Subclass of Multivalent Functions Defined by using Differential Operator

الصف الجزئي لدوال متعددة معرفة باستخدام مشتقة العامل
Amaal Kareem Oleiwi, Murtadha M. Abdulkadhim, Faiz J. Alhamadany
Department of Mathematics, College of Education for Pure Science AL-Muthanna University, AL-Muthanna, Iraq
E-mail: amolakrm@yahoo.com
E-mail: murtadha_moh@mu.edu.iq
E-mail: faiz.jawad@yahoo.com

Abstract

: In the present paper, we introduce a subclass $\mathcal{K}_{\mathrm{p}}(\gamma, \beta, m, \lambda, A, B, \alpha)$ of multivalent analytic functions in the open unit disc U . We study coefficient inequalities, closure theorem, radii of starlikeness, convexity and close-to-convexity. We also obtain weighted mean, arithmetic mean and linear combination.

الخلاصة:
 المعامل ونظرية الانتلاق وانصاف الاقطار كذلك تطرقنا لمتوسط مرجح والوسط الحسابي والمجموع الخطي

Mathematics Subject Classification: 30C45, 30C50
Keywords: multivalent function, convolution, weighted mean, arithmetic mean, linear operator and linear combination

1- Introduction :

Let \mathcal{A}_{p} denote the class of all functions of the form:

$$
\begin{equation*}
f(z)=z^{p}+\sum_{k=p+i}^{\infty} a_{k} z^{k}, \quad(p \in \mathbb{N}=\{1,2,3, \ldots\}), \tag{1}
\end{equation*}
$$

which are analytic and multivalent in the open unit disk $U=\{z \in \mathbb{C}:|z|<1\}$.
Let \mathcal{M}_{p} denote the subclass of \mathcal{A}_{p} containing of functions of the form:

$$
\begin{equation*}
f(z)=z^{p}+\sum_{k=p+i}^{\infty} a_{k} z^{k}, \quad\left(a_{k} \geq 0, p \in \mathbb{N}=\{1,2,3, \ldots\}\right) \tag{2}
\end{equation*}
$$

which are analytic and multivalent in the open unit disk $U=\{z \in \mathbb{C}:|z|<1\}$.
For the functions $f \in \mathcal{M}_{p}$ given by (2) and $g \in \mathcal{M}_{\mathrm{p}}$ defined by

$$
\begin{equation*}
g(z)=z^{p}+\sum_{k=p+i}^{\infty} b_{k} z^{k}, \quad\left(a_{k} \geq 0, p \in \mathbb{N}\right) \tag{3}
\end{equation*}
$$

We define the convolution (or Hadamard product) of f and g by

$$
\begin{equation*}
(f * g)(z)=z^{p}+\sum_{k=p+i}^{\infty} a_{k} b_{k} z^{k} \tag{4}
\end{equation*}
$$

A function $f \in \mathcal{M}_{p}$ is said to be p-valently starlike of order α if it satisfies the inequality:[2]

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{z \dot{f}(z)}{f(z)}\right\}>\alpha \quad(z \in U ; 0 \leq \alpha<p ; p \in N) . \tag{5}
\end{equation*}
$$

Journal University of Kerbala, Vol. 15 No. 1 Scientific . 2017

We denote by \mathcal{M}_{p}^{*} the class of all p-valently starlike functions of order α. Also a function $f(z) \in \mathcal{M}_{p}$ is said to be p -valently convex of order α if it satisfies the inequality:[2]

$$
\begin{equation*}
\operatorname{Re}\left\{1+\frac{z \hat{f}(z)}{\hat{f}(z)}\right\}>\alpha \quad(z \in U ; 0 \leq \alpha<p ; p \in N) . \tag{6}
\end{equation*}
$$

We denote by $\mathrm{C}(p, \alpha)$ the class of all p-valently convex functions of order α. We note that (see for example Duren [6] and Goodman [7])

$$
\begin{equation*}
f(z) \in C(p, \alpha) \Leftrightarrow \frac{z f(z)}{p} \in \mathcal{M}_{j}^{*}(p, \alpha) \quad(0 \leq \alpha<p ; p \in N) . \tag{7}
\end{equation*}
$$

A function $f \in \mathcal{M}_{p}$ is closed-to-convex of order α if

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{f^{\prime}(z)}{z^{p-1}}\right\}>\alpha, \quad(z \in U ; 0 \leq \alpha<p) \tag{8}
\end{equation*}
$$

