Page 25 - 33

Dheia. G /Mohammad. A

On DM- Compact Smarandache Topological Semigroups

Dheia Gaze Salih Al-Khafajy Department of Mathematic College of Computer Science and IT University of Al-Qadisiyah E-mail: dheia.salih@qu.edu.iq Mohammed Abdulridha Mutar Wright state University, Ohio, USA E-mail: Mutar.2@wright.edu

Recived : 15\6\2016

Revised : 16\10\2016

Accepted :23\10\2016

Abstract

In this present paper, we have introduced some new definitions On DM-compact Smarandache topological semigroup and DM-L. compact Smarandache topological semigroup for the compactness in topological spaces and groups. We obtained some results related to DM-compact Smarandache topological semigroup and DM-L. compact Smarandache topological semigroup, for example any infinite group can be a DM- compact Smarandache topological semigroup.

Keywords: semigroups, groups, Smarandache semigroup, DM-covering, topological semigroup, topological group, direct product, isomorphism.

Mathematics subject classification: 22-XX

1. Introduction

A topological group $(G,\tau,*)$ is said to be compact topological group, if a topological space (G,τ) is a compact space [1]. Also a group (G,*) is said to be D-compact group if for every D-cover group of (G,*), there exists a finite sub-D-cover group of (G,*) [5].

Vasantha Kandasamy [6], introduced details on a Smarandache structure on a set **G** means a weak structure **W**on **G**, where there exists a proper subset **H** of **G** embedded with a strong structure **S**. Here, we investigated on DMcompact Smarandache topological semigroup and DM-L. compact Smarandache topological semigroup for the compaction in topological spaces and groups, we obtain some good results related to these concepts above. Al-Khafajy [7],

introduced details on D-Compact Smarandache Groupoids. Al-Khafajy and Sadek [8], studied the D-Compact Topological Groups.

Motivated by this, we introduce and study the DM-compact Smarandache topological semigroup and DM-L. compact Smarandache topological semigroup.

2. Definitions

2.1 Definition

1- We say that the triple $(G,\tau,*)$ is a topological semigroup if (G,τ) is a topological space and (G,*) is a semigroup, where $*: G \times G \rightarrow G$ is a continuous, (the set $G \times G$ has the product topology).

2- ¹We say that the triple $(G,\tau,*)$ is a topological monoid if (G,τ) is a topological space and (G,τ) is a semigroup with a unit element (monoid).

3- ²The topological semigroup $(G,\tau,*)$ is called topological group and denoted by $(G,*,\tau)$ if (G,*) is a group, such that, writing $p(x) = x^{-1}$ the inversion map $p : G \to G$ is continuous.

4- Let $(G,\tau,*)$ is a topological semigroup (monoid, group), the topological subsemigroup (submonoid, subgroup) $(H,\tau_H,*)$ is a subset Hof G with the topological and semigroup (monoid, group) structures induced from Gmake H a topological semigroup (monoid, group), respectively, where $\tau_H = H \cap \tau$

2.2 Definition

Let $(G,\tau,*)$ be a topological semigroup, T is a non empty subset of G, and I be an indexed (Iis a finite or an infinite set), we say that;

1- The family $\{A_i ; A_i \in \tau, \forall i \in I\}$ is a DMcovering set of T if $T \subseteq \bigcup_{i \in I} A_i$.

- 2-The set *T* is DM- compact Smarandache set if for any DM-covering set of *T*, there is a finite DM-subcovering set of *T*, $\{A_j\}_{j \in J}$, (*J* is a finite set), such that $T = \bigcup_{j \in J} A_j$ and $(A_j, *)$ is a group $\forall j \in J$ under the same operation * on *G*.
- 3-The set *T* is DM-L. compact Smarandache set if for any DM-covering set of *T*, there is a countable DM-subcovering set of *T*, $\{A_s\}_{s \in S}$, (S is a countable set), such that $T = \bigcup_{s \in S} A_s$ and $(A_s, *)$ is a group $\forall s \in S$ under the same operation * on *G*.

