{align*}
$$

For all $x, y \in I, r \in R$
Substitute (2) in (3) to get

$$
\begin{equation*}
\left(\sum_{i=1}^{n} T_{i}(x)+x\right)[r, y]=0 \tag{4}
\end{equation*}
$$

For all $x, y \in I, r \in R$
Now again replace r by $r s$ in (4) we have

$$
\begin{equation*}
\left(\sum_{i=1}^{n} T_{i}(x)+x\right) r[s, y]=0 \tag{5}
\end{equation*}
$$

For all $x, y \in I$ and $r, s \in R$
i.e : $\quad\left(\sum_{i=1}^{n} T_{i}(x)+x\right) R[s, y]=0$

AL-Qadisiyha Journal For Science Vol. 21 No. 1 Year 2016
 Mazen O. Karim Salah M. Salih
 ISSN 1997-2490

By primness of R and since $\sum_{i=1}^{n}\left(T_{i}(x)+\right.$
$x) \neq 0$
We have $[s, y]=0 \quad$ for all $y \in I, s \in R$.
Hence $I \subset Z(R)$ there for R is commutative
Corollary 2.6 : In theorem 2.4 and 2.5 if a higher left centralizers T_{n} is zero . then R is commutative .

Proof: For any $x, y \in I$, we have

$$
\begin{aligned}
& T_{n}(\langle x, y\rangle=\langle x, y\rangle \\
& \text { if } T_{n}=0 \text { then }\langle x, y\rangle=0 \text { for all } \\
& x, y \in I
\end{aligned}
$$

replace x by $x z$ and using the fact
$y x=-x y$ we conclude that
$x[z, y]=\{0\} \quad$ for all $x, y, z \in I$
In other words we have
$\operatorname{IR}[z, y]=0 \quad$ for all $y, z \in I$.
Since R is prime and $I \neq\{0\}$
So that $[z, y]=0 \quad$ for all $y, z \in I$
then I is commutative and hence R is commutative

Theorem 2.7 :- let R be a prime ring and I be anon zero ideal of R. suppose that R admits a family of non-zero higher left centralizers $T=$ $\left(T_{i}\right)_{i \in N}$ such that $\sum_{i=1}^{n} T_{i}(x) \neq x$ for all $x \in I$ and for all $i \in N$, further if $T_{n}(x y) \mp(x y)=0$ for all $x, y \in I$, then R is commutative .
proof:- for any $x, y \in I$ we have

$$
T_{n}(x y)=(x y)
$$

this implies that

$$
T_{n}([x, y])-([x, y])=0
$$

and hance by theorem 2.1 we have R is commutative
on the other hand if R is satisfy the condition $T_{n}(x y)+(x y)=0$ for all $x, y \in I$.
then for any $x, y \in I$

$$
\text { we have } T_{n}(x y+y x)=-(x y+y x)
$$

So that $T_{n}(\langle x, y\rangle)+(\langle x, y\rangle)=0 \quad$ for all

$$
\mathrm{x}, y \in I .
$$

Then by theorem 2.5 we have R is commutative

Corollary 2.8 : -let R be a prime ring and I be anon zero ideal of R. suppose that R admits a family of non-zero higher left centralizers $T=$ $\left(T_{i}\right)_{i \in N}$ such that $\sum_{i=1}^{n} T_{i}(x) \neq \mp x$ for all $x \in I$ and for all $i \in N$, further if $T_{n}(x y) \mp(y x)=0$ for all $x, y \in I$ then R is commutative .
proof: For any $x, y \in I$ we have $T_{n}(x y) \mp(y x)=0$
now if $T_{n}(x y)=(y x)$ this implies that $T_{n}([x, y])-([y, x])=T_{n}([x, y])+$ $([x, y])=0$
then by theorem 2.5 we have R is commutative
Now when $T_{n}(x y)+(y x)=0 \quad$ then $T_{n}([x, y])+([y, x])=0$
this implies that $T_{n}([x, y])+([x, y])=0$ and hance by theorem 2.1 we have R is commutative
3.The main results: in this section we introduce the main results of this paper

