Page 8 - 16

Samy. M/Areej. T/Narjes. Z

Fuzzy α**-Translations** of KUS-algebras

Samy M. Mostafa	Areej Tawfeeq Hameed	Narjes Zuhair Mohammed
Department of Mathematics	Department of Mathematics	Department of Mathematics
College of Education	College of Education for Girls	College of Education for Girls
University of Ain Shams	University of Kufa	University of Kufa
samymostafa@yahoo.com	areej238@gmail.com (or) areej.tawfeeq@uol	kufa.edu.iq <u>nergeszuher@gmail.com</u>
Recived : 4\4\2016	Revised ://	Accepted : 15\8\2016

Abstract. Fuzzy α -translations, (normalized, maximal) fuzzy extensions and fuzzy β -multiplications of fuzzy KUS-subalgebras of KUS-algebras are discussed. Relations among fuzzy α -translations and fuzzy extensions of fuzzy KUS-ideals are investigated.

Mathematics subject classification : 06F35, 03G25, 08A72.

1. Introduction

Several authors ([1],[2],[3]) have introduced of BCK-algebras as a generalization of the concept of set-theoretic difference and propositional calculus and studied some important properties. The concept of a fuzzy set, was introduced by L.A. Zadeh [4]. In ([5], [6],[7],[8]), they applied the concept of fuzzy set to BCK/BCI-algebras and gave some of its properties. Areej Tawfeeq Hameed, [9] introduced KUS-ideals in KUS-algebras and introduced the notions fuzzy KUS-subalgebras, fuzzy KUS-ideals of KUS-algebras and investigated relations among them . In this paper, we discuss fuzzy α -translation, (normalized, maximal)fuzzv S-extension of fuzzv KUS-subalgebras in KUS-algebra. We discuss fuzzy α -translation and fuzzy extension of fuzzy KUS-ideals in KUS-algebra.

2. Preliminaries

Now, we introduced the concept of algebraic structure of KUS-algebra and we give some results and theorems of it.

Definition 2.1([9]). Let (X;*,0) be an algebra of type (2,0) with a single binary operation (*). X is

called a KUS-algebra if it satisfies the following identities: for any x, y, $z \in X$,

 $(kus_1): (z * y) * (z * x) = y * x$,

 $(kus_2): 0 * x = x ,$ $(kus_3): x * x = 0 ,$ $(kus_4): x * (y * z) = y * (x * z) .$

In X we can define a binary relation (\leq) by : $x \leq y$ if and only if y * x = 0.

In what follows, let (X;*,0) denote a KUS-algebra unless otherwise specified. For brevity we also call X a KUS-algebra.

Lemma 2.2 ([9]).In any KUS-algebra (X;*,0), the following properties hold: for all x, y, $z \in X$;

a) x * y = 0 and y * x = 0imply x = y, b) y * [(x * z) * z] = 0

- b) y * [(y * z) * z] = 0,
- c) $x \le y$ implies that $y * z \le x * z$,
- d) $x \le y$ implies that $z * x \le z * y$,
- e) $x \le y$ and $y \le z$ imply $x \le z$,
- f) $x * y \le z$ implies that $z * y \le x$.

Definition 2.3([9]). Let X be a KUS-algebra and let S be a nonempty subset of X. S is called a KUS-subalgebra of X if $x * y \in S$ whenever x, y \in S.

Definition 2.4([9]). A nonempty subset I of a KUS-algebra X is called a KUS-ideal of X if it satisfies: for x, y, $z \in X$, (Ikus₁) ($0 \in I$),

(Ikus₂) $(z * y) \in I$ and $(y * x) \in I$ imply $(z * x) \in I$.

Samy. M/Areej. T/Narjes. Z

Definition 2.5([4]). Let X be a nonempty set, a fuzzy subset μ in X is a function $\mu: X \rightarrow [0,1]$.

Proposition 2.6([9]). Every KUS-ideal of KUS-algebra X is a KUS-subalgebra of X.

Definition 2.7([9]). Let X be a KUS-algebra, a fuzzy subset μ in X is called a fuzzy KUS-subalgebra of X if for all x, $y \in X$, $\mu(x * y) \ge \min \{\mu(x), \mu(y)\}$.

Definition 2.8([9]). Let X be a KUS-algebra, a fuzzy subset μ in X is called a fuzzy KUS-ideal of X if it satisfies the following conditions: , for all x, y, $z \in X$, (Fkus₁) μ (0) $\geq \mu$ (x) , (Fkus₂) μ (z * x) $\geq min \{\mu (z * y), \mu (y * x)\}$.