2.3 Definition

Let $(G,\tau,*)$ be a topological semigroup and *I* be an indexed (*I* is a finite or an infinite) set, we say that;

1- The family $\{G_i ; G_i \in \tau, \forall i \in I\}$ is DMcovering of $(G, \tau, *)$ if $G = \bigcup_{i \in I} G_i$.

2- The topological semigroup $(G,\tau,*)$ is DMweakly compact Smarandache topological semigroup, if there is a finite DM-covering of $(G,\tau,*)$, such that $(G_i,*)$ is a group $\forall i \in I$ under the same operation * on G.

3- The topological semigroup $(G,\tau,*)$ is DMcompact Smarandache topological semigroup if for every DM-covering of $(G,\tau,*)$ there is a finite sub-DM-covering $\{G_j\}_{j\in J}$, (J is a finite set), such that $G = \bigcup_{j\in J} G_j$ and $(G_j,*)$ is a group $\forall j \in J$ under the same operation * on G.

¹ See [6]

² See [2]

4- The topological semigroup $(G,\tau,*)$ is DMweakly L. compact Smarandache topological semigroup, if there is a countable DM-covering of $(G,\tau,*)$, such that $(G_j,*)$ is a group $\forall j \in J$ under the same operation * on G.

5- The topological semigroup $(G,\tau,*)$ is DM-L. compact Smarandache topological semigroup if for every DM-covering of $(G,\tau,*)$ there is a countable sub-DM-covering $\{G_s\}_{s\in S}$, (S is a countable set), such that $G = \bigcup_{s\in S} G_s$ and $(G_s,*)$ is a group $\forall s \in S$ under the same operation * on G.

2.4 Definition

³Let $(G,\tau,*)$ and $(\overline{G},\overline{\tau},\overline{*})$ be two topological semigroups, we say that;

1- $f: (G,\tau,*) \to (\overline{G},\overline{\tau},\overline{*})$ is a homomorphism if $f: (G,\tau) \to (\overline{G},\overline{\tau})$ is a continuous and

 $f(x * y) = f(x) \bar{*} f(y) \quad \forall x, y \in G.$

2- $f: (G,\tau,*) \to (\overline{G},\overline{\tau},\overline{*})$ is an *isomorphism* if it is a topological homeomorphism and $f(x * y) = f(x) \overline{*} f(y) \quad \forall x, y \in G.$

3 Main Results

The prove of the following lemma is direct, hence is omitted.

3.1 Lemma

Any DM- compact Smarandache topological semigroup is DM- weakly (DM-L.) compact Smarandache topological semigroup.

3.2 Theorem

Any infinite group can be a DM- compact Smarandache topological semigroup.

Proof

Let (G,*) is any an infinite group, I is a set (finite or infinite), defined

 $\tau = \{ A_i \subseteq G ; A_i^c \text{ is a finite set, } (A_i,*) \text{ group} \\ \forall i \in I \& A_{i_1} \subseteq A_{i_2} \text{ for } i_1 \leq i_2 \} \cup \emptyset.$

It is clear that $\tau \neq \emptyset$, since every finite group *G*, ($o(G) \ge 4$), has nontrivial subgroups unless it is cyclic of prime order, but *G* is an infinite so *G* has nontrivial subgroups, [3].