Definition (1)[6] : Let $\gamma, \beta, m \in R, \gamma \geq 0, \beta \geq 0, m \geq 0, p \in N$ and

$$
f(z)=z^{p}+\sum_{k=p+1}^{\infty} a_{k} z^{k} .
$$

Then, we define the linear operator

$$
D_{p, m}^{\gamma, \beta} f(z)=z^{p}+\sum_{k=p+1}^{\infty}\left(1+\frac{D_{p, m}^{\gamma, \beta}: \mathcal{A}_{p} \rightarrow \mathcal{A}_{p} \text { by }}{(k+\beta)}\right)^{m} a_{k} z^{k}, z \in U . ~ . ~ . ~ . ~(k-p)
$$

Definition (2): Let g be a fixed function defined by (3). The function $f \in M_{p}$ given by (2) is said to be in the class $\mathcal{K}_{\mathrm{p}}(\gamma, \beta, m, \lambda, A, B, \alpha)$ if and only if

$$
\begin{equation*}
\left|\frac{z\left(D_{p, m}^{\gamma, \beta}(f * g)(z)\right)^{(p)}-\left(D_{p, m}^{\gamma, \beta}(f * g)(z)\right)^{(p-1)}}{\lambda z\left(D_{p, m}^{\gamma, \beta}(f * g)(z)\right)^{(p)}+(A+B)\left(D_{p, m}^{\gamma, \beta}(f * g)(z)\right)^{(p-1)}}\right|<\alpha \tag{10}
\end{equation*}
$$

where

$$
0<\lambda<1,0<A<1,0 \leq B<1,0<\alpha<1, \gamma, \beta, m \in R, \gamma \geq 0, \beta \geq 0, m \geq 0, p \in N,
$$

and for each $f \in R_{p}(\gamma, \beta, m, \lambda, A, B, \alpha)$ we have

$$
\begin{gathered}
f^{(p)}(z)=\delta(p, q) z^{p-q}+\sum_{k=p+1}^{\infty} \delta(p, q) a_{k} z^{k} \\
\delta(p, q)=\frac{p!}{(p-q)!}= \begin{cases}1 & (q=0) \\
p(p-1) \ldots(p-q+1) & (q \neq 0)\end{cases}
\end{gathered}
$$

Some of the following properties studied for other classes in [1],[2], [4] and [5].

2- Coefficient Inequalities:

Theorem (1): Let $f \in \mathcal{M}_{p}$. Then $f \in \mathcal{K}_{\mathrm{p}}(\gamma, \beta, m, \lambda, A, B, \alpha)$ if and only if

$$
\begin{aligned}
& \sum_{k=p+1}^{\infty}\left(1+\frac{(k-p) \gamma}{(p+\beta)}\right)^{m}[(k-p)-\alpha(\lambda(k-p+1)+(A+B))] \delta(k, p-1) a_{k} b_{k} \\
& \leq \alpha p!(\lambda+A+B) .
\end{aligned}
$$

Where

$$
0<\lambda<1,0<A<1,0 \leq B<1,0<\alpha<1, \gamma, \beta, m \in R, \gamma \geq 0, \beta \geq 0, m \geq 0, p \in N .
$$

The result is sharp for the function

$$
f(z)=z^{p}+\frac{\alpha p!(\lambda+A+B)}{\left(1+\frac{(k-p) \gamma}{(p+\beta)}\right)^{m}[(k-p)-\alpha(\lambda(k-p+1)+(A+B))] \delta(k, p-1) b_{k}} z^{k} .
$$