Proposition 2.9([9]). Every fuzzy KUS-ideal of KUS-algebra X is a fuzzy KUS-subalgebra of X.

3. Fuzzy α-translations of fuzzy KUS-subalgebras .

We study the relations among fuzzy α-translation,(normalized, maximal) fuzzy S-extension of KUS-subalgebras of KUS-algebra X.

In what follows let (X;*,0) denote a KUS-algebra, and for any fuzzy set μ of X, we denote $T = 1 - \sup\{\mu(x) \mid x \in X\}$ unless otherwise specified.

Definition 3.1([1]). Let X be a nonempty set and μ be a fuzzy subset of X and let $\alpha \in [0,T]$. A mapping

 μ_{α}^{T} : X \rightarrow [0,1] is called a **fuzzy subset**

α-translation of μ if it satisfies: $\mu_{\alpha}^{T}(x) = \mu(x) + \alpha$, for all $x \in X$.

Theorem 3.2. Let X be a KUS-algebra and μ be a fuzzy KUS-subalgebra of X and $\alpha \in [0,T]$. Then the fuzzy subset α -translation μ_{α}^{T} of μ is a fuzzy KUS-subalgebra of X. **Proof:** Assume μ be a fuzzy KUS-subalgebra of X and $\alpha \in [0,T]$, let x, $y \in X$. Then $\mu_{\alpha}^{T}(x * y) = \mu(x * y) + \alpha \ge \min\{\mu(x), \mu(y)\} + \alpha =$ $\min\{\mu(x) + \alpha, \mu(y) + \alpha\} = \min\{\mu_{\alpha}^{T}(x), \mu_{\alpha}^{T}(y)\}.$

Hence μ_{α}^{T} is a fuzzy KUS-subalgebra α -translation of X. \triangle

Theorem 3.3. Let X be a KUS-algebra and μ be a fuzzy KUS-subalgebra of X such that the fuzzy subset α -translation μ_{α}^{T} of μ is a fuzzy KUS-subalgebra of X for some $\alpha \in [0,T]$. Then μ is a fuzzy KUS-subalgebra of X.

Proof: Assume μ_{α}^{T} be a fuzzy KUS-subalgebra α -translation of X for some $\alpha \in [0,T]$. Let x, $y \in X$, then $\mu(x * y) + \alpha =$ $\mu_{\alpha}^{T}(x * y) \ge \min\{\mu_{\alpha}^{T}(x), \mu_{\alpha}^{T}(y)\} =$ $\min\{\mu(x) + \alpha, \mu(y) + \alpha\} = \min\{\mu(x), \mu(y)\} +$ α and so $\mu(x * y) \ge \min\{\mu(x), \mu(y)\}$. Hence μ is fuzzy KUS-subalgebra of X . \Box

Definition 3.4([8]). Let μ_1 and μ_2 be fuzzy subsets of a set X. If $\mu_1(x) \le \mu_2(x)$ for all $x \in$ X, then we say that μ_2 is a fuzzy extension of μ_1 .

Definition 3.5. Let X be a KUS-algebra , μ_1

and μ_2 be fuzzy subsets of X. Then μ_2 is called **a fuzzy S-extension** of μ_1 if the following assertions are valid:

(S_i) μ_2 is a fuzzy extension of μ_1 .

 (S_{ii}) If μ_1 is a fuzzy KUS-subalgebra of X, then

 μ_2 is a fuzzy KUS-subalgebra of X.

By means of the definition of fuzzy

 α -translation, we know that $\mu_{\alpha}^{T}(x) \ge \mu(x)$ for all $x \in X$.

Hence we have the following proposition. **Proposition 3.6.** Let μ be a fuzzy KUS-subalgebra of a KUS-algebra X and $\alpha \in [0,T]$. Then the fuzzy subset α -translation μ_{α}^{T} of μ is a fuzzy S-extension of μ .

Samy. M/Areej. T/Narjes. Z

Proof: Straightforward. △

In general, the converse of proposition (3.6) is not true as seen in the following example. **Example 3.7.** Consider a KUS-algebra $X = \{0, a, b, c\}$ with the following Cayley table:

*	0	а	b	c
0	0	а	b	c
a	a	0	c	b
b	b	с	0	a
c	c	b	a	0

By [9]. Define a fuzzy subset μ of X by:

X	0	a	b	с
μ	0.8	0.5	0.6	0.5

Then μ is a fuzzy KUS-subalgebra of X. Let ν be a fuzzy subset of X given by

Х	0	а	b	с	
ν	0.94	0.66	0.78	0.66	

Then v is a fuzzy S-extension of μ . But v is not the fuzzy subset α -translation μ_{α}^{T} of μ for all $\alpha \in [0,T]$.

