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Abstract. In this paper, we introduce the dual notion of ss-injective module, namely 

ss-flat module. The connection between ss-injectivity and ss-flatness is given.  

Min-Coherent rings, 𝐹𝑆 -rings, 𝑃𝑆 -rings, and universally mininjective rings are 

characterized in terms of ss-flat modules and ss-injectivite modules. 
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1. Introduction 
    In [1], the notion of ss-injectivity was 

introduced and studied. A right 𝑅-module 𝑀 is 

called ss-injective if any right 𝑅-homomorphism 

𝑓: 𝑆𝑟 ∩ 𝐽 ⟶ 𝑀  extends to 𝑅 ; equivalently, if 

Ext1(𝑅 (𝑆𝑟 ∩ 𝐽)⁄ ,𝑀) = 0 . L. Mao [2] 

introduced the notion min-flat, for any left 

𝑅 -module 𝑁 , 𝑁  is called min-flat if 

Tor1(𝑅 𝐼⁄ , 𝑁) = 0 for every simple right ideal 𝐼. 
     In this paper, we introduce and investigate 

the notion of ss-flat modules as a generalization 

of flat modules. A left 𝑅-module 𝑀 is said to 

be ss-flat if Tor1(𝑅 (𝑆𝑟 ∩ 𝐽)⁄ ,𝑀) = 0 . 

Examples are established to show that the notion 

of ss-flatness is distinct from that of min-flatness 

and flatness. several properties of the class of flat 

modules are given, for example, we prove that a 

left 𝑅 -module 𝑀  is ss-flat iff 𝑀+ =
Homℤ(𝑀,ℚ ℤ⁄ ) is ss-injective iff the sequence 

0 ⟶ (𝑆𝑟 ∩ 𝐽)⨂𝑀 ⟶ 𝑅⨂𝑀 is exact. Also, we 

prove that the class of all left is closed under 

pure submodule and direct limits. In Theorem 2.9, 

we prove that a ring 𝑅 is right  

 
 

min-coherent iff the class of ss-flat modules is 

closed under direct products iff R 𝑅𝑆 is ss-flat, 

for any index set 𝑆 iff every left 𝑅-module has 

(𝑆𝑆𝐹)-preenvelope, where 𝑆𝑆𝐹 is the class of 

all left ss-flat modules. Also, we introduce the 

concept of ss-coherent ring as a proper 

generalization of coherent ring. Many 

characterization of ss-coherent rings are given, 

for example, we prove that a ring 𝑅 is right 

ss-coherent iff (a right 𝑅 -module 𝑀  is 

ss-injective iff 𝑀+ is ss-flat) iff the class of all 

ss-injective right 𝑅 -modules is closed under 

direct limits. We study ss-flat modules and 

ss-injective modules over commutative ring. For 

example, we prove that a commutative ring 𝑅 is 

min-coherent iff Hom(𝑀,𝑁)  is ss-flat for all 

projective 𝑅 -modules 𝑀  and 𝑁 . Also, we 

prove that if 𝑅  is a commutative ss-coherent 

ring, then an 𝑅 -module 𝑀  is ss-injective iff 

Hom(𝑀,𝑁)  is ss-flat for any injective 

𝑅-module 𝑁. In  
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Proposition 2.22, we prove that if 𝑀 is a simple 

module over a commutative ring 𝑅, then 𝑀 is 

ss-flat iff 𝑀 is ss-injective. As a corollary, we 

prove that if 𝑅 is a commutative ring, then 𝑅 is 

a universally mininjective iff 𝑅 is 𝑃𝑆-ring iff 

𝑅 is an 𝐹𝑆-ring,    

Next, we recall some facts and notions needed in 

the sequel. An exact sequence 0 ⟶ 𝐴
  𝑓  
→ 𝐵

  𝑔  
→ 𝐶 ⟶ 0 of right 𝑅-modules is called pure if 

every finitely presented right 𝑅 -module 𝑃  is 

projective with respect to this sequence and we 

called that 𝑓(𝐴) is a pure submodule of 𝐵 [3]. 

A right 𝑅-module 𝑀 is called pure injective if 

𝑀 is injective with respect to every pure exact 

sequence [3]. Let 𝑅 be a ring and ℱ be a class 

of right 𝑅 -modules. An 𝑅 -homomorphism 

𝑓:𝑀 ⟶ 𝑁 is said to be ℱ-preenvelope of 𝑀 

where 𝑁 ∈ ℱ  if, for every 𝑅 -homomorphism 

𝑔:𝑀 ⟶ 𝐹  with 𝐹 ∈ ℱ , there is an 

𝑅-homomorphism  :𝑁 ⟶ 𝐹 such that 𝑓 = 𝑔. 

An 𝑅-homomorphism 𝑓:𝑁 ⟶ 𝑀 is said to be 

ℱ -precover of 𝑀  where 𝑁 ∈ ℱ  if, for every 

𝑅-homomorphism 𝑔: 𝐿 ⟶ 𝑀 with 𝐿 ∈ ℱ, there 

is an 𝑅 -homomorphism : 𝐿 ⟶ 𝑁  such that 

𝑓 = 𝑔 [4]. Let ℱ (resp. 𝒢) be a class of left 

(resp. right) 𝑅-modules. The pair ( ℱ,𝒢 ) is said 

to be almost dual pair if for any left R-module 

𝑀 , 𝑀 ∈ ℱ  if and only if 𝑀+ ∈ 𝒢 ; and 𝒢  is 

closed under direct summands and direct products 
[4, p. 66]. 

     Throughout this paper, 𝑅 is an associative 

ring with identity and all modules are unitary. By 

𝐽  (resp., 𝑆𝑟)  we denote the Jacobson radical 

(resp., the right socle) of 𝑅. If 𝑋 is a subset of 

𝑅, the right annihilator of 𝑋 in 𝑅 is denoted by 

𝑟(𝑋) . Let 𝑀  and 𝑁  be 𝑅 -modules. The 

character module 𝑀+  is defined by 𝑀+ =
Homℤ(𝑀,ℚ ℤ⁄ ) . The symbol Hom(𝑀,𝑁) 
(resp., Ext𝑛(𝑀,𝑁)) means Hom𝑅(𝑀,𝑁) (resp., 

Ext𝑅
𝑛(𝑀,𝑁) ), and similarly 𝑀⨂𝑁  (resp., 

Tor𝑛(𝑀,𝑁)) means 𝑀⨂𝑅𝑁 (resp., Tor𝑛
𝑅(𝑀,𝑁)) 

for an integer 𝑛 ≥ 1. 

      We can find the general background 

materials, for example in [1, 2, 5].  

2. ss-Flat Modules 

Definition 2.1. A left 𝑅-module 𝑀 is said to 

be ss-flat if Tor1(𝑅 (𝑆𝑟 ∩ 𝐽)⁄ ,𝑀) = 0. 

 

 

 

 

 

 
 

Examples 2.2. 
(1) Any flat module is ss-flat, but the converse 

is not true. For example the ℤ-module ℤ𝑛 

is not flat for all 𝑛 ≥ 2 (see [5, Examples 

(2), p. 155]), but it is clear that ℤ  as 

ℤ-module is ss-flat for any prime number 

 . 

(2) Every ss-flat module is min-flat, since if 𝑀 

is an ss-flat left 𝑅-module, then 𝑀+ is an 

ss-injective right 𝑅 -module (by Lemma 

2.3) and hence from [1, Lemma 2.6] we 

have that 𝑀+ is right mininjective. By [2, 

Lemma 3.2], 𝑀 is min-flat. 

(3) The Björk Example [6, Example 4.15]. Let 

𝐹  be a field and let    ̅  be an 

isomorphism 𝐹 ⟶ �̅�  𝐹 , where the 

subfield �̅�  𝐹 . Let 𝑅  denote the left 

vector space on basis *1 ,  +, and make 𝑅 

into an 𝐹-algebra by defining  2 = 0 and 

  =  ̅  for all  ∈ 𝐹 . By [1, Example 

4.4], 𝑅  is right mininjective ring but not 

right ss-injective ring. If   m ( ̅𝐹) is finite, 

then 𝑅 right artinian by [6, Example 4.15]. 