Theorem 3.1: :let R be a prime ring and I be anon zero ideal of R. suppose that R admits a family of non-zero higher left centralizers $T=$ $\left(T_{i}\right)_{i \in N}$ such that $\sum_{i=1}^{n} T_{i}(x) \neq x$ for all $x \in I$

AL-Qadisiyha Journal For Science Vol. 21 No. 1 Year 2016 Mazen O. Karim Salah M. Salih

and for all $i \in N$, then the following conditions are equivalent :
(ii) $\quad T_{n}([x, y])+([x, y])=0$ for all $x, y \in I$
(iii) for all $x, y \in I$, either $T_{n}([x, y])$ $([x, y])=0$ or

$$
T_{n}([x, y])+([x, y])=0
$$

(iv) $\quad R$ is commutative

Proof:

(i) \rightarrow (iv) suppose that $T_{n}([x, y])-([x, y])=$ 0

Then by theorem 2.1 we have R is commutative
(iv) \rightarrow (i) suppose that R is commutative then $[x, y]=0$
and hence $T_{n}([x, y])-([x, y])=0$
(ii) \rightarrow (iv) suppose that

$$
\begin{aligned}
& T_{n}([x, y])+([x, y] \quad)=0 \\
& \text { for all } x, y \in I
\end{aligned}
$$

Then by theorem 2.3 we have R is commutative
(iv) \rightarrow (ii) suppose that R is commutative then $[x, y]=0$ for all $x, y \in I$

And hence $-[x, y]=0$ for all $x, y \in I$
Which implies that $T_{n}([x, y])-([x, y])=0$ for all $x, y \in I$
(iii) \rightarrow (iv) suppose that for all $x, y \in I$ either $T_{n}([x, y])-([x, y])=0$ or

$$
T_{n}([x, y])+([x, y])=0
$$

Then by theorem 2.1 or theorem 2.3 we have R is commutative

$$
\text { (iv) } \rightarrow \text { (iii) suppose that } R \text { is commutative }
$$

For each fixed $y \in I$ we set
$\left\{x \in I \mid T_{n}([x, y])-([x, y])=0\right\}$
$I_{2}=$
$\left\{x \in I \mid T_{n}([x, y])+([x, y])=0\right\}$
Then I_{1} and I_{2} are additive subgroups of I such that $I=I_{1} \cup I_{2}$.

But a group cannot be the set theoretic union of two proper subgroups, hance we have either
$I_{1}=I \quad$ or $I_{2}=I$.
Further , using a similar argument, we obtain
$I=\left\{y \in I \mid I_{1}=I\right\}$ or $I=\left\{y \in I \mid I_{2}=I\right\}$
Thus we obtain that either $T_{n}([x, y])-$ $([x, y])=0 \quad$ for all $x, y \in I$
or $\quad T_{n}([x, y])+([x, y])=0$ for all $x, y \in I$

Hence R is commutative in both cases by theorem 2.1 (respectively theorem 2.3)

Theorem 3.2: :let R be a prime ring and I be anon zero ideal of R. suppose that R admits a family of non-zero higher left centralizers $T=$ $\left(T_{i}\right)_{i \in N}$ such that $\sum_{i=1}^{n} T_{i}(x) \neq x$ for all $x \in I$ and for all $i \in N$, further if $T_{n}(x y)-(x y) \in$ $Z(M)$ for all $x, y \in I$ then R is commutative .

Proof: for any $x, y \in I$ we have

$$
T_{n}(x y)-(x y) \in Z(R)
$$

\qquad
This can be written as $\sum_{i=1}^{n} T_{i}(x) y-x y \in$ $Z(R)$ for all $x, y \in I$

That is $\left[\left(\sum_{i=1}^{n} T_{i}(x)-x\right) y, r\right]=0$ for all $x, y \in I, r \in R$

Which implies that

AL-Qadisiyha Journal For Science Vol. 21 No. 1 Year 2016
 Mazen O. Karim Salah M. Salih