Proposition 3.8. the intersection of fuzzy S- extensions of a fuzzy subset μ of X is a fuzzy S-extension of μ .

Proof: Let { $\mu_i \mid i \in \Lambda$.} be a family of fuzzy KUS-subalgebras of KUS- algebra X, then for

any x, y \in X, i \in \Lambda,
$$\left(\bigcap_{i \in \Lambda} \mu_{i}\right)(x * y) =$$

$$\inf\left(\mu_{i}(x * y)\right)$$

$$\geq \inf\left(\min\left\{\mu_{i}(x), \mu_{i}(y)\right\}\right)$$

$$= \min\{\inf\left(\mu_{i}(x)\right), \inf\left(\mu_{i}(y)\right\}\}$$

$$= \min\left\{\left(\bigcap_{i \in \Lambda} \mu_{i}(x)\right), \left(\bigcap_{i \in \Lambda} \mu_{i}(y)\right)\right\}. \triangle$$

Clearly, the union of fuzzy S-extensions of a fuzzy subset μ of X. μ is not a fuzzy S-extension of μ as seen in the following example.

Example 3.9. Let $X = \{0, a, b, c\}$ be a KUS-algebra which is given in Example 3.7, and consider a fuzzy subalgebra μ of X that is defined in Example 3.7. Let v and δ be fuzzy subsets of X given by

Х	0	а	b	с
ν	0.9	0.6	0.6	0.8
δ	0.9	0.6	0.7	0.6

Then v and δ are fuzzy S-extensions of μ . But the union $v \cup \delta$ is not a fuzzy S-extension of μ since $(v \cup \delta)(c * b) = 0.6 < 0.7 = \min\{(v \cup \delta)(c), (v \cup \delta)(b)\}.$

 $\begin{array}{ll} \mbox{Definition 3.10. For a fuzzy subset } \mu \mbox{ of } a \\ \mbox{KUS-algebra } X, \ \alpha \in [0,T] \mbox{ and } t \in [0,1] \mbox{ with } \\ t \geq \alpha, \ \mbox{ let } U_{\alpha}\left(\mu; t\right) := \{x \in X \mid \mu(x) \geq \ t - \alpha\}. \end{array}$

If μ is a fuzzy KUS-subalgebra of X, then it is clear that $U_{\alpha}(\mu; t)$ is a

KUS-subalgebra of X, for all $t \in Im(\mu)$ with $t \ge \alpha$. But if we do not give a condition that μ is a fuzzy KUS-subalgebra of X, then U_{α} (μ ; t) is not a KUS-subalgebra of X as seen in the following example.

Example 3.11. Let $X = \{0, a, b, c\}$ be a KUS-algebra which is given in Example (3.9). Define a fuzzy subset λ of X by

Х	0	а	b	с
λ	0.7	0.6	0.4	0.3

Then λ is not a fuzzy KUS-subalgebra of X since $\lambda(a*b) = \lambda(c) = 0.3 < 0.4 = \min{\{\lambda(a), \lambda(b)\}}$. For $\alpha = 0.1$ and t = 0.5, we obtain $U_{\alpha}(\lambda; t) = \{0, a, b\}$ which is not a KUS-subalgebra of X since $a * b = c \notin U_{\alpha}(\lambda; t)$.

Proposition 3.12. Let μ be a fuzzy subset of a KUS-algebra X and $\alpha \in [0,T]$. Then the fuzzy subset α -translation μ_{α}^{T} of μ is a fuzzy KUS-subalgebra of X if and only if U_{α} (μ ; t) is a KUS-subalgebra of X for all $t \in Im(\mu)$ with $t \ge \alpha$.

Samy. M/Areej. T/Narjes. Z

Proof: Necessity is clear. To prove the sufficiency, assume that there exist $x, y \in X$, $\gamma \in [0, 1]$ with $\gamma \ge \alpha$ such that $\mu_{\alpha}^{T}(x * y) < \gamma \le min\{\mu_{\alpha}^{T}(x), \mu_{\alpha}^{T}(y)\}$. Then $\mu(x) \ge \gamma - \alpha$ and $\mu(y) \ge \gamma - \alpha$, but $\mu(x * y) < \gamma - \alpha$. This shows that $x, y \in U_{\alpha}(\mu; \gamma)$ and $x * y \notin U_{\alpha}(\mu; \gamma)$. This is a contradiction, and so $\mu_{\alpha}^{T}(x * y) \ge min\{\mu_{\alpha}^{T}(x), \mu_{\alpha}^{T}(y)\}$, for all $x, y \in X$. Hence μ_{α}^{T} is fuzzy KUS-subalgebra α -translation of X. \triangle