Proof :Suppose that the inequality (11) holds true and $|z|=1$. Then we have

$$
\begin{aligned}
& =\left|\frac{z\left(D_{p, m}^{\gamma, \beta}(f * g)(z)\right)^{(p)}-\left(D_{p, m}^{\gamma, \beta}(f * g)(z)\right)^{(p-1)}}{\lambda_{z}\left(D_{p, m}^{\gamma, \beta}(f * g)(z)\right)^{(p)}+(A+B)\left(D_{p, m}^{\gamma, \beta}(f * g)(z)\right)^{(p-1)}}\right| \\
& =\left|z\left(D_{p, m}^{\gamma, \beta}(f * g)(z)\right)^{(p)}-\left(D_{p, m}^{\gamma, \beta}(f * g)(z)\right)^{(p-1)}\right| \\
& -\alpha\left|\lambda z\left(D_{p, m}^{\gamma, \beta}(f * g)(z)\right)^{(p)}+(A+B)\left(D_{p, m}^{\gamma, \beta}(f * g)(z)\right)^{(p-1)}\right| \\
& =\left|\sum_{k=p+1}^{\infty}\left(1+\frac{(k-p) \gamma}{(p+\beta)}\right)^{m}(k-p) \delta(k, p-1) a_{k} b_{k} z^{k-p+1}\right| \\
& \quad-\alpha \mid p!(\lambda+A+B) z
\end{aligned} \quad \begin{aligned}
& \left.\leq \sum_{k=p+1}^{\infty}\left(1+\frac{(k-p) \gamma}{(p+\beta)}\right)^{m}[(\lambda(k-p+1)+(A+B))] \delta(k, p-1) a_{k} b_{k} z^{k-p+1} \right\rvert\, \\
& \sum_{k=p+1}^{\infty}\left(1+\frac{(k-p) \gamma}{(p+\beta)}\right)^{m}(k-p) \delta(k, p-1) a_{k} b_{k}|z|^{k-p+1}-\alpha p!(\lambda+A+B)|z|- \\
& z \sum_{k=p+1}^{\infty}\left(1+\frac{(k-p) \gamma}{(p+\beta)}\right)^{m}[(\lambda(k-p+1)+(A+B))] \delta(k, p-1) a_{k} b_{k}|z|^{k-p+1} \\
& =\sum_{k=p+1}^{\infty}\left(1+\frac{(k-p) \gamma}{(p+\beta)}\right)^{m}[(k-p)-\alpha(\lambda(k-p+1)+(a+B))] \delta(k, p-1)-\alpha p!(\lambda+A+B) \\
& \leq 0
\end{aligned}
$$

by hypothesis.
Hence by maximum modulus principle, $f \in \mathcal{K}_{\mathrm{p}}(\gamma, \beta, m, \lambda, A, B, \alpha)$.
Conversely : suppose that $f \in \mathcal{K}_{\mathrm{p}}(\gamma, \beta, m, \lambda, A, B, \alpha)$. Then from (10), we have

$$
\left.\begin{gathered}
=\left|\frac{z\left(D_{p, m}^{\gamma, \beta}(f * g)(z)\right)^{(p)}-\left(D_{p, m}^{\gamma, \beta}(f * g)(z)\right)^{(p-1)}}{\lambda z\left(D_{p, m}^{\gamma, \beta}(f * g)(z)\right)^{(p)}+(A+B)\left(D_{p, m}^{\gamma, \beta}(f * g)(z)\right)^{(p-1)}}\right| \\
\left\lvert\, p!(\lambda+A+B) z+\sum_{k=p+1}^{\infty}\left(1+\frac{(k-p) \gamma}{(p+\beta)}\right)^{m}[(\lambda(k-p+1)+(A+B))] \delta(k, p-1) a_{k} b_{k} z^{k-p+1}\right.
\end{gathered} \right\rvert\,
$$

$<\alpha$.
Since $\operatorname{Re}(z) \leq|z|$ for all $z(z \in U)$, we get
$\operatorname{Re}\left(\frac{\sum_{k=p+1}^{\infty}\left(1+\frac{(k-p) \gamma}{(p+\beta)}\right)^{m}(k-p) \delta(k, p-1) a_{k} b_{k} z^{k-p+1}}{p!(\lambda+A+B) z+\sum_{k=p+1}^{\infty}\left(1+\frac{(k-p) \gamma}{(p+\beta)}\right)^{m}[(\lambda(k-p+1)+(A+B))] \delta(k, p-1) a_{k} b_{k} z^{k-p+1}}\right)$ $<\alpha$.

We choose the value of z on the real axis so that $\left(D_{p, m}^{\gamma, \beta}(f * g)(z)\right)^{(p)}$ is real.
Letting $z \rightarrow 1^{-}$. Through real values, we obtain inequality (11).
Finally, sharpness follows if we have

$$
\begin{gather*}
f(z)=z^{p}+\frac{\alpha p!(\lambda+A+B)}{\left(1+\frac{(k-p) \gamma}{(p+\beta)}\right)^{m}[(k-p)-\alpha(\lambda(k-p+1)+(A+B))] \delta(k, p-1) b_{k}} z^{k} \\
k=p+1, p+2, \ldots \tag{14}
\end{gather*}
$$

Corollary (1): Let $f \in \mathcal{K}_{\mathrm{p}}(\gamma, \beta, m, \lambda, A, B, \alpha)$. Then

$$
\leq \frac{\alpha p!(\lambda+A+B)}{p!(\lambda+A+B) z+\sum_{k=p+1}^{\infty}\left(1+\frac{(k-p) \gamma}{(p+\beta)}\right)^{m}[(\lambda(k-p+1)+(A+B))] \delta(k, p-1) a_{k} b_{k} z^{k-p+1}},
$$

3- Closure Theorem:

Theorem (2): Let the functions f_{i} defined by

$$
f_{i}(z)=z^{p}+\sum_{k=p+1}^{\infty} a_{k, i} z^{k}, \quad\left(a_{k, i} \geq 0, p \in \mathbb{N}, i=1,2, \ldots, \ell\right)
$$

be in the class $\mathcal{K}_{\mathrm{p}}(\gamma, \beta, m, \lambda, A, B, \alpha)$ for every $\mathrm{i}=1,2, \ldots, \ell$. Then the function h defined by

$$
h(z)=z^{p}+\sum_{k=p+1}^{\infty} e_{k} z^{k}, \quad\left(e_{k} \geq 0, p \in \mathbb{N}\right)
$$

also belongs to class $\mathcal{K}_{\mathrm{p}}(\gamma, \beta, m, \lambda, A, B, \alpha)$, where

$$
e_{n}=\frac{1}{\ell} \sum_{i=1}^{\ell} a_{k, i}, \quad n=p+1, p+2, \ldots .
$$

Proof: Since $f_{i} \in \mathcal{K}_{\mathrm{p}}(\gamma, \beta, m, \lambda, A, B, \alpha)$, we have

$$
\begin{gathered}
\sum_{k=p+1}^{\infty}\left(1+\frac{(k-p) \gamma}{(p+\beta)}\right)^{m}[(k-p)-\alpha(\lambda(k-p+1)+(A+B))] \delta(k, p-1) a_{k, i} b_{k} \\
\leq \alpha p!(\lambda+A+B)
\end{gathered}
$$

for every $i=1,2, \ldots, \ell$. Hence

$$
\begin{aligned}
& \sum_{k=p+1}^{\infty}\left(1+\frac{(k-p) \gamma}{(p+\beta)}\right)^{m}[(k-p)-\alpha(\lambda(k-p+1)+(a+B))] \delta(k, p-1) e_{k} b_{k} \\
&= \sum_{k=j+p}^{\infty}\left(1+\frac{(k-p) \gamma}{(p+\beta)}\right)^{m}[(k-p)-\alpha(\lambda(k-p+1)+(a+B))] \delta(k, p-1) b_{k}\left(\frac{1}{\ell} \sum_{i=1}^{\ell} a_{k, i}\right) \\
&= \frac{1}{\ell} \sum_{i=1}^{\ell}\left(\sum_{k=j+p}^{\infty}\left(1+\frac{(k-p) \gamma}{(p+\beta)}\right)^{m}[(k-p)-\alpha(\lambda(k-p+1)+(a+B))] \delta(k, p-1) b_{k} a_{k, i}\right) \\
& \leq \alpha p!(\lambda+A+B) .
\end{aligned}
$$

Therefore, by Theorem (1), we have $h \in \mathcal{K}_{\mathrm{p}}(\gamma, \beta, m, \lambda, A, B, \alpha)$.
This completes the proof of the theorem.

4-Radii of Starlikeness, Convexity and Close-to-convexity.

Using the inequality (5), (6) and (8) and Theorem (1), we can compute the radii of starlikeness, convexity and close-to-convex.
Theorem (3): If $f \in \mathcal{K}_{\mathrm{p}}(\gamma, \beta, m, \lambda, A, B, \alpha)$. Then f is p-valently starlike of order $\rho,(0 \leq \rho<p)$ in the disk $|z|<r=r_{1}(\gamma, \beta, m, \lambda, A, B, \alpha)$, where
$r_{1}(\gamma, \beta, m, \lambda, A, B, \alpha, \rho)$
$=\inf _{n}\left\{\frac{(p-\rho)\left(1+\frac{(k-p) \gamma}{(p+\beta)}\right)^{m}[(k-p)-\alpha(\lambda(k-p+1)+(A+B))] \delta(k, p-1) b_{k}}{(k-p) \alpha p!(\lambda+A+B)}\right\}$.
Proof: It is sufficient to show that

$$
\begin{equation*}
\left|\frac{z f^{\prime}(z)}{f(z)}-p\right| \leq p-\rho, \quad \text { for }|z|<r_{1} . \tag{16}
\end{equation*}
$$

But

$$
\left|\frac{z f^{\prime}(z)}{f(z)}-p\right|=\left|\frac{z f^{\prime}(z)-p f(z)}{f(z)}\right|=\left|\frac{-\sum_{k=p+1}^{\infty} n a_{k} z^{k-p}}{z^{p}-\sum_{k=p+1}^{\infty} a_{k} z^{k-p}}\right| \leq \frac{\sum_{k=p+1}^{\infty}(k-p) a_{k}|z|^{k-p}}{1-\sum_{k=p+1}^{\infty} a_{k}|z|^{k-p}} .
$$