Therefore, 𝑅 is a right coherent ring. Thus 

𝑅+  is a left min-flat 𝑅 -module by [2, 

Theorem 4.5], but the left 𝑅-module 𝑅+ is 

not ss-flat by Theorem 2.10 below. 

Lemma 2.3. The following statements are 

equivalent for a left 𝑅-module 𝑀: 

(1) 𝑀 is ss-flat. 
(2) 𝑀+ is ss-injective. 

(3) Tor1(𝑅 𝐴⁄ ,𝑀) = 0 , for every semisimple 

small right ideal 𝐴 of 𝑅. 

(4) Tor1(𝑅 𝐵⁄ ,𝑀) = 0  for every finitely 

generated semisimple small right ideal 𝐵 of 

𝑅. 

(5) The sequence 0 ⟶ (𝑆𝑟 ∩ 𝐽)⨂𝑀 ⟶ 𝑅𝑅⨂𝑀 

is exact. 

(6) The sequence 0 ⟶ 𝐴⨂𝑀 ⟶ 𝑅𝑅⨂𝑀  is 

exact for every finitely generated semisimple 

small right ideal 𝐴 of 𝑅. 
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Proof. (1) ⇔ (2) This follows from 

Ext1(𝑅 (𝑆𝑟 ∩ 𝐽)⁄  ,𝑀+) ≅
Tor1(𝑅 (𝑆𝑟 ∩ 𝐽)⁄  ,𝑀)+ (see the dual version of 

[7, Theorem 3.2.1]). 

(2)⇒(3) By the dual version of [7, Theorem 3.2.1] 

and [1, Proposition 2.7], Tor1(𝑅 𝐴⁄  , 𝑀)+ ≅
Ext1(𝑅 𝐴 ,𝑀+) = 0⁄  for every semisimple small 

right ideal 𝐴 of 𝑅. 

(3)⇒(1) Clear. 

(4)⇒(3) Let 𝐼 be a semisimple small right ideal 

of 𝑅 , so 𝐼 = l m
⟶
 𝐼𝑖  , where 𝐼𝑖  is a finitely 

generated semisimple small right ideal of 𝑅 , 

𝑓𝑖𝑗: 𝐼𝑖 ⟶ 𝐼𝑗 is the inclusion map, and (𝐼𝑖 , 𝑓𝑖𝑗) is 

a direct system (see [7, Example 1.5.5 (2)]). 

Clearly, (𝑅 𝐼𝑖⁄  , 𝑖𝑗)  is a direct system of 

𝑅-modules, where 𝑖𝑗: 𝑅 𝐼𝑖 ⟶ 𝑅 𝐼𝑗⁄⁄  is defined 

by 𝑖𝑗( + 𝐼𝑖) =  + 𝐼𝑗  with direct limit 

(𝑖  , l m
⟶
𝑅 𝐼𝑖⁄ ). Since the following diagram is 

commutative: 

                            0 ⟶ 𝐼𝑖
  𝑖𝑖    
→  𝑅

  𝜋𝑖  
→  𝑅 𝐼𝑖⁄ ⟶ 0 

                           
               𝑓𝑖𝑗         𝑖𝑗 

       0 ⟶ 𝐼𝑗
  𝑖𝑗    
→  𝑅

  𝜋𝑗  
→  𝑅 𝐼𝑗⁄ ⟶ 0 

 

 

where 𝑖𝑖  and 𝜋𝑖  are the inclusion and natural 

maps, respectively, thus the sequence 0 ⟶ 𝐼
   𝑖   
→ 𝑅

   𝑢   
→   l m

⟶
𝑅 𝐼𝑖⁄ ⟶ 0  is exact by [3, 24.6]. 

It follows from [3, 24.4] that the following 

diagram is commutative:  

          𝑅 
   𝜋𝑖  
→   𝑅 𝐼𝑖  ⁄ ⟶  0  

                𝑖    
             

          𝑅
   𝑢   
→   l m

⟶
𝑅 𝐼𝑖⁄ ⟶ 0  

Thus the family of mappings {𝑔𝑖: 𝑅 𝐼𝑖⁄ ⟶

𝑅 l m
⟶
𝐼𝑖⁄  , where 𝑔𝑖( + 𝐼𝑖) =  + l m

⟶
𝐼𝑖}  forms 

a direct system of homomorphisms, since for 

𝑖 ≤ 𝑗, we get 𝑔𝑗𝑖𝑗( + 𝐼𝑖) = 𝑔𝑗( + 𝐼𝑗) =  +

l m
⟶
 𝐼𝑖 = 𝑔𝑖( + 𝐼𝑖) for all  + 𝐼𝑖 ∈ 𝑅 𝐼𝑖⁄ . Thus, 

there is an  

 

 

 

 
 

 

 

 

 

𝑅-homomorphism 𝛼 such that the following  
 

diagram is commutative with short exact rows 

(see [3, 24.1]): 

0 ⟶ 𝐼
    𝑖   
→  𝑅

                  𝑢                  
→             
    𝜋𝑖   
→   𝑅 𝐼𝑖⁄

    𝑖   
→   l m

⟶
𝑅 𝐼𝑖⁄ ⟶ 0 

                              𝛼                         
                                                

0 ⟶ 𝐼
    𝑖   
→  𝑅

    𝜋𝑖   
→   𝑅 𝐼𝑖⁄

    𝑔𝑖   
→   

                  𝜋                  
→             

𝑅 l m
⟶
𝐼𝑖⁄ ⟶ 0 

where 𝜋 is the natural map, so it follows from 

[8, Exercise 11 (1), p. 52] that l m
⟶
𝑅 𝐼𝑖⁄ ≅

𝑅 l m
⟶
𝐼𝑖⁄  . Therefore,  

  

                               

Tor1(𝑅 𝐼⁄ ,𝑀) = Tor1 (𝑅 l m
⟶
 𝐼𝑖⁄ ,𝑀) 

                                                        

≅ Tor1 (l m
⟶
𝑅 𝐼𝑖⁄ ,𝑀)        (by [9, Theorem 

XII.5.4 (4)]) 

                                                        

≅ l m
⟶
 Tor1(𝑅 𝐼𝑖⁄ ,𝑀) = 0    (by [10, 

Proposition 7.8]). 

(3)⇒(4) Clear. 

(1)⇔(5) By [9, Theorem XII.5.4 (3)], we have 

the exact sequence 

0 ⟶ Tor1(𝑅 (𝑆𝑟 ∩ 𝐽)⁄ ,𝑀) ⟶ (𝑆𝑟 ∩ 𝐽)⨂𝑀 ⟶
𝑅𝑅⨂𝑀. Thus the equivalence between (1) and (5) 

is true. 

(4)⇔(6) is similar to ((1)⇔(5)). ∎ 

     In following, we will use the symbol 𝑆𝑆𝐼 
(resp. 𝑆𝑆𝐹 ) to denote the classes of ss-injective 

right (resp. ss-flat left ) 𝑅-modules. 

Corollary 2.4. The pair ( 𝑆𝑆𝐹, 𝑆𝑆𝐼 ) is an 

almost dual pair. 

Proof. By Lemma 2.3 and [1, Theorem 2.4]. ∎ 

Lemma 2.5. For a ring 𝑅 , the following 

statements hold:  

(1) If 𝑆𝑟 ∩ 𝐽  is finitely generated, then every 

pure submodule of ss-injective right 

𝑅-module is ss-injective. 

(2) Every pure submodule of ss-flat left 

𝑅-module is ss-flat. 

(3) Every direct limits (direct sums) of ss-flat left 

𝑅-modules is ss-flat. 

(4) If 𝑀,𝑁 are left 𝑅-modules, 𝑀 ≅ 𝑁, and 𝑀 

is ss-flat, then 𝑁 is ss-flat. 

 

 

Akeel. R / Adel. S 

 



 

 

37 

 

Journal of AL-Qadisiyah for computer science and mathematics 

Vol.8   No.2   Year  2016 

 

Proof. (1) Let 𝑀  be an ss-injective right 

𝑅-module and 𝑁 be a pure submodule of 𝑀. 