Proposition 3.13. Let μ be a fuzzy KUS-subalgebra of KUS- algebra X and α , $\lambda \in [0,T]$. If $\alpha \ge \lambda$, then the fuzzy KUS-subalgebra α -translation μ_{α}^{T} of μ is a fuzzy S-extension of the fuzzy KUS-subalgebra λ -translation μ_{λ}^{T} of μ . **Proof:** Straightforward. Δ

For every fuzzy KUS-subalgebra μ of a KUS-algebra X and $\lambda \in [0,T]$, the fuzzy subset λ -translation μ_{λ}^{T} of μ is a fuzzy KUS-subalgebra of X. If ν is a fuzzy S-extension of μ_{λ}^{T} , then there exists $\alpha \in [0,T]$ such that $\alpha \ge \lambda$ and $\nu(x) \ge \mu_{\alpha}^{T}(x)$ for all $x \in X$.

Proposition 3.14. Let μ be a fuzzy KUS-subalgebra of a KUS-algebra X and

$$\begin{split} \lambda &\in [0,T]. \text{ For every fuzzy S-extension } \nu \quad \text{of the} \\ \text{fuzzy KUS-subalgebra } \lambda \text{-translation } \mu_\lambda^T \quad \text{of } \mu \,, \\ \text{there exists } \alpha &\in [0,T] \text{ such that } \alpha \geq \lambda \, \text{ and } \nu \\ \text{is a fuzzy S-extension of the fuzzy} \\ \text{KUS-subalgebra} \\ \alpha \text{-translation } \mu_\alpha^T \quad \text{of } \mu. \\ \textbf{Proof: Straightforward. } \Delta \end{split}$$

The following example illustrates proposition (3.14).

Example 3.15. Consider a KUS-algebra $X = \{0, 1, 2, 3\}$ with the following Cayley table:

*	0	1	2	3
0	0	1	2	3
1	1	0	3	2
2	2	3	0	1
3	3	2	1	0

By [9].Define a fuzzy subset μ of X by:

X	0	1	2	3
μ	0.6	0.6	0.2	0.2

Then μ is a fuzzy KUS-subalgebra of X and T=0.3. If we take $\lambda = 0.2$, then the fuzzy KUS-subalgebra λ -translation μ_{λ}^{T} of μ is given by :

Х	0	1	2	3
μ_{λ}^{T}	0.8	0.8	0.4	0.4

Let v be a fuzzy subset of X defined by:

Х	0	1	2	3
ν	0.94	0.84	0.84	0.86

Then v is clearly a fuzzy KUS-subalgebra of X which is fuzzy extension of μ_{λ}^{T} and hence v is a fuzzy S-extension of fuzzy subset λ -translation μ_{λ}^{T} of μ . But v is not a fuzzy KUS-subalgebra α -translation μ_{α}^{T} of μ for all $\alpha \in [0,T]$. Take $\alpha = 0.23$, then $\alpha = 0.23 > 0.2 = \lambda$, and the fuzzy

KUS-subalgebra α -translation μ_{α}^{T} of μ is given as follows:

Х	0	1	2	3
$\mu_{\alpha}^{\scriptscriptstyle T}$	0.8	0.83	0.43	0.43

Note that $v(x) \ge \mu_{\alpha}^{T}(x)$ for all $x \in X$, and hence v is a fuzzy S-extension of the fuzzy KUS-subalgebra α -translation μ_{α}^{T} of μ .

Samy. M/Areej. T/Narjes. Z

Definition 3.16. A fuzzy S-extension ν of a fuzzy KUS-subalgebra μ in a KUS-algebra X is said to be **normalized** if there exists $x_0 \in X$ such that $\nu(x_0) = 1$. Let μ be a fuzzy KUS-subalgebra of X. A fuzzy subset ν of X is called a maximal fuzzy S-extension of μ if it satisfies:

 $(M_i) \ \nu \ \ is a fuzzy \ S-extension \ of \ \mu, \\ (M_{ii}) \ \ there \ does \ not \ exist \ another \ fuzzy \\ KUS-subalgebras \ of \ a \ KUS-algebra \ \ X \\ which \ is \ a \ fuzzy \ extension \ of \ \nu.$

Example 3.17. Let $X = \{0, a, b, c\}$ be a KUS-algebra which is given in Example 3.7.Let μ and ν be fuzzy subsets of X which are

defined by $\mu(x) = \frac{1}{5}$ and $\nu(x) = 1$ for all x

 \in X. Clearly μ and ν are fuzzy KUS-subalgebras of X. It is easy to verify that ν

is a maximal fuzzy S-extension of μ .