Thus, (16) will be satisfied if

$$
\frac{\sum_{k=p+1}^{\infty}(k-p) a_{k}|z|^{k-p}}{1-\sum_{k=p+1}^{\infty} a_{k}|z|^{k-p}} \leq p-\rho
$$

or if

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{(k-p)}{(p-\rho)} a_{k}|z|^{k-p} \leq 1 \tag{17}
\end{equation*}
$$

Since $f \in \mathcal{K}_{\mathrm{p}}(\gamma, \beta, m, \lambda, A, B, \alpha)$, we have

$$
\sum_{k=p+1}^{\infty} \frac{\left(1+\frac{(k-p) \gamma}{(p+\beta)}\right)^{m}[(k-p)-\alpha(\lambda(k-p+1)+(A+B))] \delta(k, p-1) b_{k}}{\alpha p!(\lambda+A+B)} a_{k} \leq 1
$$

Hence, (17) will be true if

$$
\frac{(k-p)}{(p-\rho)}|z|^{k-p} \leq \frac{\left(1+\frac{(k-p) \gamma}{(p+\beta)}\right)^{m}[(k-p)-\alpha(\lambda(k-p+1)+(A+B))] \delta(k, p-1) b_{k}}{\alpha p!(\lambda+A+B)}
$$

or equivalently
$|z| \leq\left\{\frac{(p-\rho)\left(1+\frac{(k-p) \gamma}{(p+\beta)}\right)^{m}[(k-p)-\alpha(\lambda(k-p+1)+(A+B))] \delta(k, p-1) b_{k}}{(k-p) \alpha p!(\lambda+A+B)}\right\}^{\frac{1}{k-p}}, n$ ≥ 1,
Setting $|z|=r_{1}$ we get the desired result.
Theorem(4): Let $f \in \mathcal{K}_{\mathrm{p}}(\gamma, \beta, m, \lambda, A, B, \alpha)$. Then f is p-valently convex of order $\rho,(0 \leq \rho<p)$ in $|z|<r=r_{2}(\gamma, \beta, m, \lambda, A, B, \alpha, \rho)$, where
$r_{2}(\gamma, \beta, m, \lambda, A, B, \alpha, \rho)$
$=\inf _{n}\left\{\frac{(p-\rho)\left(1+\frac{(k-p) \gamma}{(p+\beta)}\right)^{m}[(k-p)-\alpha(\lambda(k-p+1)+(A+B))] \delta(k, p-1) b_{k}}{k(k-p) \alpha p!(\lambda+A+B)}\right\}$,

Proof: It is sufficient to show that

$$
\begin{equation*}
\left|\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}+1-p\right| \leq p-\rho, \text { for }|z|<r_{2} \tag{18}
\end{equation*}
$$

But

$$
\begin{gathered}
\left|\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}+1-p\right|=\left|\frac{z f^{\prime \prime}(z)+(1-p) f^{\prime}(z)}{f^{\prime}(z)}\right|=\left|\frac{-\sum_{k=p+1}^{\infty} k(k-p) a_{k} z^{k-p}}{1-\sum_{k=p+1}^{\infty} k a_{k} z^{k-p}}\right| \\
\leq \frac{\sum_{k=p+1}^{\infty} k(k-p) a_{k}|z|^{k-p}}{1-\sum_{k=p+1}^{\infty} k a_{k}|z|^{k-p}}
\end{gathered}
$$

Thus, (18) will be satisfied if

$$
\frac{\sum_{k=p+1}^{\infty} k(k-p) a_{k}|z|^{k-p}}{1-\sum_{k=p+1}^{\infty} k a_{k}|z|^{k-p}} \leq p-\beta
$$

or if

$$
\begin{equation*}
\sum_{k=p+1}^{\infty}\left(\frac{k(k-p) a_{k}|z|^{k-p}}{(p-\rho)}\right) a_{k}|z|^{k-p} \leq 1 \tag{19}
\end{equation*}
$$

Since $f \in \mathcal{K}_{\mathrm{p}}(\gamma, \beta, m, \lambda, A, B, \alpha)$, we have

$$
\sum_{k=p+1}^{\infty} \frac{\left(1+\frac{(k-p) \gamma}{(p+\beta)}\right)^{m}[(k-p)-\alpha(\lambda(k-p+1)+(A+B))] \delta(k, p-1) b_{k}}{\alpha p!(\lambda+A+B)} a_{k} \leq 1
$$