Since 𝑅 (𝑆𝑟 ∩ 𝐽)⁄  is finitely presented, thus the 

sequence Hom(𝑅 (𝑆𝑟 ∩ 𝐽)⁄  ,𝑀) ⟶ 

Hom(𝑅 (𝑆𝑟 ∩ 𝐽)⁄  ,𝑀 𝑁⁄ ) ⟶ 0 is exact. By [9, 

Theorem XII.4.4 (4)], we have the exact 

sequence 

Hom(𝑅 (𝑆𝑟 ∩ 𝐽)⁄  ,𝑀) ⟶
Hom(𝑅 (𝑆𝑟 ∩ 𝐽)⁄  ,𝑀 𝑁⁄ ) ⟶
Ext1(𝑅 (𝑆𝑟 ∩ 𝐽)⁄  , 𝑁) ⟶
Ext1(𝑅 (𝑆𝑟 ∩ 𝐽)⁄  ,𝑀) = 0  which leads to 

Ext1(𝑅 (𝑆𝑟 ∩ 𝐽)⁄  , 𝑁) = 0 . Hence 𝑁  is an 

ss-injective right 𝑅-module. 

(2), (3) and (4) By Corollary 2.4 and [4, 

Proposition 4.2.8, p. 70]. ∎ 

    Recall that a right 𝑅-module 𝑀 is said to 

be 𝐹𝑃 -injective (or absolutely pure) if 

Ext1(𝑁,𝑀) = 0  for every finitely presented 

right 𝑅 -module 𝑁  (see [11, 12]). A right 

𝑅-module 𝑀 is called 𝑛-presented, if there is 

an exact sequence 𝐹𝑛 ⟶ 𝐹𝑛−1⟶ ⋯ ⟶ 𝐹0⟶
𝑀⟶ 0 such that each 𝐹𝑖 is a finitely generated 

free right 𝑅 -module (see [13]). A ring 𝑅  is 

called min-coherent, if every simple right ideal 

of 𝑅 is finitely presented (see [2]); equivalently, 

if every finitely generated semisimple small right 

ideal is finitely presented. In the following 

definition, we will introduce the concept of 

ss-coherent ring as a generalization of coherent 

ring 

Definition 2.6. A ring 𝑅 is said to be right 

ss-coherent ring, if 𝑅  is a right min-coherent 

and 𝑆𝑟 ∩ 𝐽 is finitely generated; equivalently, if 

𝑆𝑟 ∩ 𝐽 is finitely presented. 

Example 2.7.  
(1) Every coherent ring is ss-coherent. 

(2) Every ss-coherent ring is min-coherent. 

(3) Let 𝑅  be a commutative ring, then the 

polynomial ring 𝑅, -  is not coherent ring 

with zero socle by [2, Remark 4.2 (3)]. Hence 

𝑅, - is an ss-coherent ring but not coherent. 

Corollary 2.8. A right ideal 𝑆𝑟 ∩ 𝐽 of a ring 

𝑅  is finitely generated if and only if every 

𝐹𝑃-injective right 𝑅-module is ss-injective. 

Proof. By [11, Proposition, p. 361]. ∎ 

Theorem 2.9. The following statements are 

equivalent for a ring 𝑅: 
(1) 𝑅 is a right min-coherent ring. 

(2) If 𝑀 is an ss-injective right 𝑅-module, then 

𝑀+ is ss-flat. 

 

 

 

(3) If 𝑀 is an ss-injective right 𝑅-module, then 

𝑀++ is ss-injective. 

(4) A left 𝑅-module 𝑁 is ss-flat if and only if 

𝑁++ is ss-flat. 

(5) 𝑆𝑆𝐹 is closed under direct products. 

(6) R𝑅
𝑆 is ss-flat for any index set 𝑆. 

(7) Ext2(𝑅 𝐼⁄ ,𝑀) = 0  for every 𝐹𝑃 -injective 

right 𝑅 -module 𝑀  and every finitely 

generated semisimple small right ideal 𝐼. 
(8) If 0 ⟶ 𝑁 ⟶ 𝑀⟶  ⟶ 0  is an exact 

sequence of right 𝑅 -modules with 𝑁  is 

𝐹𝑃 -injective and 𝑀  is ss-injective, then 

Ext1(𝑅 𝐼⁄ ,  ) = 0  for every finitely 

generated semisimple small right ideal 𝐼. 
(9) Every left 𝑅 -module has an 

(𝑆𝑆𝐹)-preenvelope. 

(10) If 𝛼:𝑀 ⟶ 𝑁 is an (𝑆𝑆𝐼)-preenvelope of a 

right 𝑅 -module 𝑀 , then 𝛼+: 𝑁+⟶𝑀+  is 

an (𝑆𝑆𝐹)-precover of 𝑀+. 

(11) For any positive integer 𝑛  and any 

 1,  ,  𝑛 ∈ 𝑆𝑟 ∩ 𝐽 , then the right ideal 

*𝑟 ∈ 𝑅   1 𝑟 +  2 𝑟2 +⋯+  𝑛 𝑟 𝑛 =
0  or  ome 𝑟1, ⋯ , 𝑟𝑛 ∈ 𝑅+  is finitely 

generated. 

(12) For any finitely generated semisimple small 

right ideal 𝐴 of 𝑅 and any  ∈ 𝑆𝑟 ∩ 𝐽, then 
*𝑟 ∈ 𝑅:  𝑟 ∈ 𝐴+ is finitely generated. 

(13) 𝑟( )  is finitely generated for any simple 

right ideal  𝑅. 

(14) Every simple submodule of a projective right 

𝑅-module is finitely presented. 

Proof. (1)⇒(2) Let 𝐼 be a finitely generated 

semisimple small right ideal of 𝑅, thus there is 

an exact sequence 𝐹2
   𝛼2   
→   𝐹1

   𝛼1   
→   𝐼 ⟶ 0  in 

which 𝐹𝑖  is a finitely generated free right 

𝑅-module, 𝑖 = 1,2  by hypothesis. Therefore, 

the sequence 𝐹2
   𝛼2   
→   𝐹1

   𝛽   
→  𝑅

   𝜋   
→  𝑅 𝐼⁄ ⟶ 0  is 

exact, where 𝑖: 𝐼 ⟶ 𝑅  and 𝜋: 𝑅 ⟶ 𝑅 𝐼⁄  are 

the inclusion and the natural maps, respectively 

and 𝛽 = 𝑖𝛼1 . Thus 𝑅 𝐼⁄  is 2-presented and 

hence [13, Lemma 2.7] implies that 

Tor1(𝑅 𝐼⁄ ,𝑀+) ≅ Ext1(𝑅 𝐼⁄ ,𝑀)+ = 0 . 

Therefore, 𝑀+ is an ss-flat left 𝑅-module. 

(2)⇒(3) By (2) and Lemma 2.3. 

(3)⇒ (4) Assume that 𝑁  is an ss-flat left 

𝑅-module, thus 𝑁+  is ss-injective by Lemma 

2.3 and this implies that 𝑁+++ is ss-injective by  

(3). So 𝑁++ is ss-flat by Lemma 2.3 again. The 

converse is obtained by [3, 34.6 (1)] and Lemma 

2.5 (2). 
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(4)⇒(5) By (4), (𝑆𝑆𝐹)++  𝑆𝑆𝐹. Since ( 𝑆𝑆𝐹, 

𝑆𝑆𝐼 ) is an almost dual pair (by Corollary 2.4), 

thus [4, Proposition 4.3.1 and Proposition 4.2.8 

(3)] implies that 𝑆𝑆𝐹  is closed under direct 

products. 

(5)⇒(6) Clear. 

(6)⇒(1) By Example 2.2 (2) and [2, Theorem 

4.5]. 