Proposition 3.18. If a fuzzy subset v of a KUS-algebra X is a normalized fuzzy S-extension of a fuzzy KUS-subalgebra μ of X, then v(0) = 1.

Proof: It is clear because $v(0) \ge v(x)$ for all $x \in X$. \triangle

Proposition 3.19. Let μ be a fuzzy KUS-subalgebra of a KUS-algebra X. Then every maximal fuzzy S-extension of μ is normalized.

Proof: This follows from the definitions of the maximal and normalized fuzzy S-extensions.△

4. Fuzzy α -translations of fuzzy KUS-ideals .

We study the relations among fuzzy α-translation and fuzzy extension of KUS-ideals of KUS-algebra X.

Theorem 4.1. Let μ is a fuzzy KUS-ideal of a KUS-algebra X, then the fuzzy subset

α-translation μ_{α}^{T} of μ is a fuzzy KUS-ideal of X, for all $\alpha \in [0,T]$.

Proof: Assume μ be a fuzzy KUS-ideal of X and let $\alpha \in [0,T]$. For all $x, y, z \in X$ and

$$\mu(0) \ge \mu(x)$$
. Then $\mu_{\alpha}^{T}(0) = \mu(0) + \alpha$

 $\geq \mu(x) + \alpha = \mu_{\alpha}^{T}(x). and \mu_{\alpha}^{T}(z * x)$ $= \mu(z * x) + \alpha \geq \min\{\mu(z * y), \mu(y * x)\} + \alpha$ $= \min\{\mu(z * y) + \alpha, \mu(y * x) + \alpha\}$

= $min\{\mu_{\alpha}^{T}(z * y), \mu_{\alpha}^{T}(y * x)\}$. Hence μ_{α}^{T} is a fuzzy KUS-ideal α -translation of X. \triangle

Theorem 4.2. Let μ be a fuzzy subset of KUS-algebra X such that the fuzzy subset α -translation μ_{α}^{T} of μ is a fuzzy KUS-ideal of X for some $\alpha \in [0,T]$. Then μ is a fuzzy KUS-ideal of X.

Proof: Assume μ_{α}^{T} is a fuzzy KUS-ideal α -translation of X for some $\alpha \in [0,T]$. Let x, y, $z \in X$, we have $\mu(0) + \alpha = \mu_{\alpha}^{T}(0) \ge$

$$\mu_{\alpha}^{T}(x)$$

$$= \mu(x) + \alpha . \text{So } \mu(0) \ge \mu(x) \text{ and } \mu(z * x) + \alpha$$

$$= \mu_{\alpha}^{T}(z * x) \ge \min\{\mu_{\alpha}^{T}(z * y), \mu_{\alpha}^{T}(y * x)\} = \min\{\mu(z * y) + \alpha, \mu(y * x) + \alpha\} = \min\{\mu(z * y), \mu(y * x)\} + \alpha \text{ and so } \mu(z * x) \ge \min\{\mu(z * y), \mu(y * x)\}. \text{ Hence } \mu \text{ is a fuzzy KUS-ideal of } X . \Box$$

Definition 4.3. Let μ_1 and μ_2 be fuzzy subsets of a KUS-algebra X. Then μ_2 is called a fuzzy extension KUS-ideal of μ_1 if the following assertions are valid:

 $(I_i) \quad \mu_2 \ \ \text{is a fuzzy extension of} \ \ \mu_1.$

 (I_{ii}) If μ_1 is a fuzzy KUS-ideal of X, then

 μ_2 is a fuzzy KUS-ideal of X.

Proposition 4.4. Let μ be a fuzzy KUS-ideal of X and let $\alpha, \gamma \in [0,T]$. If $\alpha \geq \gamma$, then the fuzzy subset α -translation μ_{α}^{T} of μ is a fuzzy extension KUS-ideal of the fuzzy KUS-ideal γ -translation μ_{γ}^{T} of μ . **Proof:** Straightforward. Δ

For every fuzzy KUS-ideal μ of X and $\gamma \in [0,T]$, the fuzzy subset γ -translation μ_{γ}^{T} of μ is a fuzzy KUS-ideal γ -translation of X. If ν is a fuzzy extension KUS-ideal of μ_{γ}^{T} , then there exists $\alpha \in [0,T]$ such that $\alpha \geq \gamma$ and $\nu(x) \geq \mu_{\alpha}^{T}(x)$ for all $x \in X$.