Hence, (19) will be true if

$$
\frac{k(k-p) a_{k}|z|^{k-p}}{(p-\rho)} \leq \frac{\left(1+\frac{(k-p) \gamma}{(p+\beta)}\right)^{m}[(k-p)-\alpha(\lambda(k-p+1)+(A+B))] \delta(k, p-1) b_{k}}{\alpha p!(\lambda+A+B)}
$$

or equivalently

$$
|z| \leq\left\{\frac{(p-\rho)\left(1+\frac{(k-p) \gamma}{(p+\beta)}\right)^{m}[(k-p)-\alpha(\lambda(k-p+1)+(A+B))] \delta(k, p-1) b_{k}}{k(k-p) \alpha p!(\lambda+A+B)}\right\}^{\frac{1}{k-p}}
$$

Setting $|z|=r_{1}$ we get the desired result.
Theorem (5): Let a function $f \in \mathcal{K}_{\mathrm{p}}(\gamma, \beta, m, \lambda, A, B, \alpha)$. Then f is p-valently close -to-convex of order $\rho,(0 \leq \rho<p)$ in the disk $|z|<r=r_{3}(\gamma, \beta, m, \lambda, A, B, \alpha)$, where $r_{3}(\gamma, \beta, m, \lambda, A, B, \alpha, \rho)$
$=\inf _{n}\left\{\frac{(p-\rho)\left(1+\frac{(k-p) \gamma}{(p+\beta)}\right)^{m}[(k-p)-\alpha(\lambda(k-p+1)+(A+B))] \delta(k, p-1) b_{k}}{k \alpha p!(\lambda+A+B)}\right\}$.
Proof: It is sufficient to show that

$$
\begin{equation*}
\left|\frac{f^{\prime}(z)}{z^{p-1}}-p\right| \leq p-\rho, \quad \text { for }|z|<r_{3} \tag{20}
\end{equation*}
$$

We have

$$
\left|\frac{f^{\prime}(z)}{z^{p-1}}-p\right| \leq \sum_{k=p+1}^{\infty} k a_{k}|z|^{k-p}
$$

Thus

$$
\left|\frac{f^{\prime}(z)}{z^{p-1}}-p\right| \leq p-\rho
$$

if

$$
\begin{equation*}
\sum_{k=p+1}^{\infty} \frac{k a_{k}|z|^{k-p}}{p-\rho} \leq 1 \tag{21}
\end{equation*}
$$

Since $f \in \mathcal{K}_{\mathrm{p}}(\gamma, \beta, m, \lambda, A, B, \alpha)$, we have

$$
\sum_{k=p+1}^{\infty} \frac{\left(1+\frac{(k-p) \gamma}{(p+\beta)}\right)^{m}[(k-p)-\alpha(\lambda(k-p+1)+(A+B))] \delta(k, p-1) b_{k}}{\alpha p!(\lambda+A+B)} a_{k} \leq 1
$$

Hence, (21) will be true if

$$
\frac{k|z|^{k-p}}{p-\rho} \leq \frac{\left(1+\frac{(k-p) \gamma}{(p+\beta)}\right)^{m}[(k-p)-\alpha(\lambda(k-p+1)+(A+B))] \delta(k, p-1) b_{k}}{\alpha p!(\lambda+A+B)}
$$

or equivalently

$$
|z| \leq\left\{\frac{(p-\rho)\left(1+\frac{(k-p) \gamma}{(p+\beta)}\right)^{m}[(k-p)-\alpha(\lambda(k-p+1)+(A+B))] \delta(k, p-1) b_{k}}{k \alpha p!(\lambda+A+B)}\right\}^{\frac{1}{k-p}}, n
$$

$$
\geq 1,
$$

Setting $|z|=r_{3}$ we get the desired result.

5- weighted Mean and Arithmetic Mean.

Definition (3): Let f_{1} and f_{2} be in the class $\mathcal{K}_{\mathrm{p}}(\gamma, \beta, m, \lambda, A, B, \alpha)$. Then the weighted mean w_{q} of f_{1} and f_{2} is given by

$$
w_{q}(z)=\frac{1}{2}\left[(1-q) f_{1}(z)+(1+q) f_{2}(z)\right], \quad 0<q<1 .
$$