It is easy to prove that (G,*) is a topological space;

- 1- $\emptyset \in \tau$ and $G^c = \emptyset$ is a finite $\implies G \in \tau$.
- 2- Let $A_1, A_2 \in \tau$ so A_1^c , A_2^c are finite, but $(A_1 \cap A_2)^c = A_1^c \cup A_2^c \Longrightarrow (A_1 \cap A_2)^c$ is finite and we know that $(A_1 \cap A_2, *)$ is a group \Longrightarrow $A_1 \cap A_2 \in \tau$.
- 3- Let $A_s \in \tau$, $\forall s \in S \Longrightarrow A_s^c$ is a finite $\forall s \in S$ $\Longrightarrow \bigcap_{s \in S} A_s^c$ is a finite and $(\bigcup_{s \in S} A_s)^c =$ $\bigcap_{s \in S} A_s^c$, and we know that $\bigcup_{s \in S} A_s = A_t$ for some *t* where $s \le t \ \forall s \in S$ so $(\bigcup_{s \in S} A_s, *)$ is a group and hence $\bigcup_{s \in S} A_i \in \tau$.

Therefore (G,*) is a topological space. And hence $(G,\tau,*)$ is a topological group, which is also a topological semigroup.

Let $\{A_{\lambda}; A_{\lambda} \in \tau, \lambda \in \Lambda\}$, indexed by Λ , be any DM-covering of $(G,\tau,*)$, that is $G = \bigcup_{\lambda \in \Lambda} A_{\lambda}$. Let $A_{\circ} \in \{A_{\lambda}\}_{\lambda \in \Lambda} \Longrightarrow (A_{\circ},*)$ is a group and A_{\circ}^{c} is a finite set, suppose that $A_{\circ}^{c} = \{a_{1}, a_{2}, \ldots, a_{n}\}$, where $a_{i} \in G \ \forall j \in J$. For

³ See [2]

each $j \in J$ there is $A_{\lambda_j} \in \{A_\lambda\}_{\lambda \in \Lambda}$ such that $a_j \in A_{\lambda_j} \implies A^c = \bigcup_{j \in J} A_{\lambda_j}$. But $G = A \circ \bigcup A^c \cong G = A \circ \bigcup (\bigcup_{j \in J} A_{\lambda_j})$, so that there is a finite sub-DM-covering $\{A \circ, A_{\lambda_1}, A_{\lambda_2}, \ldots, A_{\lambda_n}\}$ which is $(A \circ, *)$ and $(A_{\lambda_j}, *)$ are groups for each $j \in J$, and therefore $(G, \tau, *)$ is a DM- compact Smarandache topological semigroup.

By Lemma 3.1 and Theorem 3.2 we can prove the following, any infinite group can be a DM- weak (DM-L.) compact Smarandache topological semigroup.

We can prove directly, by order the group and Lemma 3.1, the following theorem,

3.3 Theorem

Let $(G,\tau,*)$ be a topological semigroup, such that *G* is a finite set. Then the following are equivalents;

1- $(G,\tau,*)$ is a DM- compact Smarandache topological semigroup.

2- $(G,\tau,*)$ is a DM-L. compact Smarandache topological semigroup.

3.4 Theorem

Let $(G,\tau,*)$ be a topological semigroup and $A, B \subseteq G$, if A, B are DM- compact Smarandache set. Then $A \cup B$ is a DM-compact Smarandache set.

Proof

Let $\{U_i\}_{i \in I}$ be a DM-covering set of $A \cup B$ where $U_i \in \tau, \forall i \in I$, so that, $A \subseteq \bigcup_{i \in I} U_i$ and $B \subseteq \bigcup_{i \in I} U_i$ but A and B are DM- compact Smarandache sets, then there are finite subsets $J_1.J_2 \subseteq I$ such that $A \subseteq \bigcup_{s \in I_1} U_s$ and $B \subseteq \bigcup_{t \in J_2} U_t$ where $(U_s, *)$ and $(U_t, *)$ are groups for each $s \in J_1, t \in J_2$, hence $A \cup B$ $\subseteq (\bigcup_{s \in J_1} U_s) \cup (\bigcup_{t \in J_2} U_t) = \bigcup_{j \in J_1 \cup J_2} U_j$ where $J_1 \cup J_2$ is a finite set and $(U_j, *)$ is a group for each $j \in J_1 \cup J_2$. Therefore $A \cup B$ is a DMcompact Smarandache set.