(1) ⇒ (7) Let 𝐼  be a finitely generated 

semisimple small right ideal of 𝑅 and let 𝑀 be 

a 𝐹𝑃-injective right 𝑅-module. By [9, Theorem 

XII.4.4 (3)], we have the exact sequence 

Ext1(𝐼,𝑀) ⟶ Ext2(𝑅 𝐼⁄ ,𝑀) ⟶ Ext2(𝑅,𝑀) . 

But Ext1(𝐼,𝑀) = 0  (since 𝑀  is 𝐹𝑃 -injective 

and 𝐼 is finitely presented) and Ext2(𝑅,𝑀) = 0 

(since 𝑅  is projective). Thus Ext2(𝑅 𝐼⁄ ,𝑀) =
0. 

(7)⇒ (8) Let 0 ⟶ 𝑁 ⟶ 𝑀⟶  ⟶ 0  be an 

exact sequence of right 𝑅-modules, where 𝑁 is 

𝐹𝑃-injective and 𝑀 is ss-injective and let 𝐼 be 

a finitely generated semisimple small right ideal 

of 𝑅. By [9, Theorem XII.4.4 (4)], we have an 

exact sequence 0 = Ext1(𝑅 𝐼⁄ ,𝑀) ⟶
Ext1(𝑅 𝐼⁄ ,  ) ⟶ Ext2(𝑅 𝐼⁄ , 𝑁) = 0 . Thus 

Ext1(𝑅 𝐼⁄ ,  ) = 0 for every finitely generated 

semisimple small right ideal 𝐼 of 𝑅. 

(8) ⇒ (1) Let 𝑁  be a 𝐹𝑃 -injective right 

𝑅 -module, thus we have the exact sequence 

0 ⟶ 𝑁 ⟶ 𝐸(𝑁) ⟶ 𝐸(𝑁) 𝑁⁄ ⟶ 0. Let 𝐼 be a 

finitely generated semisimple small right ideal of 

𝑅, thus Ext1(𝑅 𝐼⁄ , 𝐸(𝑁) 𝑁⁄ ) = 0 by hypothesis. 

So it follows from [9, Theorem XII.4.4 (4)] that 

the sequence 0 = Ext1(𝑅 𝐼⁄ , 𝐸(𝑁) 𝑁⁄ ) ⟶
Ext2(𝑅 𝐼⁄ , 𝑁) ⟶ Ext2(𝑅 𝐼⁄ , 𝐸(𝑁)) = 0  is 

exact, and so Ext2(𝑅 𝐼⁄ , 𝑁) = 0. Hence we have 

the exact sequence 0 = Ext1(𝑅, 𝑁) ⟶
Ext1(𝐼, 𝑁) ⟶ Ext2(𝑅 𝐼⁄ , 𝑁) = 0  (see [9, 

Theorem XII.4.4 (3)]). Thus Ext1(𝐼, 𝑁) = 0 and 

this implies that 𝐼 is finitely presented (see [11]). 

Therefore 𝑅 is a right min-coherent. 

(5)⇔(9) By Corollary 2.4 and [4, Proposition 

4.2.8 (3), p. 70]. 

(2)⇒(10) Since (𝑆𝑆𝐼)+  𝑆𝑆𝐹 (by hypothesis) 

and (𝑆𝑆𝐹)+  𝑆𝑆𝐼  (by Lemma 2.3), thus the 

result follows from [14, 3.2, p. 1137]. 

(10)⇒(2) By taking 𝑀 is an ss-injective right 

𝑅-module in (10). 

(1) ⇒ (11) Let  1 ,  2 ,  ,  𝑛 ∈ 𝑆𝑟 ∩ 𝐽 . Put 

𝐾1 =  1𝑅 +  2𝑅 +⋯+  𝑛𝑅  and 𝐾2 =  2𝑅 +
⋯+  𝑛𝑅 . Thus 𝐾1 =  1𝑅 + 𝐾2 . Define 

𝑓: 𝑅 ⟶ 𝐾1 𝐾2⁄  by 𝑓(𝑟) =  1𝑟 + 𝐾2 which is a 

well-define 𝑅 -epimorphism, because if 

𝑟1 = 𝑟2 ∈ 𝑅, then  1𝑟1 −  1𝑟2 = 0 ∈ 𝐾2, that is 

 1𝑟1 + 𝐾2 =  1𝑟2 + 𝐾2. Now we have 

 

 ker(𝑓) = *𝑟 ∈ 𝑅  1𝑟 + 𝐾2 = 𝐾2+ = *𝑟 ∈
𝑅   1𝑟 ∈ 𝐾2+ = *𝑟 ∈ 𝑅   1 𝑟 +  2 𝑟2 +⋯+
 𝑛 𝑟𝑛 = 0 for some 𝑟2, ⋯ , 𝑟𝑛 ∈ 𝑅+. By (1) and 

using [15, Lemma 4.54 (1)], we have that 𝐾1 𝐾2⁄  

is finitely presented. But 𝑅 ker (𝑓) ≅⁄ 𝐾1 𝐾2⁄ , so 

ker (𝑓) is finitely generated. 

(11)⇒(12) Let  ∈ 𝑆𝑟 ∩ 𝐽 and 𝐴 be any finitely 

generated semisimple small right ideal of 𝑅 , 

then 𝐴 =⊕𝑖=1
𝑛  𝑖𝑅 , so we have that *𝑟 ∈

𝑅  𝑟 ∈ 𝐴+ = *𝑟 ∈ 𝑅   𝑟 +  1 𝑟1 +⋯+  𝑛 𝑟𝑛 =
0  or  ome 𝑟1, ⋯ , 𝑟𝑛 ∈ 𝑅+  if finitely generated 

by hypothesis. 

(12)⇒(13) By taking 𝐴 = 0.  

(13)⇒(1) Let  𝑅 be a simple right ideal. Since 

𝑟( )  is finitely generated and  𝑅 ≅ 𝑅 𝑟( )⁄ , 

thus  𝑅 is finitely presented. 

(1)⇒(14) Let 𝑆𝑟 =⊕𝑖∈𝐼  𝑖𝑅 , where  𝑖𝑅  is a 

simple right ideal for each 𝑖 ∈ 𝐼 . If 𝑃  is a 

projective right 𝑅 -module, then 𝑃  is 

isomorphic to a direct summand of 𝑅(𝑆)  for 

some index set 𝑆 . Let 𝐴  be any simple 

submodule of 𝑃 , then 𝐴 ≅ 𝐵 ≤⨁⊕𝑆 𝑆𝑟 =
⊕𝑆⊕𝑖∈𝐼  𝑖𝑅. Since 𝐴 is finitely generated, then 

there are finite index sets 𝑆0  𝑆  and 𝐼0  𝐼 
such that 𝐴 ≅ 𝐵 ≤⨁=⊕𝑆0⊕𝑖∈𝐼0  𝑖𝑅 , so it 

follows from [15, Lemma 4.54 (3)] that 𝐴 is 

finitely presented. 

(14)⇒(1) Clear. ∎ 

     Recall that a subclass ℱ  of Mo -𝑅  is 

said to be definable if it is closed under direct 

products, direct limits and pure submodules (see 

[4, Definition 2.4.1, p. 29]). 

Theorem 2.10. The following statements are 

equivalent for a ring 𝑅: 

(1) 𝑅 is a right ss-coherent ring. 

(2) A right 𝑅-module 𝑀  is ss-injective if and 

only if 𝑀+ is ss-flat. 

(3) A right 𝑅-module 𝑀  is ss-injective if and 

only if 𝑀++ is ss-injective. 

 
(4) 𝑆𝑆𝐼 is closed under direct limits. 

(5) 𝑆𝑟 ∩ 𝐽  is finitely generated and every pure 

quotient of ss-injective right 𝑅 -module is 

ss-injective. 

(6) The following two conditions hold: 

(a) Every right 𝑅 -module has an 

(𝑆𝑆𝐼)-cover. 

(b) Every pure quotient of ss-injective right 

𝑅-module is ss-injective. 
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Proof. (1)⇒(2) Let 𝑀+ be ss-flat. Then 𝑀++ 

is ss-injective by Lemma 2.3, so it follows from 

[3, 34.6 (1)] and Lemma 2.5 (1) that 𝑀  is 

ss-injective. The converse is obtained by 

Theorem 2.9. 