Theorem (6): Let f_{1} and f_{2} be in the class $\mathcal{K}_{\mathrm{p}}(\gamma, \beta, m, \lambda, A, B, \alpha)$. Then the weighted mean w_{q} of f_{1} and f_{2} is also in the class $\mathcal{K}_{\mathrm{p}}(\gamma, \beta, m, \lambda, A, B, \alpha)$.
Proof: By Definition (3), we have

$$
\begin{gathered}
w_{q}(z)=\frac{1}{2}\left[(1-q) f_{1}(z)+(1+q) f_{2}(z)\right] \\
w_{q}(z)=\frac{1}{2}\left[(1-q)\left(z^{p}+\sum_{k=p+1}^{\infty} a_{k, 1} z^{k}\right)+(1+q)\left(z^{p}+\sum_{k=p+1}^{\infty} a_{k, 2} z^{k}\right)\right] \\
2 z^{p}+\sum_{k=p+1}^{\infty} \frac{1}{2}\left[(1-q) a_{k, 1}+(1+q) a_{k, 2}\right] a^{k}
\end{gathered}
$$

Since f_{1} and f_{2} are in the class $\mathcal{K}_{\mathrm{p}}(\gamma, \beta, m, \lambda, A, B, \alpha)$. So by Theorem (1), we get

$$
\begin{aligned}
\sum_{k=p+1}^{\infty} & \left(1+\frac{(k-p) \gamma}{(p+\beta)}\right)^{m}[(k-p)-\alpha(\lambda(k-p+1)+(A+B))] \delta(k, p-1) a_{k, 1} b_{k} \\
& \leq \alpha p!(\lambda+A+B)
\end{aligned}
$$

and

$$
\begin{aligned}
\sum_{k=p+1}^{\infty} & \left(1+\frac{(k-p) \gamma}{(p+\beta)}\right)^{m}[(k-p)-\alpha(\lambda(k-p+1)+(A+B))] \delta(k, p-1) a_{k, 2} b_{k} \\
& \leq \alpha p!(\lambda+A+B)
\end{aligned}
$$

Hence

$$
\begin{gathered}
\sum_{k=p+1}^{\infty}\left(1+\frac{(k-p) \gamma}{(p+\beta)}\right)^{m}[(k-p)-\alpha(\lambda(k-p+1)+(A+B))] \delta(k, p-1) \\
\times\left(\frac{1}{2}\left[(1-q) a_{k, 1}+(1+q) a_{k, 2}\right]\right) b_{k} \\
=\frac{1}{2}(1-q) \sum_{k=p+1}^{\infty}\left(1+\frac{(k-p) \gamma}{(p+\beta)}\right)^{m}[(k-p)-\alpha(\lambda(k-p+1)+(A+B))] \delta(k, p-1) a_{k, 1} b_{k} \\
+\frac{1}{2}(1+q) \sum_{k=p+1}^{\infty}\left(1+\frac{(k-p) \gamma}{(p+\beta)}\right)^{m}[(k-p)-\alpha(\lambda(k-p+1)+(A+B))] \delta(k, p-1) a_{k, 2} b_{k} \\
\leq \frac{1}{2}(1-q)(\alpha p!(\lambda+A+B))+\frac{1}{2}(1+q)(\alpha p!(\lambda+A+B))=\alpha p!(\lambda+A+B)
\end{gathered}
$$

There for $w_{q} \in \mathcal{K}_{\mathrm{p}}(\gamma, \beta, m, \lambda, A, B, \alpha)$. The proof is complete.
Theorem (7): Let $f_{1}, f_{2}, \ldots f_{l}$ defined by

$$
\begin{equation*}
f_{i}(z)=z^{p}+\sum_{k=p+1}^{\infty} a_{k, i} z^{k},\left(a_{n, i} \geq 0, i=1,2,3, \ldots l, k \geq p+1\right) \tag{22}
\end{equation*}
$$

be in the class $\mathcal{K}_{\mathrm{p}}(\gamma, \beta, m, \lambda, A, B, \alpha)$. Then the arithmetic mean of $f_{i}(z),(i=1,2,3, \ldots, l)$ defined by

$$
\begin{equation*}
h(z)=\frac{1}{l} \sum_{i=1}^{\infty} f_{i}(z) \tag{23}
\end{equation*}
$$

also in the class $\mathcal{K}_{\mathrm{p}}(\gamma, \beta, m, \lambda, A, B, \alpha)$.
Proof: By (22) and (23) we can write

$$
\begin{gathered}
h(z)=\frac{1}{l} \sum_{i=1}^{\infty}\left(z^{p}+\sum_{k=p+1}^{\infty} a_{k, i} z^{k}\right) \\
=z^{p}+\sum_{k=p+1}^{\infty}\left(\frac{1}{l} \sum_{i=1}^{l} a_{k, i}\right) z^{k} .
\end{gathered}
$$