Samy. M/Areej. T/Narjes. Z

Proposition 4.5. Let μ be a fuzzy KUS-ideal of a KUS-algebra X and $\gamma \in [0,T]$. For every fuzzy extension KUS-ideal ν of the fuzzy KUS-ideal γ -translation μ_{γ}^{T} of μ , there exists $\alpha \in [0,T]$ such that $\alpha \geq \gamma$ and ν is a fuzzy extension KUS-ideal of the fuzzy KUS-ideal α -translation μ_{α}^{T} of μ . **Proof:** Straightforward. Δ

The following example illustrates proposition (4.5).

Example 4.6. Let $X = \{0, 1, 2\}$ in which (*) be give by:

*	0	1	2
0	0	1	2
1	1	0	1
2	2	2	0

Then (X;*,0) is a KUS-algebra by [9]. Define a fuzzy subset μ of X by:

-01	01	μ	10	•	
	Х	0	1	2	
	μ	0.8	0.7	0.6	
_					

Then μ is a fuzzy KUS-ideal of X and T = 0.2. If we take $\gamma = 0.12$, then the fuzzy

KUS-ideal

 γ -translation μ_{γ}^{T} of μ

is given by :

iven by .						
	X		0		1	2
	μ_{γ}^{T}		0.92	2	0.82	0.72
Let v be a fuzz	y suł	os	et of 2	X	define	ed by:
	Х		0		1	2
		(0 00		0.80	0.91

of μ for all $\alpha \in [0,T]$. Take $\alpha = 0.17$, then $\alpha = 0.17 > 0.12 = \gamma$, and the fuzzy KUS-ideal

 α -translation μ_{α}^{T} of μ is given as follows:

Х	0	1	2
$\mu_{\alpha}^{^{T}}$	0.97	0.87	0.77
	т		

Note that $v(x) \ge \mu_{\alpha}^{T}(x)$ for all $x \in X$, and hence v is a fuzzy extension KUS-ideal of the fuzzy KUS-ideal α -translation μ_{α}^{T} of μ . **Proposition 4.7.** Let μ be a fuzzy KUS-ideal of a KUS-algebra X and $\alpha \in [0,T]$. Then the fuzzy subset α -translation μ_{α}^{T} of μ is a fuzzy extension KUS-ideal of μ . **Proof:** Straightforward. Δ

A fuzzy extension KUS-ideal of a fuzzy KUS-ideal μ may not be represented as a fuzzy KUS-ideal α -translation μ_{α}^{T} of μ , that is , the converse of proposition (4.7) is not true in general , as shown by the following example.

Example 4.8. Let $X = \{0, 1, 2, 3\}$ be a KUS-algebra with the following Cayley table:

*	0	1	2	3
0	0	1	2	3
1	3	0	1	2
2	2	3	0	1
3	1	2	3	0

By [9].Define a fuzzy subset μ of X by:

Х	0	1	2	3	
μ	0.9	0.6	0.8	0.6	

Then μ is a fuzzy KUS-ideal of X. Let v be a fuzzy subset of X defined by:

Х	0	а	b	с
ν	0.82	0.46	0.59	0.46

Then ν is a fuzzy extension KUS-ideal of X. But ν is not the fuzzy KUS-ideal which is fuzzy KUS-ideal α -translation μ_{α}^{T} of μ for all $\alpha \in [0,T]$.

Proposition 4.9. The intersection of any set of fuzzy KUS-ideals α -translation of KUS-algebra X is also fuzzy KUS-ideal α -translation of X. **Proof:** Let { μ_i | $i \in \Lambda$.} be a family of fuzzy KUS-ideals α -translation of KUS- algebra X, then for any x, y, $z \in X$, $i \in \Lambda$,

$$(\bigcap_{i \in \wedge} (\mu_{\alpha}^{\mathrm{T}})_{i})(0) = \inf((\mu_{\alpha}^{\mathrm{T}})_{i}(0))$$
$$= \inf(\mu_{i}(0) + \alpha)$$
$$\geq \inf(\mu_{i}(x) + \alpha)$$
$$= \inf((\mu_{\alpha}^{\mathrm{T}})_{i}(x))$$
$$= (\bigcap_{i \in \wedge} (\mu_{\alpha}^{\mathrm{T}})_{i}(x))$$