The prove of the following corollary is direct from Theorem 3.4, hence is omitted.

3.5 Corollary

Let $(G,\tau,*)$ be a topological semigroup and $A \cdot B \in \tau$ such that $A \cup B$ is a DM- compact Smarandache set, if (B,*) is group. Then A is a DM- compact Smarandache set.

3.6 Theorem

Let $(G,\tau,*)$ be a topological semigroup and $A, B \subseteq G$, if

1- $A \cup B$ is a DM- compact Smarandache set,

2- A and B are disjoint open sets,

3- (A,*), (B,*) are groups,

Then A and B are DM- compact Smarandache sets.

Proof

Let $\{U_i\}_{i \in I}$ be a DM-covering set of A where $U_i \in \tau . \forall i \in I \implies A \cup B \subseteq (\bigcup_{i \in I} U_i) \cup B$ but $A \cup B$ is a DM-Smarandache compact set, so that, there is a finite subset of I such that $A \cup B \subseteq (\bigcup_{j \in J} U_j) \cup B$ where $(U_j, *)$ are group $\forall j \in J \implies (A \cup B) \cap A \subseteq [(\bigcup_{j \in J} U_j) \cup B] \cap$ $A \implies A \subseteq A \cap (\bigcup_{j \in J} U_j) \implies A \subseteq \bigcup_{j \in J} U_j,$

hence A is a DM- compact Smarandache set. By similarity can we prove that B is a DMcompact Smarandache set.

3.7 Theorem

Let $(G,\tau,*)$ be a topological semigroup and $A \subseteq H \subseteq G$, if (H,*) is a group and A is a DMcompact Smarandache set in $(G,\tau,*)$. Then A is a DM- compact Smarandache set in $(H,\tau_H,*_H)$.

Proof

Let $\{H_i\}_{i \in I}$ be any DM-covering set of A in $(H, \tau_H, *_H)$, (where $\tau_H = H \cap \tau$), that is $A \subseteq \bigcup_{i \in I} H_i$ and $H_i = G_i \cap H \cdot G_i \in \tau$, $\forall i \in I \implies A \subseteq \bigcup_{i \in I} (G_i \cap H) = (\bigcup_{i \in I} G_i) \cap H$ $\implies A \subseteq \bigcup_{i \in I} G_i$ but A is a DM- compact Smarandache set in $(G, \tau, *)$, so there is a finite subset $J \subseteq I$ such that $A = \bigcup_{j \in J} G_j$ and $(G_j, *)$ is a group $\forall j \in J \implies A = (\bigcup_{j \in J} G_j) \cap H$ $= \bigcup_{j \in J} (G_j \cap H)$, where $(G_j \cap H, *)$ is a group $\forall j \in J$.

Therefore *A* is a DM- compact Smarandache set in $(H, \tau_H, *_H)$.

The prove of the following theorem is direct, hence is omitted.

3.8 Theorem

Let $(G,\tau,*)$ be a DM- compact Smarandache topological semigroup and $H \subseteq G$, if (H,*) is a subgroup of (G,*). Then $(H,\tau_H,*)$ is a DMcompact Smarandache topological semigroup.

3.9 Corollary

Let $(G,\tau,*)$ is a DM- compact Smarandache topological semigroup and $H_i \subseteq G$, indexed by I, be any family of subset of G such that $(H_i,*)$ is a subgroup of (G,*) for each $i \in I$. Then $(\bigcap_{i \in I} H_i, \mathcal{T},*)$ is a DM- compact Smarandache topological semigroup, (where $\mathcal{T} = (\bigcap_{i \in I} H_i) \cap \tau$).

3.10 Theorem

Let $(G,\tau,*)$ and $(\overline{G},\overline{\tau},\overline{*})$ are two topological semigroups, if (G.*) is a group and $(\overline{G},\overline{\tau},\overline{*})$ is a DM- compact Smarandache topological semigroup. Then $(G \times \overline{G}, \tau \times \overline{\tau}, \otimes)$ is a DMcompact Smarandache topological semigroup.