(2)⇒(3) Let 𝑀++  be ss-injective, thus 𝑀+  is 

ss-flat by Lemma 2.3 and hence 𝑀  is 

ss-injective by hypothesis. The converse is true 

by Theorem 2.9. 

(3) ⇒ (1) Let 𝑀  be an 𝐹𝑃 -injective right 

𝑅-module, then the exact sequence 0 ⟶ 𝑀⟶
𝐸(𝑀) ⟶ 𝐸(𝑀) 𝑀⁄ ⟶ 0  is pure by [16, 

Proposition 2.6 (c)], so it follows from [3, 34.5] 

that the sequence 0 ⟶ 𝑀++⟶ 𝐸(𝑀)++⟶
(𝐸(𝑀) 𝑀⁄ )++⟶ 0  is split. Since 𝐸(𝑀)++  is 

ss-injective by hypothesis, thus 𝑀++  is 

ss-injective and hence 𝑀  is ss-injective by 

hypothesis again. Therefore, 𝑆𝑟 ∩ 𝐽  is finitely 

generated by Corollary 2.8, and so 𝑆𝑟 ∩ 𝐽  is 

finitely presented by Theorem 2.9. Thus 𝑅 is a 

right ss-coherent ring. 

(1)⇒ (4) Let *𝑀𝜆+𝜆∈Λ  be a direct system of 

ss-injective right 𝑅 -modules. Since 𝑆𝑟 ∩ 𝐽  is 

finitely presented, then 𝑅 𝑆𝑟 ∩ 𝐽⁄  is 2-presented, 

so it follows from [13, Lemma 2.9 (2)] that 

Ext1 (𝑅 (𝑆𝑟 ∩ 𝐽)⁄ , l m
⟶
 𝑀𝜆) ≅

l m
⟶
 Ext1(𝑅 (𝑆𝑟 ∩ 𝐽)⁄ ,𝑀𝜆) = 0 . Hence l m

⟶
 𝑀𝜆 

is ss-injective. 

(4)⇒(2)  Let *𝐸𝑖: 𝑖 ∈ 𝐼+ be a family of injective 

right 𝑅 -modules. Since 

⊕𝑖∈𝐼 𝐸𝑖 = l m
⟶
 *⊕𝑖∈𝐼0 𝐸𝑖: 𝐼0  𝐼, 𝐼0   n te +  (see 

[3, p. 206]), then ⊕𝑖∈𝐼 𝐸𝑖  is ss-injective and 

hence 𝑆𝑟 ∩ 𝐽  is finitely generated by [1, 

Corollary 2.25]. By Lemma 2.5, 𝑆𝑆𝐼 is closed 

under pure submodules. Since 𝑆𝑆𝐼  is closed 

under direct products ( by [1, Theorem 2.4]) and 

since 𝑆𝑆𝐼  is closed under direct limits ( by 

hypothesis), thus 𝑆𝑆𝐼 is a definable class. By [4, 

Proposition 4.3.8, p. 89], (𝑆𝑆𝐼, 𝑆𝑆𝐹)  is an 

almost dual pair and hence a right 𝑅-module 𝑀  
 

is ss-injective if and only if 𝑀+ is ss-flat  

(2)⇒(5) By the equivalence between (1) and (2), 

we have that 𝑆𝑟 ∩ 𝐽 is finitely generated. Now, 

let 0 ⟶ 𝑁 ⟶ 𝑀⟶ 𝑀 𝑁⁄ ⟶ 0  be a pure 

exact sequence of right 𝑅-modules with 𝑀 is 

ss-injective, so it follows from [3, 34.5] that the 

sequence 0 ⟶ (𝑀 𝑁⁄ )+⟶𝑀+⟶𝑁+⟶ 0 is 

split. By hypothesis, 𝑀+ is ss-flat, so (𝑀 𝑁⁄ )+ 

is ss-flat. Thus 𝑀 𝑁⁄  is ss-injective by 

hypothesis again. 

 

 

 

 (5)⇒(4) Let *𝑀𝜆+𝜆∈Λ  be a direct system of 

ss-injective right 𝑅-modules. By [3, 33.9 (2)], 

there is a pure exact sequence ⊕𝜆∈Λ  𝑀𝜆 ⟶
l m
⟶
 𝑀𝜆 ⟶ 0. Since ⊕𝜆∈Λ  𝑀𝜆 is ss-injective by 

[1, Corollary 2.25], thus l m
⟶
 𝑀𝜆 is ss-injective 

by hypothesis. 

(5) ⇔ (6) By [1, Corollary 2.25] and [17, 

Theorem 2.5]. ∎ 

Corollary 2.11. A ring 𝑅 is ss-coherent if 

and only if it is min-coherent and the class 𝑆𝑆𝐼 
is closed under pure submodules. 

Proof. ( ⇒ ) Suppose that 𝑅  is 

ss-coherent ring, thus 𝑅 is min-coherent 

and 𝑆𝑟 ∩ 𝐽 is a finitely generated right 

ideal of 𝑅. By Lemma 2.5 (1), 𝑆𝑆𝐼 is 

closed under pure submodules. 

(⇐ ) Let 𝑀  be any ss-injective right 

𝑅 -module. Since 𝑅  is min-coherent, 

thus Theorem 2.9 implies that 𝑀+  is 

ss-flat. Conversely, let 𝑀 be any right 

𝑅-module with such that 𝑀+ is ss-flat. 

By Lemma 2.3, 𝑀++  is ss-injective. 

Since 𝑀 is a pure submodule of 𝑀++ 

( by [3, 34.6 (1)]) and since 𝑆𝑆𝐼  is 

closed under pure submodule ( by 

hypothesis) it follows that 𝑀  is 

ss-injective. Hence for any right 

𝑅 -module 𝑀 , we have that  𝑀  is 

ss-injective if and only if 𝑀+ is ss-flat. 

Thus Theorem 2.10 implies that 𝑅  is 

ss-coherent. ∎ 

Corollary 2.12. The following statements are 

equivalent for a right min-coherent ring 𝑅: 
(1) Every ss-flat left 𝑅-module is flat. 

(2) Every ss-injective right 𝑅 -module is 

𝐹𝑃-injective. 

(3) Every ss-injective pure injective right 

𝑅-module is injective. 

Proof. (1)⇒ (2) For any ss-injective right 

𝑅-module 𝑀, then 𝑀+  is ss-flat by Theorem 

2.9, and so 𝑀+ is flat by hypothesis. Thus 𝑀++ 

is injective by [10, Proposition 3.54]. Since 𝑀 

is pure submodule of 𝑀++ , then 𝑀  is 

𝐹𝑃-injective by [20, 35.8]. 

(2)⇒(3) By [16, Proposition 2.6 (c)] and [3, 

33.7]. 
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(3)⇒ (1) Assume that 𝑁  is an ss-flat left 

𝑅-module, thus 𝑁+ is ss-injective pure injective 

by Lemma 2.3 and [3, 34.6 (2)]. Thus 𝑁+ is 

injective, and so 𝑁 is flat by [10, Proposition 

3.54]. ∎ 

Proposition 2.13. The following statements 

are equivalent for a right ss-coherent ring 𝑅: 

(1) 𝑅 is a right ss-injective ring. 

(2) Every left 𝑅 -module has a monic ss-flat 

preenvelope. 

(3) Every right 𝑅-module has epic ss-injective 

cover. 

(4) Every injective left 𝑅-module is ss-flat. 

(5) Every flat right 𝑅-module is ss-injective. 

Proof. (1)⇒(2) Let 𝑁  be a left 𝑅 -module, 

then there is an 𝑅-epimorphism 𝛼: 𝑅𝑅
(𝑆)
⟶ 𝑁+ 

for some index set 𝑆 by [10, Theorem 2.35], 

and so there is an 𝑅-monomorphism 𝑔:𝑁 ⟶
(𝑅𝑅
+)𝑆 by applying [9, Proposition XI.2.3], [3, 

11.10 (2) (ii)] and [3, 34.6 (1)], respectively. On 

the other hand,  𝑁  has ss-flat preenvelope 

𝑓:𝑁 ⟶ 𝐹  by Theorem 2.9. Since (𝑅𝑅
+)𝑆  is 

ss-flat by Theorem 2.9 again, thus there is an 

𝑅 -homomorphism : 𝐹 ⟶ (𝑅𝑅
+)𝑆  such that 

𝑓 = 𝑔 , so this implies that 𝑓  is an 

𝑅-monomorphism. 