Samy. M/Areej. T/Narjes. Z

and
$$\left(\bigcap_{i\in\Lambda} (\mu_{\alpha}^{\mathrm{T}})_{i}\right)(z * x) = \inf((\mu_{\alpha}^{\mathrm{T}})i)(z * x))$$

$$= \inf(\mu_{i}(z * x) + \alpha)$$

$$\geq \inf(\min\{\mu_{i}(z * y), \mu_{i}(y * x)\}) + \alpha$$

$$= \inf(\min\{\mu_{i}(z * y) + \alpha, \mu_{i}(y * x) + \alpha\})$$

$$= \min\{\inf(\mu_{i}(z * y) + \alpha), \inf(\mu_{i}(y * x) + \alpha\}\}$$

$$= \min\{\left(\bigcap_{i\in\Lambda} \mu_{i}\right)(z * y) + \alpha\right), \left(\bigcap_{i\in\Lambda} \mu_{i}(y * x) + \alpha\}\right\}$$

$$= \min\{\left(\bigcap_{i\in\Lambda} (\mu_{\alpha}^{\mathrm{T}})_{i}\right)(z * y), \left(\bigcap_{i\in\Lambda} (\mu_{\alpha}^{\mathrm{T}})_{i}\right)(y * x)\}. \Delta$$

Clearly, the union of fuzzy extensions of a fuzzy subset α -translation of KUS-algebra X is not a fuzzy extension of μ as seen in the following example.

Example 4.10. Let $X = \{0, 1, 2, 3\}$ be a KUS-algebra which is given in Example (3.15). Define a fuzzy subset μ of X by:

μ 0.8 0.5 0.6 0.5	Х	0	1	2	3
	μ	0.8	0.5	0.6	0.5

Let $\alpha = 0$, then μ is a fuzzy KUS-ideal α -translation of X. Let ν and δ be fuzzy subsets α -translation of X given by:

Х	0	1	2	3
ν	0.9	0.6	0.7	0.6
δ	0.9	0.6	0.6	0.7

Then v and δ are fuzzy extensions of μ . But the union $v \cup \delta$ is not a fuzzy extension of μ since $(v \cup \delta)(3*2) = 0.6 < 0.7 = \min\{(v \cup \delta)(3), (v \cup \delta)(2)\}$.

Theorem 4.11. Let $\alpha \in [0,T]$, μ_{α}^{T} be the fuzzy subset α -translation of μ . Then the following are equivalent:

(1) μ_{α}^{T} is a fuzzy KUS-ideal α -translation of X.

(2) $\forall t \in Im(\mu)$, $t \ge \alpha \Rightarrow U_{\alpha}$ (μ ; t) is KUS-ideal of X.

Proof: Assume that μ_{α}^{T} is a fuzzy KUS-ideal α -translation of X and let $t \in Im(\mu)$ be such that $t > \alpha$. Since $\mu_{\alpha}^{T}(0) \ge \mu_{\alpha}^{T}(x)$ for all $x \in X$, we have

 $\mu(0) + \alpha = \mu_{\alpha}^{T}(0) \ge \mu_{\alpha}^{T}(x) = \mu(x) + \alpha$ that mean $\mu(0) \ge \mu(x)$, for all $x \in X$. Let $x \in U_{\alpha}$ $(\mu; t)$, then $\mu(x) > t-\alpha$ and $\mu(0) \ge \mu(x)$ imply $\mu(0) \ge \mu(x) \ge t - \alpha$. Hence $0 \in U_{\alpha}$ (μ ; t). Let x, y, $z \in X$ be such that $(z * y) \in U_{\alpha}$ (μ ; t) and $(y * x) \in U_{\alpha}$ (μ ; t). Then $\mu(z * y) \ge t - \alpha$ and $\mu(y * x) \ge t - \alpha$, i.e., $\mu_{\alpha}^{T}(z * y) = \mu(z * y) + \alpha \ge t$ and $\mu_{\alpha}^{\mathrm{T}}$ $(y * x) = \mu(y * x) + \alpha \ge t$. Since $\mu_{\alpha}^{\mathrm{T}}$ is a fuzzy KUS-ideal α-translation of X, it follows that $\mu(z * x) + \alpha = \mu_{\alpha}^{T}(z * x) \ge$ $min\{\mu_{\alpha}^{T}(z * y), \mu_{\alpha}^{T}(y * x)\} \geq t$, that is, $\mu(z * x) \ge t - \alpha$ so that $(z * x) \in U_{\alpha}$ (μ ; t). Therefore $U_{\alpha}(\mu; t)$ is KUS-ideal of X.

Conversely, suppose that $U_{\alpha}(\mu; t)$ is KUS-ideal of X for every $t \in Im(\mu)$ with $t > \alpha$. If there exists $x \in X$ such that $\mu_{\alpha}^{T}(0) < \lambda \leq$ $\mu_{\alpha}^{T}(x)$, then $\mu(x) \geq \lambda - \alpha$ but $\mu(0) <$ $\lambda - \alpha$. This shows that $x \in U_{\alpha}(\mu; t)$ and 0 $\notin U_{\alpha}(\mu; t)$. This is a contradiction, and so $\mu_{\alpha}^{T}(0) \geq \mu_{\alpha}^{T}(x)$ for all $x \in X$. Now assume that there exist x, y, $z \in X$ such that $\mu_{\alpha}^{T}(z * x) < \gamma \leq \min \left\{ \mu_{\alpha}^{T}(z * y), \mu_{\alpha}^{T}(y * x) \right\}$.