Proof

Let $\{(G \times \overline{G}_i, \otimes); \overline{G}_i \in \overline{\tau}, \forall i \in I\}$ be any DMcovering of $G \times \overline{G} \implies G \times \overline{G} = \bigcup_{i \in I} (G \times \overline{G}_i)$ $= G \times (\bigcup_{i \in I} \overline{G}_i) \implies \overline{G} = \bigcup_{i \in I} \overline{G}_i$ but $(\overline{G}, \overline{\tau}, \overline{*})$ is a DM- compact Smarandache topological semigroup, so there is a finite subset $J \subseteq I$ such that $\overline{G} = \bigcup_{j \in J} \overline{G}_j$ and $(\overline{G}_j, \overline{*})$ is a group $\forall j \in J$

 $\Rightarrow \quad G \times \overline{G} = G \times (\bigcup_{j \in J} \overline{G}_j) = \bigcup_{j \in J} (G \times \overline{G}_j)$ where $G \times \overline{G}_j \in \tau \times \overline{\tau}$ and $(G \times \overline{G}_j, \otimes)$ is a group for each $j \in J$. Therefore $(G \times \overline{G}, \tau \times \overline{\tau}, \otimes)$ is a DM- compact Smarandache topological semigroup.

3.11 Theorem

Let $(G,\tau,*)$ and $(\overline{G},\overline{\tau},\overline{*})$ be two DMcompact Smarandache topological semigroups. Then $(G \times \overline{G}, \tau \times \overline{\tau}, \otimes)$ is a DM- compact Smarandache topological semigroup.

Proof

Let $(G,\tau,*)$ and $(\overline{G},\overline{\tau},\overline{*})$ are two DM- compact Smarandache topological semigroup \Rightarrow there exists a DM-covering groups $\{G_a\}_{a\in A}$ and $\{\overline{G}_b\}_{b\in B}$ of G and \overline{G} , respectively,, ${}^4 \Rightarrow G \times \overline{G} =$ $(\bigcup_{a\in A} G_a) \times (\bigcup_{b\in B} \overline{G}_b) = \bigcup_{a\in A, b\in B} (G_a \times \overline{G}_b)$ $\Rightarrow \{G_a \times \overline{G}_b\}_{a\in A, b\in B}$ is a DM-covering of $(G \times \overline{G}, \tau \times \overline{\tau}, \otimes)$.

⁴ See [4]

Let $\{\mathcal{W}_i\}_{i\in I}$ be any DM-covering of $(G \times \overline{G}, \tau \times \overline{\tau}, \otimes) \Longrightarrow G \times \overline{G} = \bigcup_{i\in I} \mathcal{W}_i$, such that $\mathcal{W}_i = \mathcal{U}_i \times \mathcal{V}_i$, where $\mathcal{U}_i \in \tau$, $\mathcal{V}_i \in \overline{\tau}$ for each $i \in I$. But $(G,\tau,*)$ is a DM- compact Smarandache topological semigroup, so there is a finite subset of *I* such that $G = \bigcup_{j\in J} \mathcal{U}_j$ and $(\mathcal{U}_j,*)$ is a group for each $j \in J$.