(2)⇒(4) Let 𝑁 be an injective left 𝑅-module, 

then there is an 𝑅 -monomorphism 𝑓:𝑁 ⟶ 𝐹 

with 𝐹 is ss-flat. But 𝑁 ≅ 𝑓(𝑁)  ⨁ 𝐹, so we 

have that 𝑁 is ss-flat by Lemma 2.5 (4). 

(4)⇒(5) Let 𝑀 be a flat right 𝑅-module, then 

𝑀+  is injective and hence ss-flat. Thus 𝑀 is 

ss-injective by Theorem 2.10. 

(5)⇒(1) Obvious, since 𝑅𝑅 is flat. 

(1)⇒(3) Let 𝑀 be any right 𝑅-module, then 𝑀  

has ss-injective cover, say, 𝑔:𝑁 ⟶ 𝑀  by 

Theorem 2.10. By [10, Theorem 2.35], there is 

an 𝑅 -epimorphism 𝑓: 𝑅𝑅
(𝑆)
⟶𝑀  for some 

index set 𝑆. Since 𝑅𝑅
(𝑆)

 is ss-injective by [1, 

Corollary 2.25], then there is an 

𝑅 -homomorphism : 𝑅𝑅
(𝑆)
⟶ 𝑁  such that 

𝑔 = 𝑓, so 𝑔 is an 𝑅-epimorphism. 

(3)⇒(1) Let 𝑓:𝑁 ⟶ 𝑅𝑅 be an epic ss-injective 

cover. Since 𝑅𝑅 is projective, then there is an 

𝑅-homomorphism 𝑔: 𝑅𝑅 ⟶ 𝑁 such that 𝑓𝑔 = 𝐼𝑅, 

thus 𝑓  is split, and so 𝑁 = ker (𝑓) ⊕ 𝐵  for 

some ss-injective submodule 𝐵 of 𝑁. Therefore, 

𝑅𝑅 ≅ 𝑁 ker (𝑓)⁄ ≅ 𝐵 is ss-injective. ∎ 

 

 

 

 

 

Proposition 2.14. The class 𝑆𝑆𝐼 is closed 

under cokernels of homomorphisms if and only 

if coker(𝛼) is ss-injective for every ss-injective 

right 𝑅-module 𝑀 and 𝛼 ∈ En (𝑀). 

Proof. (⇒) Clear. 

(⇐ ) Let 𝐴  and 𝐵  be any ss-injective right 

𝑅 -modules and 𝑓  be any 𝑅 -homomorphism 

from 𝐴  to 𝐵 . Define 𝛼: 𝐴 ⊕ 𝐵 ⟶ 𝐴⊕𝐵  by 

𝛼(( , 𝑦)) = (0, 𝑓( )) . Thus, we have that 

(𝐴 ⊕ 𝐵)  m (𝛼)⁄ ≅  (𝐴 ⊕ 𝐵) (0⊕  m (𝑓))⁄  

≅ 𝐴⊕ (𝐵  m (𝑓)⁄ )  is ss-injective. Thus 

𝐵  m (𝑓)⁄  is ss-injective. ∎ 

Proposition 2.15. The class 𝑆𝑆𝐹 is closed 

under kernels of homomorphisms if and only if 

ker(𝛼) is ss-flat, for every ss-flat left 𝑅-module 

𝑀 and 𝛼 ∈ En (𝑀). 

Proof. (⇒) Clear. 

(⇐) Let 𝑔:𝑁 ⟶ 𝑀 be any 𝑅-homomorphism 

with 𝑁  and 𝑀  are ss-flat left 𝑅 -modules. 

Define 𝛼:𝑁 ⊕𝑀 ⟶ 𝑁⊕𝑀  by 𝛼(( ,  )) =

(0, 𝑔( )) . Thus ker(𝛼) = ker(𝑔) ⊕𝑀  is 

ss-flat by hypothesis and hence ker(𝑔)  is 

ss-flat. ∎ 

Theorem 2.16. If 𝑅 is a commutative ring, 

then the following statements are equivalent: 

(1) 𝑅 is  a min-coherent ring. 

(2) Hom(𝑀,𝑁)  is ss-flat for all ss-injective 

𝑅 -modules 𝑀  and all injective 𝑅 -modules 

𝑁. 

(3) Hom(𝑀,𝑁)  is ss-flat for all injective 

𝑅-modules 𝑀 and 𝑁. 

(4) Hom(𝑀,𝑁)  is ss-flat for all projective 

𝑅-modules 𝑀 and 𝑁. 

(5) Hom(𝑀,𝑁)  is ss-flat for all projective 

𝑅-modules 𝑀 and all ss-flat 𝑅-modules 𝑁. 

Proof. (1)⇒ (2) If 𝐼  is a finitely generated 

semisimple small ideal of 𝑅, then 𝐼 is finitely 

presented. By [9, Theorem XII.4.4 (3)], we have 

the exact sequence 0 ⟶ Hom(𝑅 𝐼⁄ ,𝑀) ⟶
Hom(𝑅,𝑀) ⟶ Hom(𝐼,𝑀) ⟶ 0 . Thus the 

sequence 0 ⟶ Hom(Hom(𝐼,𝑀), 𝑁) ⟶
Hom(Hom(𝑅,𝑀), 𝑁) ⟶
Hom(Hom(𝑅 𝐼⁄ ,𝑀), 𝑁) ⟶ 0  is exact by [9, 

Theorem XII.4.4 (3)] again. So we have the 

exact sequence 0 ⟶ Hom(𝑀,𝑁)⨂𝐼 ⟶
Hom(𝑀,𝑁)⨂𝑅 ⟶ Hom(𝑀,𝑁)⨂(𝑅 𝐼⁄ ) ⟶ 0  
by [7, Theorem 3.2.11] and this implies that 

Hom(𝑀,𝑁) is ss-flat. 

(2)⇒(3) Clear. 
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(3) ⇒ (1) By [5, Proposition 2.3.4] and 

[10,Theorem 2.75], we have that (𝑅++)𝑆 ≅ 

(Hom(𝑅+⨂𝑅,ℚ ℤ⁄ ))
𝑆
≅ (Hom(𝑅+, 𝑅+))

𝑆
 for 

any index set 𝑆 . Thus 

(𝑅++)𝑆 ≅ Hom(𝑅+, (𝑅+)𝑆)  is ss-flat for any 

index set 𝑆 by [3, 11.10 (2)] and since 𝑅+ and 

(𝑅+)𝑆  are injective. Since 𝑅𝑆  is a pure 

submodule of (𝑅++)𝑆 by [3, 34.6 (1)] and [18, 

Lemma 1 (2)], so it follows from Lemma 2.5 (2) 

that 𝑅𝑆 is ss-flat for any index set 𝑆. Thus (1) 

follows from Theorem 2.9. 

(1)⇒(5) Since 𝑀 is a projective 𝑅-module, thus 

there is a projective 𝑅 -module 𝑃  such that 

𝑀⊕ 𝑃 ≅ 𝑅(𝑆) for some index set 𝑆. Therefore, 

Hom(𝑀,𝑁)⊕ Hom(𝑃,𝑁) ≅ Hom(𝑅(𝑆), 𝑁)  

≅ (Hom(𝑅,𝑁))
𝑆
≅ 𝑁𝑆 by [3, 11.10 and 11.11]. 

But 𝑁𝑆  is ss-flat by Theorem 2.9, thus 

Hom(𝑀,𝑁) is ss-flat. 

(5)⇒(4) Clear. 