Then $\mu(z * y) \ge \gamma - \alpha$ and $\mu(y * x) \ge \gamma - \alpha$, but $\mu(z * x) < \gamma - \alpha$. Hence $(z * y) \in$ $U_{\alpha}(\mu; \gamma)$ and $(y * x) \in U_{\alpha}(\mu; \gamma)$, but

 $(z * x) \notin \mathbf{U}_{\alpha}$ (μ ; γ). This is a contradiction, and therefore $\mu_{\alpha}^{\mathrm{T}}(z * x)$

 $\geq \min\{\mu_{\alpha}^{T}(z * y), \ \mu_{\alpha}^{T}(y * x)\}, \text{for all } x, y, z \in X. \text{ Hence } \mu_{\alpha}^{T} \text{ is a fuzzy KUS-ideal} \\ \alpha\text{-translation of } X. \triangle \\ \text{In Theorem}(4.11(2)), \text{ if } t \leq \alpha, \text{ then } U_{\alpha}(\mu; t) \end{cases}$

=X.

Samy. M/Areej. T/Narjes. Z

Proof: Since μ be a fuzzy KUS-ideal of a KUS-algebra X, then by proposition (2.9) μ be a fuzzy KUS-subalgebra of a KUS-algebra X and let $\alpha \in [0,T]$, then by proposition (3.13), the fuzzy subset α -translation μ_{α}^{T} of μ is a fuzzy KUS-subalgebra α -translation of X. \triangle

In general, the converse of the proposition (4.12) is not true.

Example 4.13. Consider a KUS-algebra $X = \{0, 1, 2\}$ with the example (4.6). Define a fuzzy subset μ of X by:

Χ	0	1	2
μ	0.7	0.5	0.6

Then μ is not fuzzy KUS-ideal of X. since $\mu(0*1) = \mu(1)=0.5<0.6=\min\{\mu(0*2), \mu(2*1)\}=\min\{\mu(2), \mu(2)\}$, and T=0.3.But if we take $\alpha=0.2$ the fuzzy translation μ_{α}^{T} of μ is given as follows:

X	0	1	3
μ_{α}^{T}	0.9	0.7	0.8

Then μ_{α}^{T} is a fuzzy KUS-subagebra of X.

References

- Lee K. B., Jun Y.B. and Doh M. I., Fuzzy translations and fuzzy multiplications of BCK/BCI-algebras, vol.24, 353–360, (2009).
- [2] Meng J. and Jun Y. B., BCK-algebras, Kyungmoon Sa Co. Seoul, (1994).
- [3] Meng J., Jun Y. B., and Kim H. S., Fuzzy implicative ideals of BCK-algebras, vol.89, 243–248,(1997).
- [4] Zadeh L. A., Fuzzy sets, vol.8, 338-353,(1965).
- [5] Jun Y. B. and Song S. Z., Fuzzy set theory applied to implicative ideals in BCK-algebras, vol.43, no.3, 461– 470,(2006).
- [6] Jun Y. J. and Xin X. L., Involuntary and invertible fuzzy BCK-algebras, vol.117, 463–469,(2004).
- [7] Wronski A., BCK-algebras do not form a variety, vol.28, 211-213, (1983).
- [8] Xi O. G., Fuzzy BCK-algebra, vol. 36, 935-942,(1991).
- Hameed A.T., Fuzzy ideal of some algebras ,PH.D.SC. Thesis, Faculty of Science, Ain Shams University, Egypt ,(2015).

Samy. M/Areej. T/Narjes. Z

الترجمات الضبابية من النوع α إل جبر KUS

نرجس زهير محمد	أريج توفيق حميد	سامي محمد مصطفى
جامعة الكوفة	جامعة الكوفة	جامعة عين شمس
كلية التربية للبنات	كلية التربية للبنات	كلية التربية
قسم الرياضيات	قسم الرياضيات	قسم الرياضيات
		القاهرة ، مصر

6

المستخلص : الترجمات الضبابية من النوع α (سويا ،العظمى) التوسيعات الضبابية والضرب الضبابي من النوع β إلى الجبر الجزئي الضبابي من النوع KUS ونناقش العلاقات بين الترجمات الضبابية من النوع α و التوسيعات الضبابية إلى المثالية الضبابية من النوع KUS إلى الجبر من النوع KUS ويتم التحقيق فيها.