Let $\mathcal{U}_{j_1} \in {\{\mathcal{U}_j\}_{j \in J}} \implies {\{\mathcal{U}_{j_1} \times \mathcal{V}_i\}_{i \in I}}$ is a DM-covering of $(\mathcal{U}_{j_1} \times \overline{G}, \otimes) \implies \mathcal{U}_{j_1} \times \overline{G} = \bigcup_{i \in I} (\mathcal{U}_{j_1} \times \mathcal{V}_i)$, but $\mathcal{U}_{j_1} \times \overline{G}$ is a DMcompact Smarandache topological semigroup from Theorem 3.11 since $(\mathcal{U}_{j_1}, *)$ is a group and $(\overline{G}, \overline{*})$ is a DM- compact Smarandache topological semigroup, so there is a finite set $S \subseteq I$ such that $\{\mathcal{U}_{j_1} \times \mathcal{V}_s\}_{s \in S}$ is

a group $\forall s \in S$ and $U_{j_1} \times \overline{G} = \bigcup_{s \in S} (\mathcal{U}_{j_1} \times \mathcal{V}_s)$ = $\mathcal{U}_{j_1} \times (\bigcup_{s \in S} \mathcal{V}_s) \implies \bigcup_{j_1 \in J} (\mathcal{U}_{j_1} \times (\bigcup_{s \in S} \mathcal{V}_s))$

 $= (\bigcup_{j \in J} U_j) \times (\bigcup_{s \in S} V_s) = G \times \overline{G} \xrightarrow{5} G \times \overline{G}$ $(\bigcup_{i \in I} U_i) \times (\bigcup_{s \in S} V_s) = \bigcup_{i \in I} \xrightarrow{s \in S} (U_i \times V_s),$

where $(\mathcal{U}_j \times \mathcal{V}_s, \otimes)$ are groups for each $j \in J$. $s \in S$. Therefore $(G \times \overline{G}, \tau \times \overline{\tau}, \otimes)$ is a DM-compact Smarandache topological semigroup.

The prove of the following corollary is direct, hence is omitted.

3.12 Corollary

Let $(G,\tau,*)$ is a DM- compact Smarandache topological semigroup and H.S are two subsets of G. Then $H \times S$ is a DM- compact Smarandache set in $(G \times G, \tau \times \tau, \otimes)$.

3.13 ⁶Theorem

Let $\{G_i : i \in I\}$ be a family of topological groups. Then the direct $G = \prod_{i \in I} G_i$, equipped with the product topology is a topological group.

From Theorem 3.11 and Theorem 3.13, respectively, and by induction we can prove the following theorem;

3.14 Theorem

If $(G,\tau,*)$ is a DM- compact Smarandache topological semigroup, then (G^n,τ^n,\otimes) is a DM- compact Smarandache topological semigroup, where $(\mathbf{x} \otimes \mathbf{y}) = (x_1 * y_1,...,x_n * y_n)$ for each $x_i, y_i \in G, i = 1, 2, ..., n$.

3.15 Theorem

The product of any finite collection of DMcompact Smarandache topological semigroups is a DM- compact Smarandache topological semigroup.

The following corollary is direct from Corollary 3.12 and Theorem 3.15;

3.16 Corollary

Suppose *I* is non-empty set and $(G_i, \tau_i, *_i)$ is a DM- compact Smarandache topological semigroups for each $i \in I$, if H_i is a subset of G_i , $\forall i \in I$. Then $\prod_{i \in I} H_i$ is a DM- compact Smarandache set in $\prod_{i \in I} G_i, \mathcal{S}, \otimes$), where $\mathcal{S} = \tau_{\prod_{i \in I} G_i}$ the usual product topology.

3.17 Theorem

Let $(G,\tau,*)$ and $(\overline{G},\overline{\tau},\overline{*})$ be two topological semigroups and $f: (G,\tau,*) \to (\overline{G},\overline{\tau},\overline{*})$ is an isomorphism. Then

⁶ proposition 3.3.4., p.18, [1].

⁵ See [4]

Dheia. G /Mohammad. A

1- If A is a DM- compact Smarandache set in $(G,\tau,*) \implies f(A)$ is a DM- compact Smarandache set in $(\overline{G},\overline{\tau},\overline{*})$.

2- If *B* is a DM- compact Smarandache set in $(\overline{G}, \overline{\tau}, \overline{*})$ and *f* is an open map $\Rightarrow f^{-1}(B)$ is a DM- compact Smarandache set in $(G, \tau, *)$.