(4)⇒(1) For any index set 𝑆, by [3, 11.10 and 

11.11], we have that 𝑅𝑆 ≅ Hom(𝑅(𝑆), 𝑅). Thus 

𝑅𝑆 is ss-flat by (4), so it follows from Theorem 

2.9 that (1) holds. ∎ 

Corollary 2.17. The following statements are 

equivalent for a commutative ss-coherent ring 𝑅: 

(1) 𝑀 is an ss-injective 𝑅-module. 

(2) Hom(𝑀,𝑁)  is ss-flat for any injective 

𝑅-module 𝑁. 

(3) 𝑀⨂𝑁 is ss-injective for any flat 𝑅-module 

𝑁. 

Proof. (1)⇒(2) By Theorem 2.16. 

(2)⇒(3) By [10, Theorem 2.75], we have that 

(𝑀⨂𝑁)+ ≅ Hom(𝑀,𝑁+) for any 𝑅-module 𝑁. 

If 𝑁  is flat, then 𝑁+  is injective by [10, 

Proposition 3.54], so (𝑀⨂𝑁)+  is ss-flat by 

hypothesis. Therefore, 𝑀⨂𝑁 is ss-injective by 

Theorem 2.10. 

(3)⇒(1) This follows from [5, Proposition 2.3.4], 

since 𝑅 is flat. ∎ 

Corollary 2.18. Let 𝑅  be a commutative 

ss-coherent ring and 𝑆𝑆𝐹  is closed under 

kernels of homomorphisms. Then the following 

conditions hold for any 𝑅-module 𝑁: 

(1) Hom(𝑀,𝑁)  is ss-flat for any ss-injective 

𝑅-module 𝑀. 

(2) Hom(𝑁,𝑀)  is ss-flat for any ss-flat 

𝑅-module 𝑀. 

(3) 𝑀⨂𝑁  is ss-injective for any ss-injective 

𝑅-module 𝑀. 

 

 

 
 

Proof. (1) Let 𝑀 be an ss-injective 𝑅-module. 

It is clear that the exact sequence 0 ⟶ 𝑁 ⟶
𝐸0⟶ 𝐸1  induces the exact sequence 0 ⟶
Hom(𝑀,𝑁) ⟶ Hom(𝑀, 𝐸0) ⟶ Hom(𝑀, 𝐸1)  

where 𝐸0 and 𝐸1 are injective 𝑅-modules. By 

Theorem 2.16, we have that Hom(𝑀, 𝐸0) and 

Hom(𝑀, 𝐸1)  are ss-flat, thus Hom(𝑀,𝑁)  is 

ss-flat by hypothesis. 

(2) Let 𝑀 be an ss-flat 𝑅-module, so we have 

the exact sequence 0 ⟶ Hom(𝑁,𝑀) 
⟶Hom(𝐹0, 𝑀) ⟶ Hom(𝐹1, 𝑀) where 𝐹0  and 

𝐹1 are free 𝑅-modules. By Theorem 2.16, the 

modules Hom(𝐹0, 𝑀)  and Hom(𝐹1, 𝑀)  are 

ss-flat. Therefore Hom(𝑁,𝑀)  is ss-flat by 

hypothesis. 

(3) Let 𝑀 be any ss-injective 𝑅-module, then 

(𝑀⨂𝑁)+ ≅ Hom(𝑀,𝑁+)  is ss-flat by [10, 

Theorem 2.75] and applying (1), and hence 

𝑀⨂𝑁 is ss-injective by Theorem 2.10. ∎ 

Theorem 2.19. Let 𝑅  be a commutative 

ss-coherent ring, then the following conditions 

are equivalent: 

(1) 𝑅 is an ss-injective ring. 

(2) Hom(𝑀,𝑁) is ss-injective for any projective 

𝑅-module 𝑀 and any flat 𝑅-module 𝑁. 

(3) Hom(𝑀,𝑁) is ss-injective for any projective 

𝑅-modules 𝑀 and 𝑁. 

(4) Hom(𝑀,𝑁) is ss-injective for any injective 

𝑅-modules 𝑀 and 𝑁. 

 
(5) Hom(𝑀,𝑁) is ss-flat for any flat 𝑅-module 

𝑀 and any injective 𝑅-module 𝑁. 

(6) 𝑀⨂𝑁  is ss-flat for any flat 𝑅 -module 𝑀 

and any injective 𝑅-module 𝑁. 

Proof. (1)⇒(2) Since 𝑅  is ss-injective, thus 

every flat 𝑅 -module is ss-injective by 

Proposition 2.13. Let 𝑀  be a projective 

𝑅 -module, then 𝑀⊕𝑃 ≅ 𝑅(𝑆)  for some 

projective 𝑅-module 𝑃 and for some index set 

𝑆 . Thus for all flat 𝑅 -module 𝑁 , we have 

Hom(𝑀,𝑁)⊕ Hom(𝑃,𝑁) ≅ Hom(𝑅(𝑆), 𝑁) ≅
𝑁𝑆  by [3, 11.10 and 11.11]. Since 𝑁𝑆  is 

ss-injective, thus Hom(𝑀,𝑁) is ss-injective. 

(2)⇒(3) Clear. 

(3)⇒(1) Since 𝑅 ≅ Hom(𝑅, 𝑅)  by [3, 11.11], 

thus 𝑅 is ss-injective ring. 
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(1)⇒(4)  By the dual version of [7, Theorem 

3.2.1], Ext1(𝑅 (𝑆𝑟 ∩ 𝐽)⁄  , Hom(𝑀,𝑁)) 

≅ Hom(Tor1(𝑅 (𝑆𝑟 ∩ 𝐽)⁄  ,𝑀), 𝑁)  for all 

injective 𝑅-modules 𝑀 and 𝑁. By Proposition 

2.13, 𝑀  is ss-flat. Thus 

Tor1(𝑅 (𝑆𝑟 ∩ 𝐽)⁄  ,𝑀) = 0  and hence 

Hom(𝑀,𝑁) is ss-injective. 

(4)⇒(1) To prove 𝑅 is an ss-injective ring, we 

need to prove that every injective 𝑅-module is 

ss-flat (see Proposition 2.13). Now, let 𝑀  be 

any injective 𝑅 -module, then Hom(𝑀, 𝑅+)  is 

ss-injective, so 

0 = Ext1(𝑅 (𝑆𝑟 ∩ 𝐽)⁄  , Hom(𝑀, 𝑅+)) ≅

Hom(Tor1(𝑅 (𝑆𝑟 ∩ 𝐽),⁄ 𝑀), 𝑅+) ≅
(Tor1(𝑅 (𝑆𝑟 ∩ 𝐽)⁄ ,𝑀)⨂𝑅)+  

≅ Tor1(𝑅 (𝑆𝑟 ∩ 𝐽)⁄ ,𝑀)+  by applying the dual 

version of [7, Theorem 3.2.1], [10, Theorem 2.75] 

and [5, Proposition 2.3.4]. Therefore, 

Tor1(𝑅 (𝑆𝑟 ∩ 𝐽)⁄ ,𝑀) = 0 , since ℚ ℤ⁄  is 

injective cogenerator. Thus 𝑀 is ss-flat. 

(5)⇒(1) and (6)⇒ (1) By taking 𝑀 = 𝑅  and 

using [3, 11.11] and [5, Proposition 2.3.4]. 

(1)⇒(5) Let 𝑀 be a flat 𝑅-module and 𝑁 be 

an injective 𝑅 -module,then Hom(𝑀,𝑁)  is 

injective. Therefore Hom(𝑀,𝑁)  is ss-flat by 

Proposition 2.13. 

(1)⇒(6) Let 𝑀 be a flat 𝑅-module and let 𝑁 

be an injective 𝑅-module. Then 𝑁 is ss-flat by 

Proposition 2.13, so the sequence 0 ⟶
𝑁⨂(𝑆𝑟 ∩ 𝐽) ⟶ 𝑁  is exact. Since 𝑀  is flat, 

then the sequence 0 ⟶ 𝑀⨂𝑁⨂(𝑆𝑟 ∩ 𝐽) ⟶
𝑀⨂𝑁 is exact and this implies that 𝑀⨂𝑁 is 

ss-flat. ∎ 

 

Proposition 2.20. Let 𝑅 be a commutative 

ring, then the following statements are 

equivalent: 

(1) 𝑀 is ss-flat. 