$\left(\sum_{i=1}^{n} T_{i}(x)-x\right)[y, r]+\left[\sum_{i=1}^{n} T_{i}(x)-\right.$ $x, r] \quad y=0$
for all $x, y \in I, r \in R$
in (4) replace x by $x z$, we have

$$
\begin{array}{ll}
\left(\sum_{i=1}^{n} T_{i}(x)-x\right) z[y, r] & +\left[\left(\sum_{i=1}^{n} T_{i}(x)-\right.\right. \\
x) z, r] y=0 & \ldots \ldots \ldots \ldots . . \\
\hline
\end{array}
$$

for all $x, y, z \in I, r \in R$
from (3) we get that (5) becomes

$$
\left(\sum_{i=1}^{n} T_{i}(x)-x\right) z[y, r]=0 \quad \text { for all }
$$ $x, y, z \in I, r \in R$.

This yields that
$\left(\sum_{i=1}^{n} T_{i}(x)-x\right) R I[y, r]=\{0\} \quad$ for all
$x, y \in I, r \in R$
By primness of R implies that

$$
I[y, r]=\{0\} \quad \text { or } \quad \sum_{i=1}^{n} T_{i}(x)-x=0
$$

and since $I \neq\{0\}$ and $\sum_{i=1}^{n} T_{i}(x) \neq x$ for all $x \in I$
we get that I is central and hence R is commutative

Theorem 3.3: let R be a prime ring and I be anon zero ideal of . suppose that R admits a family of non-zero higher left centralizers $T=$ $\left(T_{i}\right)_{i \in N}$ such that $\sum_{i=1}^{n} T_{i}(x) \neq-x$ for all $x \in I$ and for all $i \in N$, further if $T_{n}(x y)-(x y) \in$ $Z(M)$ for all $x, y \in I$, then R is commutative .
proof : suppose that $T=\left(T_{i}\right)_{i \in N}$ be a family of non-zero higher left centralizers satisfying the
property $T_{n}(x y)-(x y) \in Z(R)$ for all $x, y \in I$
then the non- zero higher left centralizers ($-T$) satisfies the condition
$\left(-T_{n}\right)(x y)-(x y) \in Z(R)$ for all $x, y \in$ I

Hance by theorem 3.2 we have R is commutative.

Remark 3.4: in theorem 3.2 if the higher left centralizer is zero, then R is commutative .

Theorem 3.5: let R be a prime ring and I be anon zero ideal of R. suppose that R admits a family of non-zero higher left centralizers $T=$ $\left(T_{i}\right)_{i \in N}$ such that $\sum_{i=1}^{n} T_{i}(x) \neq x$ for all $x \in I$ and for all $i \in N$, further if $T_{n}(x y)-(y x) \in$ $Z(R)$ for all $x, y \in I$ then R is commutative .

Proof: we are given that a higher left centralizer of R such that

$$
T_{n}(x y)-(y x) \in Z(R)
$$

for all $x, y \in I$
this implies that

$$
\begin{equation*}
\left[T_{n}(x y)-(y x), r\right]=0 \tag{1}
\end{equation*}
$$

holds for all $x, y \in I, r \in R$
which implies that

$$
\begin{equation*}
\left[\sum_{i=1}^{n} T_{i}(x) y-y x, r\right]=0 \tag{2}
\end{equation*}
$$

for all $x, y \in I, r \in R$
replacing y by $y x$ in the above relation and use it hence

$$
\begin{equation*}
\left[\sum_{i=1}^{n} T_{i}(x) y x-y x^{2}, r\right]=0 \tag{3}
\end{equation*}
$$

$$
\text { for all } x, y \in I, r \in R
$$

AL-Qadisiyha Journal For Science Vol. 21 No. 1 Year 2016

we find that

$$
\begin{equation*}
\left(\sum_{i=1}^{n} T_{i}(x) y-y x\right)[x, r]=0 \tag{4}
\end{equation*}
$$

$$
\text { for all } x, y \in I, r \in R
$$

again replace r by $r s$ in (4) to get

$$
\begin{align*}
& \left(\sum_{i=1}^{n} T_{i}(x) y-y x\right) r[x, s] \\
& +\left(\sum_{i=1}^{n} T_{i}(x) y-y x\right)[x, r] \quad s=0 \tag{5}
\end{align*}
$$