Proof

1- Let $\{\bar{G}_i\}_{i\in I}$ be any DM-covering set of f(A)in $(\bar{G},\bar{\tau},\bar{*})$ that is $f(A) \subseteq \bigcup_{i\in I} \bar{G}_i$ $^7 \Longrightarrow A \subseteq$ $f^{-1}(\bigcup_{i\in I} \bar{G}_i) = \bigcup_{i\in I} f^{-1}(\bar{G}_i)$, it is clear that $f^{-1}(\bar{G}_i) \in \tau . \forall i \in I$ since $\bar{G}_i \in \bar{\tau}$ for each $i \in I$ and f is continuous, but A is a DMcompact Smarandache set in $(G, \tau, *)$, so there is a finite subset of I such that $A = \bigcup_{j\in J} f^{-1}(\bar{G}_i)$ and $(f^{-1}(\bar{G}_i), *)$ is a group $\forall j \in J \implies A = f^{-1}(\bigcup_{j\in J} \bar{G}_j) \implies f(A) =$ $f\left(f^{-1}(\bigcup_{j\in J} \bar{G}_j)\right) = \bigcup_{j\in J} \bar{G}_j$ where $(\bar{G}_j,\bar{*})$ is a group $\forall j \in J$ since f is an isomorphism \implies f(A) is a DM- compact Smarandache set in $(\bar{G},\bar{\tau},\bar{*})$.

2- Let $\{G_i\}_{i\in I}$ be any DM-covering set of $f^{-1}(B)$ in $(G,\tau,*) \Longrightarrow f^{-1}(B) \subseteq \bigcup_{i\in I} G_i, (G_i \in \tau. \forall i \in I) \implies B \subseteq f(\bigcup_{i\in I} G_i) = \bigcup_{i\in I} f(G_i)$, it is clear that $f(G_i) \in \overline{\tau}$. $\forall i \in I$ since f is an open map , but B is a DM- compact Smarandache set in $(\overline{G},\overline{\tau},\overline{*})$, so there is a finite subset $J \subseteq I$ such that $B = \bigcup_{j\in J} f(G_j)$ where $(f(G_j),\overline{*})$ is a group $\forall j \in J \implies B = f(\bigcup_{j\in J} G_j) \implies f^{-1}(B) = \bigcup_{j\in J} G_j$,

where $(G_j,*)$ is a group $\forall j \in J$ since f is an isomorphism $\Longrightarrow f^{-1}(B)$ is a DM- compact Smarandache set in $(G,\tau,*)$.

3.18 Theorem

Let $(G,\tau,*)$ and $(\overline{G},\overline{\tau},\overline{*})$ be two topological semigroups and $f: (G,\tau,*) \rightarrow (\overline{G},\overline{\tau},\overline{*})$ is an isomorphism. Then the following are equivalents;

- $1-(G,\tau,*)$ is a DM-compact Smarandache topological semigroup,
- 2- $(\bar{G}, \bar{\tau}, \bar{*})$ is a DM- compact Smarandache topological semigroup.

Proof

(\Rightarrow) Suppose that $(G,\tau,*)$ is a DM- compact Smarandache topological semigroup , let $\{\bar{G}_i; \bar{G}_i \in \bar{\tau}, \forall i \in I\}$ be any *DM-covering* of $(\bar{G},\bar{\tau},\bar{*}) \Rightarrow \bar{G} = \bigcup_{i \in I} \bar{G}_i \Rightarrow G = f^{-1}(\bar{G}) =$ $f^{-1}(\bigcup_{i \in I} \bar{G}_i) \Rightarrow G = \bigcup_{i \in I} f^{-1}(\bar{G}_i)$, but $(G,\tau,*)$ is a DM-compact Smarandache topological semigroup, so there is a finite subset of I such that $G = \bigcup_{j \in J} f^{-1}(\bar{G}_i)$ and $(f^{-1}(\bar{G}_i).*)$ is a group $\forall j \in J \Rightarrow G = f^{-1}(\bigcup_{j \in J} \bar{G}_j) \Rightarrow$ $\bar{G} = f(G) = f(f^{-1}(\bigcup_{j \in J} \bar{G}_j)) = \bigcup_{j \in J} \bar{G}_j$, where $(\bar{G}_j.\bar{*})$ is a group $\forall j \in J$. Therefore