(2) Hom(𝑀,𝑁) is ss-injective for all injective 

𝑅-module 𝑁. 

(3) 𝑀⨂𝑁 is ss-flat for all flat 𝑅-module 𝑁. 

Proof. (1)⇒ (2)  Let 𝑁  be any injective 

𝑅 -module. Since 

Ext1(𝑅 (𝑆𝑟 ∩ 𝐽)⁄  , Hom(𝑀,𝑁))  

≅ Hom(Tor1(𝑅 (𝑆𝑟 ∩ 𝐽)⁄  ,𝑀), 𝑁) = 0  by the 

dual version of [7, Theorem 3.2.1], then 

Hom(𝑀,𝑁) is ss-injective. 

(2)⇒(3) Let 𝑁 be a flat 𝑅-module, then 𝑁+ is 

injective by [10, Proposition 3.54]. So it follows 

from [10, Theorem 2.75] that (𝑀⨂𝑁)+ ≅
Hom(𝑀,𝑁+)  is ss-injective. Thus 𝑀⨂𝑁  is 

ss-flat by Lemma 2.3. 

(3)⇒(1) Follows from [5, Proposition 2.3.4]. ∎ 

 

Proposition 2.21. Let 𝑅 be a commutative 

ring and 𝑀 be a semisimple 𝑅-module. If 𝑀 is 

ss-flat, then En (𝑀)  is ss-injective as 

𝑅-module. 

Proof. By [5, p. 157], there is a group 

epimorphism 𝜑: (𝑆𝑟 ∩ 𝐽)⨂𝑀 ⟶ (𝑆𝑟 ∩ 𝐽)𝑀 

given by  ⨂     for each generator 

 ⨂ ∈ (𝑆𝑟 ∩ 𝐽)⨂𝑀 . Thus we have the 

commutative diagram: 

       0 ⟶ (𝑆𝑟 ∩ 𝐽)⨂𝑀
 𝑖1⨂𝐼𝑀
→    𝑅⨂𝑀  

     
                 𝜑           𝑓 

       0 ⟶ (𝑆𝑟 ∩ 𝐽)𝑀
         𝑖2        
→      𝑀  

where 𝐼𝑀  is the identity map,  𝑖1  and 𝑖2  are 

the inclusion maps, and 𝑓 is an isomorphism 

defined by [5, Proposition 2.3.4]. Since 

𝑓 ∘ (𝑖1⨂ 𝐼𝑀)  is ℤ -monomorphism, then 𝜑  is 

isomorphism. Therefore (𝑆𝑟 ∩ 𝐽)⨂𝑀 ≅
(𝑆𝑟 ∩ 𝐽)𝑀  𝐽(𝑀) = 0 by [19, Theorem 9.2.1]. 

So it follows from [10, Theorem 2.75] that 

0 = Hom((𝑆𝑟 ∩ 𝐽)⨂𝑀,𝑀) ≅ Hom(𝑆𝑟 ∩

𝐽, En (𝑀)) . But the sequence 0 = Hom(𝑆𝑟 ∩

𝐽, En (𝑀)) ⟶ Ext1(𝑅 (𝑆𝑟 ∩ 𝐽)⁄ , En (M))  

⟶ Ext1(𝑅, 𝐸𝑛𝑑(𝑀)) = 0  is exact by [9, 

Theorem XII.4.4 (3)]. Thus 

Ext1(𝑅 (𝑆𝑟 ∩ 𝐽)⁄ , En (𝑀)) = 0  and hence 

En (𝑀) is an ss-injective as 𝑅-module. ∎ 

 

Proposition 2.22. Let 𝑅 be a commutative 

ring and 𝑀 be a simple 𝑅-module. Then 𝑀 is 

ss-flat if and only if 𝑀 is ss-injective. 

Proof. ( ⇒ ) Let 𝑀 = 𝑚𝑅  be a simple 

𝑅-module. Define 𝑓:Hom(𝑚𝑅,𝑚𝑅) ⟶ 𝑚𝑅 by 

𝑓(𝛼) = 𝛼(𝑚). We assert that 𝑓 is a well define 

𝑅 -homomorphism. Let 𝛼1 = 𝛼2 , then 

𝛼1(𝑚) = 𝛼2(𝑚), so 𝑓(𝛼1) = 𝑓(𝛼2). Now, let 

𝛼1, 𝛼2 ∈ En (𝑀)  and 𝑟1, 𝑟2 ∈ 𝑅 , then 

𝑓(𝑟1𝛼1 + 𝑟2𝛼2) = (𝑟1𝛼1 + 𝑟2𝛼2)(𝑚) =
(𝑟1𝛼1)(𝑚) + (𝑟2𝛼2)(𝑚) = 𝑟1𝛼1(𝑚) +
𝑟2𝛼2(𝑚) = 𝑟1𝑓(𝛼1) + 𝑟2𝑓(𝛼2)  proving the 

assertion. Since 𝑓(En (𝑀)) = 𝑀  and 

ker(𝑓) = *𝛼 ∈ En (𝑀): 𝑓(𝛼) = 0+ =
*𝛼 ∈ En (𝑀): 𝛼(𝑚) = 0+ = *𝛼 ∈ En (𝑀): 0  
𝑚 ∈ ker (𝛼)+ = 0 , then En (𝑀) ≅ 𝑀  and 

hence 𝑀 is ss-injective by Proposition 2.21. 

(⇐ ) Let *𝑆𝜆+𝜆∈Λ  be a family of all simple 

𝑅 -modules and 𝐸 = 𝐸(⊕𝜆∈Λ 𝑆𝜆) . Then 

Hom(𝑀, 𝐸) ≅ 𝑀 by the proof of [12, Lemma 

2.6], so it follows from the dual version of [7, 

Theorem 3.2.1] that Ext1(𝑅 (𝑆𝑟 ∩ 𝐽)⁄ ,𝑀) =
Hom(Tor1(𝑅 (𝑆𝑟 ∩ 𝐽)⁄ ,𝑀), 𝐸). Since 𝑀 is  
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ss-injective,then 

Hom(Tor1(𝑅 (𝑆𝑟 ∩ 𝐽)⁄ ,𝑀), 𝐸) = 0 . But 𝐸  is 

injective cogenerator by [8, Corollary 18.19], 

thus Tor1(𝑅 (𝑆𝑟 ∩ 𝐽)⁄ ,𝑀) = 0  (see [7, 

definition 3.2.7]) and hence 𝑀 is ss-flat. ∎ 

    Recall that a ring 𝑅  is called 𝑃𝑆 -ring 

(resp., 𝐹𝑆-ring) if 𝑆𝑟  is projective (resp., flat) 

(see [20]); equivalently, if 𝑆𝑟 ∩ 𝐽 is projective 

(resp., flat). The following corollary extends a 

result of [20, Proposition 8 (1)] that a 

commutative 𝐹𝑆-ring is 𝑃𝑆-ring. 

Corollary 2.23. The following statements are 

equivalent for a commutative ring 𝑅: 

(1) 𝑅 is a universally mininjective. 

(2) 𝑅 is a 𝑃𝑆-ring. 

(3) 𝑅 is an 𝐹𝑆-ring. 

(4) 𝑆𝑟  is ss-flat. 

Proof. By [1, Corollary 1.19] and Proposition 

2.22. ∎ 
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  انًستخهص :

كوفهىم رديف للوقاسات الاغوارية هن النوط  ss-في هذا البحث, جن جقذين ودراسة الوقاسات الوصطحة هن النوط 

-ssالنوط  . الحلقات الوحواسكة هن-min  الحلقات هن النوط ,𝐹𝑆- الحلقات هن النوط ,𝑃𝑆- والحلقات الاغوارية ,

 . -ssوالوقاسات الاغوارية هن النوط  -ssقذ شخصث باسحخذام الوقاسات الوسطحة هن النوط  -minكليا هن النوط 
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