Since $f_{i} \in \mathcal{K}_{\mathrm{p}}(\gamma, \beta, m, \lambda, A, B, \alpha)$ for every $(i=1,2,3, \ldots, l)$ so by using Theorem (1) we prove that,

$$
\begin{gathered}
\sum_{k=p+1}^{\infty}\left(1+\frac{(k-p) \gamma}{(p+\beta)}\right)^{m}[(k-p)-\alpha(\lambda(k-p+1)+(A+B))] \delta(k, p-1)\left(\frac{1}{l} \sum_{i=1}^{l} a_{k, i}\right) b_{k} \\
=\frac{1}{l} \sum_{i=1}^{l} \sum_{k=p+1}^{\infty}\left(\left(1+\frac{(k-p) \gamma}{(p+\beta)}\right)^{m}[(k-p)-\alpha(\lambda(k-p+1)+(A+B))] \delta(k, p-1)\right) a_{k, i} b_{k} \\
\leq \frac{1}{l} \sum_{i=1}^{l} \alpha p!(\lambda+A+B)=\alpha p!(\lambda+A+B)
\end{gathered}
$$

There for $h \in \mathcal{K}_{\mathrm{p}}(\gamma, \beta, m, \lambda, A, B, \alpha)$. The proof is complete.

6- Convex Linear Combination:

Theorem (8): The class $\mathcal{K}_{\mathrm{p}}(\gamma, \beta, m, \lambda, A, B, \alpha)$ is closed under convex linear combinations.
Proof: Let f and g be the arbitrary elements of $\mathcal{K}_{\mathrm{p}}(\gamma, \beta, m, \lambda, A, B, \alpha)$ Then for every $(0<t<1)$, we show that $(1-t) f(z)+t g(z) \in \mathcal{K}_{\mathrm{p}}(\gamma, \beta, m, \lambda, A, B, \alpha)$. Thus, we have

$$
(1-t) f(z)+\operatorname{tg}(z)=z^{p}-\sum_{n=\mathrm{p}+1}^{\infty}\left[(1-t) a_{n}+t a_{n, 2}\right] z^{n}
$$

Therefore

$$
\begin{gathered}
\sum_{k=p+1}^{\infty}\left(1+\frac{(k-p) \gamma}{(p+\beta)}\right)^{m}[(k-p)-\alpha(\lambda(k-p+1)+(A+B))] \delta(k, p-1) b_{k}\left[(1-t) a_{n, 1}\right. \\
\left.\quad+t a_{n, 2}\right] \\
=(1-t) \sum_{k=p+1}^{\infty}\left(1+\frac{(k-p) \gamma}{(p+\beta)}\right)^{m}[(k-p)-\alpha(\lambda(k-p+1)+(A+B))] \delta(k, p-1) b_{k} a_{n, 1} \\
+t \sum_{k=p+1}^{\infty}\left(1+\frac{(k-p) \gamma}{(p+\beta)}\right)^{m}[(k-p)-\alpha(\lambda(k-p+1)+(A+B))] \delta(k, p-1) b_{k} a_{n, 2} \\
\leq(1+t) \alpha p!(\lambda+A+B)+t \alpha p!(\lambda+A+B)=\alpha p!(\lambda+A+B) .
\end{gathered}
$$

This completes the proof.

Reference:

[1] W. G. Atshan and A. S. Joudah, Subclass of meromorphic univalent functions defined by Hadamard product with multiplier transforma- tion, Int. Math. Forum, 6(46)(2011), 2279. 2292.
[2] W. G. Atshan and S. R. Kulkarni, On application of Differential subordination for certain subclass of meromorphically p-valent func- tions with positive coefficients defined by linear operator, J. Ineq. Pure Appl. Math., 10(2)(2009), Article 53, 11 pages.
[3] A. W. Goodman, Univalent functions and non-analytic curves, Proc. Amer. Math. Soc., 8(3) (1957), 598-601.
[4] S. M. Khairnar and M. More, Some analytic and multivalent func- tions defined by subordination property, Gen. Math. 17(3)(2009), 105-124.
[5] H. Mahzoon, New subclasses of multivalent functions defined by dif- ferential Subordination, Appl. Math. Sciences, 6(95)(2012), 4701.4708.
6] H. Mahzoon and S. Latha, Neighborhoods of multivalent functions, Int. Journal of Math. Analysis, 3(30)(2009), 1501-1507.
[7] S. Ruscheweyh, Neighborhoods of univalent functions, Proc. Amer. Math. Soc., 81(1981), 521527.
[8] Ming -Sheng Liu and Nian -Sheng Song, Two new subclasses of mero- morphically multivalent functions associated with generalized hyper- geometric function, Southeast Asian Bulletin of Mathematics, 34 (2010), 705-727.