(\Leftarrow) Suppose that $(\overline{G}, \overline{\tau}, \overline{*})$ is a DM- compact Smarandache topological semigroup, let $\{G_i; G_i \in \tau, \forall i \in I\}$ be any DM-covering of $(G, \tau, *) \Rightarrow G = \bigcup_{i \in I} G_i \Rightarrow \overline{G} = f(G) =$ $f(\bigcup_{i \in I} G_i) \Rightarrow \overline{G} = \bigcup_{i \in I} f(G_i)$, but $(\overline{G}, \overline{\tau}, \overline{*})$ is a DM-compact Smarandache topological semigroup, so there is a finite subset of *I* such

 $(\bar{G},\bar{\tau},\bar{*})$ is a DM- compact Smarandache

topological semigroup.

⁷ See [4]

Dheia. G /Mohammad. A

that $\overline{G} = \bigcup_{j \in J} f(G_j)$ and $(f(G_j), \overline{*})$ is a group $\forall j \in J \Longrightarrow \overline{G} = f(\bigcup_{j \in J} G_j) \Longrightarrow G = f^{-1}(\overline{G}) = f^{-1}(f(\bigcup_{j \in J} G_j)) = \bigcup_{j \in J} G_j$, where $(G_j, *)$ is a group $\forall j \in J$.

Therefore $(G,\tau,*)$ is a DM- compact Smarandache topological semigroup.

References

[1] D. Dikranjan, Introduction to Topological Groups, (May 17, 2011).

[2] T. W. Körner, Topological groups, Part III (Spring 2008).

[3] J. S. Milne, Group Theory, Version 3.10 (September 24, 2010). [4] P. Schapira, General Topology, Course at Paris VI University, 3 (2010-2011).

[5] D. G. Al-Khafajy, On D-Compact Groups, American Journal of Scientific Research, 60, 5-14, (2012).

[6] W. B. Vasantha Kandasamy, Smarandache Special Definite Algebraic Structures, Info Learn Quest, Ann Arbor, (2009).

[7] D. G. Al-Khafajy, On D-Compact Smarandache Groupoids, Al-Qadisiya Journal for Computer Science and Mathematics, 2, 71-77, (2012).

[8] D. G. Al-Khafajy and A. R. Sadek, On D-Compact Topological Groups, Iraqi Journal of Science, V. 54, N.3, 842-846, (2013).

Dheia. G /Mohammad. A

حول تراص سمار انداش لشيه الزمر التوبولوجية من نوع - DM

محمد عبد الرضا مطر جامعة رايت الرسمية الولايات المتحدة الامريكية /ولاية او هايو ضياء غازي صالح الخفاجي جامعة القادسية كلية علوم الحاسوب وتكنولوجيا المعلومات قسم الرياضيات

المستخلص:

قدمنا في هذا البحث بعض التعاريف الجديدة حول تراص سمار انداش لشيه الزمر التوبولوجية من نوع - DM و حول تراص سمار انداش لشيه الزمر التوبولوجية من نوع .DM-L وهي تربط الفضاءات التوبولوجية ونظرية الزمر. حصلنا على بعض النتائج تتعلق بتراص سمار انداش لشيه الزمر التوبولوجية من نوع - DM و تراص سمار انداش لشيه الزمر التوبولوجية من نوع .DM-L ، منها كل زمرة غير منتهية ممكن تكون تراص سمار انداش لشيه زمرة توبولوجية من نوع-DM .