for all $x, y \in I, r, s \in R$
From (4) the relation (5) becomes

$$
\begin{equation*}
\left(\sum_{i=1}^{n} T_{i}(x) y-y x\right) r[x, s]=0 \tag{6}
\end{equation*}
$$

for all $x, y \in I, r, s \in R$
i.e.
$\left(\sum_{i=1}^{n} T_{i}(x) y-y x\right) R[x, s]=0$
for all $x, y \in I, s \in R$
the primness of R implies that either $[x, s]=$ 0 or $\sum_{i=1}^{n} T_{i}(x) y-y x=0$
for all $x, y \in I, s \in R$
now put $\quad I_{1}=$
$\{x \in I \mid[x, s]=0$ for all $s \in R\}$

$$
I_{2}=
$$

$\left\{x \in I \mid \sum_{i=1}^{n} T_{i}(x) y-y x=0\right.$ for all $\left.x, y \in I\right\}$
Then clearly that I_{1} and I_{2} are additive subgroups of R. moreover by the discussion given I is the set- theoretic union of I_{1} and I_{2} but can not be the set- theoretic of two proper subgroups .

Hence $I_{1}=I$ or $I_{2}=I$.

If $I_{1}=I$, then $[x, s]=0$ for all $x \in$ $I, s \in R$ and hence R is commutative .

On the other hand if $I_{2}=I$ then
$\sum_{i=1}^{n} T_{i}(x) y=y x$ for all for all $x, y \in I$.
That is $\sum_{i=1}^{n} T_{i}(x) y-y x=0 \quad$ for all for all $x, y \in I$

This implies that $T_{n}([x, y])-([x, y])=0$ for all for all $x, y \in I$.

Hence apply theorem 2.1 yields the required result.

References:

1) Ali S., Basudeb D. and Khan M. S. , 2014, " On Prime and Semiprime Rings with Additive Mappings and Derivations ", Universal Journal of Computational Mathematics ,Vol.2, No. 3 , 48-55.
2) Ur-Rehman N., 2002, "On Commutativity of Rings with Generalized Derivations ", Math. J Okayama Univ. , Vol.44, 43-49.
3) Vukman J. ,1997,"Centralizers on Prime and Semiprime Rings ", Comment. Math. Univ. Caroline, Vol. 38 , No. 2, 231- 240.
4) Braser M. ,1993," Centralizing Mappings and Derivations in Prime Rings " ,Journal of Algebra, Vol. 156, 385-394
5) Vukman J. , 1990 ,"Commuting and Centralazing Mappings in Prime Rings", Proceeding of the American Math. Society, Vol. 109 ,No.1, 47 -52.
6) Ali S. and Dar N. A. , 2014," On Left Centralizers of Prime Rings with Involution " ,Palestine Journal of Mathematics,Vol.3,No.1,505-511.
7) Dey K.K. and Paul A.C ,2014,"commutativity of prime gamma rings with left centralizers " , J. Sci.Res. ,Vol. 6 ,No.1, 69-77.
8) Salih S.M.,kamal A.M. and hamad B. M. , 2013, "Jordan higher K-centralizer on Γ-rings ,ISOR Jornal of Mathematics ,Vol. 7 No. 1 ,614.

AL-Qadisiyha Journal For Science Vol. 21 No. 1 Year 2016

التمركزات العليا اليسرى على الحلقات الأولية

تاريخ القبول 2016/1/5
مـازن عمران كريم
mazin792002@yahoo.com

$$
\begin{aligned}
& \text { د. صلاح مهـي صالح } \\
& \text { قسم الرياضيات } \\
& \text { كلية التربية } \\
& \text { الجامعة المستنصرية }
\end{aligned}
$$

Dr.salahms2014@gmail.com

الملخص:
في هذا البحث ندرس ابدالية الحلقات الاولية الني تحقق شروط معينة تتضمن تمركزات يسرى من الدرجات العليا معرفة على تلك الحلقات الاولية.

الكلمات المفتاحية الحلقات الأولية ,

